Skip to main content
Log in

Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The application of natural and synthetic boron-containing compounds (BCC) in biomedical field is expanding. BCC have effects in the metabolism of living organisms. Some boron-enriched supplements are marketed as they exert effects in the bone and skeletal muscle; but also, BCC are being reported as acting on the enzymes and transporters of membrane suggesting they could modify the carbohydrate metabolism linked to some pathologies of high global burden, as an example is diabetes mellitus. Also, some recent findings are showing effects of BCC on lipid metabolism. In this review, information regarding the effects and interaction of these compounds was compiled, as well as the potential application for treating human metabolic disorders is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Any data regarding the presented information in this review can be found in the references. Specific values or data can be requested to corresponding authors for being replied by e-mail.

References

  1. Soriano-Ursúa MA, Farfán-García ED, Geninatti-Crich S (2019) Turning fear of boron toxicity into boron-containing drug design. Curr Med Chem 26:5005–5018. https://doi.org/10.2174/0929867326666190327154954

    Article  CAS  Google Scholar 

  2. Pizzorno L (2015) Nothing boring about boron. Integr Med 14:35–48

    Google Scholar 

  3. Fernandes GFS, Denny WA, Dos Santos JL (2019) Boron in drug design: recent advances in the development of new therapeutic agents. Eur J Med Chem

  4. Uluisik I, Karakaya HC, Koc A (2018) The importance of boron in biological systems. J. Trace Elem Med Biol. pp 156–162

  5. Khaliq H, Juming Z, Ke-Mei P (2018) The physiological role of boron on health. Biol Trace Elem Res 186:31–51. https://doi.org/10.1007/s12011-018-1284-3

    Article  CAS  PubMed  Google Scholar 

  6. Mogoşanu GD, Biţă A, Bejenaru LE et al (2016) Calcium fructoborate for bone and cardiovascular health. Biol Trace Elem Res 172:277–281. https://doi.org/10.1007/s12011-015-0590-2

    Article  CAS  PubMed  Google Scholar 

  7. Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED et al (2019) Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin Ther Pat 29:339–351. https://doi.org/10.1080/13543776.2019.1612368

    Article  CAS  PubMed  Google Scholar 

  8. Zamir A, Ben-Zeev T, Hoffman JR (2021) Manipulation of dietary intake on changes in circulating testosterone concentrations. Nutrients 13:3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuru R, Yilmaz S, Balan G et al (2019) Boron-rich diet may regulate blood lipid profile and prevent obesity: a non-drug and self-controlled clinical trial. J Trace Elem Med Biol 54:191–198. https://doi.org/10.1016/j.jtemb.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  10. Farfán-García ED, Castillo-Mendieta NT, Ciprés-Flores FJ et al (2016) Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol Lett 258:115–125

    Article  PubMed  Google Scholar 

  11. Messner K, Vuong B, Tranmer GK (2022) The boron advantage: the evolution and diversification of boron’s applications in medicinal chemistry. Pharmaceuticals 15:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dessordi R, Spirlandeli AL, Zamarioli A, Volpon JB, NAM (2017) Boron supplementation improves bone health of non-obese diabetic mice. J Trace Elem Med Biol 39:169–175

    Article  CAS  PubMed  Google Scholar 

  13. Demirdogen RE (2020) Relationship among blood boron level, diabetes mellitus lipid metabolism bone metabolism and obesity: can boron be an efficient indicator for metabolic dissesases? Heal Sci J 14:1–11. https://doi.org/10.36648/1791-809x.14.1.689

    Article  Google Scholar 

  14. Białek M, Czauderna M, Krajewska KA, Przybylski W (2019) Selected physiological effects of boron compounds for animals and humans. A review. J Anim Feed Sci 28:307–320. https://doi.org/10.22358/jafs/114546/2019

    Article  Google Scholar 

  15. Naghii MR, Mofid M (2008) Elevation of biosynthesis of endogenous 17-B oestradiol by boron supplementation: one possible role of dietary boron consumption in humans. J Nutr Environ Med 17:127–135

    Article  CAS  Google Scholar 

  16. Mahabir S, Spitz MR, Barrera SL et al (2008) Dietary boron and hormone replacement therapy as risk factors for lung cancer in women. Am J Epidemiol 167:1070–1080

    Article  CAS  PubMed  Google Scholar 

  17. Sizmaz O, Koksal B, Tekeli A, Yildiz G (2021) Effects of boron supplementation alone or in combination with different vitamin D-3 levels on laying performance, eggshell quality, and mineral content and fatty acid composition of egg yolk in laying hens. J Anim Feed Sci 30

  18. Hakki SS, Bozkurt BS, Hakki EE (2010) Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 24:243–250. https://doi.org/10.1016/j.jtemb.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  19. Naghii MR, Torkaman G, Mofid M (2006) Effects of boron and calcium supplementation on mechanical properties of bone in rats. BioFactors 28:195–201

    Article  CAS  PubMed  Google Scholar 

  20. Hunter JM, Nemzer BV, Rangavajla N et al (2019) The fructoborates: part of a family of naturally occurring sugar–borate complexes—biochemistry, physiology, and impact on human health: a review. Biol Trace Elem Res 188:11–25. https://doi.org/10.1007/s12011-018-1550-4

    Article  CAS  PubMed  Google Scholar 

  21. Ying X, Cheng S, Wang W et al (2011) Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol Trace Elem Res 144:306–315

    Article  CAS  PubMed  Google Scholar 

  22. Gizer M, Köse S, Karaosmanoglu B et al (2020) The effect of boron-containing nano-hydroxyapatite on bone cells. Biol Trace Elem Res 193:364–376

    Article  CAS  PubMed  Google Scholar 

  23. Hayal TB, Kırbaş OK, Bozkurt BT et al (2022) Lead borate nanoparticles induce apoptotic gene activity in P53 mutant cancer cells. Biol Trace Elem Res 200:574–581

    Article  CAS  PubMed  Google Scholar 

  24. Kırbaş OK, Bozkurt BT, Taşlı PN et al (2021) Effective scarless wound healing mediated by erbium borate nanoparticles. Biol Trace Elem Res 199:3262–3271

    Article  PubMed  Google Scholar 

  25. Capati MLF, Nakazono A, Igawa K et al (2016) Boron accelerates cultured osteoblastic cell activity through calcium flux. Biol Trace Elem Res 174:300–308

    Article  CAS  PubMed  Google Scholar 

  26. Dessordi R, Spirlandeli AL, Zamarioli A et al (2017) Boron supplementation improves bone health of non-obese diabetic mice. J Trace Elem Med Biol 39:169–175

    Article  CAS  PubMed  Google Scholar 

  27. Jin E, Hu Q, Ren M et al (2019) Effects of selenium yeast in combination with boron on muscle growth and muscle quality in broilers. Biol Trace Elem Res 190:472–483

    Article  CAS  PubMed  Google Scholar 

  28. Ferrando AA, Green NR (1993) The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders. Int J Sport Nutr Exerc Metab 3:140–149

    Article  CAS  Google Scholar 

  29. Bello M, Guadarrama-García C, Velasco-Silveyra LM et al (2018) Several effects of boron are induced by uncoupling steroid hormones from their transporters in blood. Med Hypotheses. https://doi.org/10.1016/j.mehy.2018.06.024

    Article  PubMed  Google Scholar 

  30. U.S. Environmental Protection Agency National Center for Environmental Assessment (2004) Boron and compounds ; CASRN 7440–42–8. Integr Risk Inf Syst Chem Assess Summ 1–29

  31. Bakirdere S, Orenay S, Korkmaz M (2010) Effect of boron on human health. Open Miner Process J 3:54–59. https://doi.org/10.2174/1874841401003010054

    Article  CAS  Google Scholar 

  32. Ocampo-Néstor AL, Trujillo-Ferrara JG, Abad-García A et al (2017) Boron’s journey: advances in the study and application of pharmacokinetics. Expert Opin Ther Pat 27:203–215

    Article  PubMed  Google Scholar 

  33. Liu X, Lu X, Zhu T et al (2021) Revealing lipid droplets evolution at nanoscale under proteohormone stimulation by a BODIPY-hexylcarbazole derivative. Biosens Bioelectron 175:112871

    Article  CAS  PubMed  Google Scholar 

  34. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, USA. (2010) Toxicological profile for boron. https://www.atsdr.cdc.gov › toxprofiles › tp26-a. Accessed 26 april 2022.

  35. Sun P, Luo Y, Wu X, et al. (2016) Effects of supplemental boron on intestinal proliferation and apoptosis in African ostrich chicks. 34:830–835

  36. Aydın S, Demirci S, Doğan A et al (2019) Boron containing compounds promote the survival and the maintenance of pancreatic β-cells. Mol Biol Rep 46:5465–5478

    Article  PubMed  Google Scholar 

  37. Bakken NA, Hunt CD (2003) Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status. J Nutr 133:3577–3583. https://doi.org/10.1093/jn/133.11.3577

    Article  CAS  PubMed  Google Scholar 

  38. Coban FK, Ince S, Kucukkurt I et al (2015) Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol 38:391–399

    Article  CAS  PubMed  Google Scholar 

  39. Coban FK, Liman R, Cigerci IH et al (2015) The antioxidant effect of boron on oxidative stress and DNA damage in diabetic rats. Fresenius Environ Bull 24:4059–4066

    CAS  Google Scholar 

  40. Zafar H, Ali S (2013) Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma. Arch Biochem Biophys 529:66–74. https://doi.org/10.1016/j.abb.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  41. Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG (2014) Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin Ther Pat 24:485–500

    Article  PubMed  Google Scholar 

  42. Rhee YS, Hunt CD, Idso JP (2014) Dietary cholecalciferol, but not dietary boron, modulates insulin receptor expression in rat skeletal muscle 1–4. J Hum Nutr Food Sci 2:1–5

    Google Scholar 

  43. Lin S, Lin C, Liao J, et al (2013) Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model. 4810:4799–4809

  44. Gündüz MK, Bolat M, Kaymak G et al (2022) Therapeutic effects of newly synthesized boron compounds (BGM and BGD) on hepatocellular carcinoma. Biol Trace Elem Res 200:134–146

    Article  PubMed  Google Scholar 

  45. Sogut I, Paltun SO, Tuncdemir M et al (2018) The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats. Can J Physiol Pharmacol 96:404–411

    Article  CAS  PubMed  Google Scholar 

  46. Pawa S, Ali S (2006) Boron ameliorates fulminant hepatic failure by counteracting the changes associated with the oxidative stress. Chem Biol Interact 160:89–98

    Article  CAS  PubMed  Google Scholar 

  47. Zhao X, Zong H, Abdulla A et al (2014) Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity. Diabetes 63:2464–2473

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kucukkurt I, Akbel E, Karabag F, Ince S (2013) The effects of dietary boron compounds in supplemented diet on hormonal activity and some biochemical parameters in rats. Toxicol Ind Health. https://doi.org/10.1177/0748233712469648

    Article  PubMed  Google Scholar 

  49. Hunt CD, Herbel JL (1991) Boron affects energy metabolism in the streptozotocin-injected, vitamin D3-deprived rat. Magnes Trace Elem 10:374–386

    PubMed  Google Scholar 

  50. Demirci S, Doğan A, Aydın S et al (2016) Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Mol Cell Biochem 417:119–133

    Article  CAS  PubMed  Google Scholar 

  51. Cakir S, Eren M, Senturk M, Sarica ZS (2018) The effect of boron on some biochemical parameters in experimental diabetic rats. Biol Trace Elem Res 184:165–172

    Article  CAS  PubMed  Google Scholar 

  52. López-Cabrera Y, Castillo-García EL, Altamirano-Espino JA et al (2018) Profile of three boron-containing compounds on the body weight, metabolism and inflammatory markers of diabetic rats. J Trace Elem Med Biol 50:424–429

    Article  PubMed  Google Scholar 

  53. Ozel AB, Dagsuyu E, Aydın PK et al (2022) Brain boron level, DNA content, and myeloperoxidase activity of metformin-treated rats in diabetes and prostate cancer model. Biol Trace Elem Res 200:1164–1170

    Article  CAS  PubMed  Google Scholar 

  54. Kikuchi H, Nakamura Y, Inoue C et al (2021) Hydrogen peroxide-triggered conversion of boronic acid-appended insulin into insulin and its application as a glucose-responsive insulin formulation. Mol Pharm 18:4224–4230

    Article  CAS  PubMed  Google Scholar 

  55. Demirdogen RE (2020) Relationship among blood boron level, diabetes mellitus, lipid metabolism, bone metabolism and obesity: can boron be an efficient indicator for metabolic diseases. Heal Sci J 14:1–11

    Google Scholar 

  56. Popova EV, Tinkov AA, Ajsuvakova OP et al (2017) Boron–a potential goiterogen? Med Hypotheses 104:63–67

    Article  CAS  PubMed  Google Scholar 

  57. Doğan A, Demirci S, Apdik H et al (2017) A new hope for obesity management: boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism 69:130–142

    Article  PubMed  Google Scholar 

  58. Akdere ÖE, Shikhaliyeva İ, Gümüşderelioğlu M (2019) Boron mediated 2D and 3D cultures of adipose derived mesenchymal stem cells. Cytotechnology 71:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abdik EA, Abdik H, Taşlı PN et al (2019) Suppressive role of boron on adipogenic differentiation and fat deposition in human mesenchymal stem cells. Biol Trace Elem Res 188:384–392

    Article  CAS  PubMed  Google Scholar 

  60. Naghii MR, Mofid M, Asgari AR et al (2011) Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. J Trace Elem Med Biol 25:54–58. https://doi.org/10.1016/j.jtemb.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  61. Nielsen FH (2017) Historical and recent aspects of boron in human and animal health. Boron 2:153–160

    Google Scholar 

  62. Soriano-Ursúa MA, Bello M, Hernández-Martínez CF et al (2019) Cell-based assays and molecular dynamics analysis of a boron-containing agonist with different profiles of binding to human and guinea pig beta2 adrenoceptors. Eur Biophys J 48:83–97. https://doi.org/10.1007/s00249-018-1336-9

    Article  PubMed  Google Scholar 

  63. Abad-García A, Ocampo-Néstor · A Lilia, Bhaskar ·, et al (1915) Interactions of a boron-containing levodopa derivative on D 2 dopamine receptor and its effects in a Parkinson disease model. JBIC J Biol Inorg Chem 27:121–131. https://doi.org/10.1007/s00775-021-01915-2

    Article  CAS  Google Scholar 

  64. Ocampo-Néstor AL, López-Mayorga RM, Castillo-Henkel EF et al (2019) Design, synthesis and in vitro evaluation of a Dopa-organoboron compound that acts as a bladder relaxant through non-catecholamine receptors. Mol Divers 23:361–370. https://doi.org/10.1007/s11030-018-9883-7

    Article  CAS  PubMed  Google Scholar 

  65. Nielsen FH (2000) The emergence of boron as nutritionally important throughout the life cycle. In: Nutrition. pp 512–514

  66. Song S, Gao P, Sun L et al (2021) Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm Sin B 11:3035–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Diaz DB, Yudin AK (2017) The versatility of boron in biological target engagement. Nat Chem 9:731–742

    Article  CAS  PubMed  Google Scholar 

  68. Kabu M, Akosman MS (2013) Biological effects of boron. In: Reviews of environmental contamination and toxicology. Springer, pp 57–75

  69. Farfán-García ED, Rosales-Hernández MC, Castillo-García EL et al (2022) Identification and evaluation of boronic compounds ameliorating cognitive deficit in orchiectomized rats. J Trace Elem Med Biol 72:126979. https://doi.org/10.1016/j.jtemb.2022.126979

    Article  CAS  PubMed  Google Scholar 

  70. Lei J, Hansen G, Nitsche C, et al (2016) Crystal structure of zika virus ns2b-ns3 protease in complex with a boronate inhibitor. Science (80- ) 353:503–505. https://doi.org/10.1126/science.aag2419

  71. Soriano-Ursúa MA, Correa-Basurto J, Romero-Huerta J et al (2010) Pharmacokinetic parameters and a theoretical study about metabolism of BR-AEA (a salbutamol derivative) in rabbit. J Enzyme Inhib Med Chem 25:340–346

    Article  PubMed  Google Scholar 

  72. Aysan E, Sahin F, Telci D et al (2011) Body weight reducing effect of oral boric acid intake. Int J Med Sci 8:653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hasbahceci M, Cipe G, Kadioglu H et al (2013) Reverse relationship between blood boron level and body mass index in humans: does it matter for obesity? Biol Trace Elem Res 153:141–144

    Article  CAS  PubMed  Google Scholar 

  74. Donoiu I, Militaru C, Obleagă O et al (2018) Effects of boron-containing compounds on cardiovascular disease risk factors – a review. J Trace Elem Med Biol 50:47–56. https://doi.org/10.1016/j.jtemb.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  75. I.R. Scorei RP, (2010) Boron-containing compounds as preventive and chemotherapeutic agents for cancer, Anticancer, Agents. Med Chem 10:346–351

    Google Scholar 

  76. Farrin N, Rezazadeh L, Pourmoradian S, et al (2022) Boron compound administration; a novel agent in weight management: a systematic review and meta-analysis of animal studies. J Trace Elem Med Biol 126969

  77. Ince S, Filazi A, Yurdakok-dikmen B (2017) Boron. In: Reproductive and developmental toxicology. Elsevier Inc., pp 521–535

  78. Abdelnour SA, Abd El-Hack ME, Swelum AA et al (2018) The vital roles of boron in animal health and production: a comprehensive review. J Trace Elem Med Biol 50:296–304

    Article  CAS  PubMed  Google Scholar 

  79. Buchtele N, Schwameis M, Schoergenhofer C et al (2020) Safety, tolerability, pharmacokinetics and pharmacodynamics of parenterally administered dutogliptin: a prospective dose-escalating trial. Br J Clin Pharmacol 86:979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu D, Li L, Liu C (2014) Efficacy and safety of dipeptidyl peptidase-4 inhibitors and metformin as initial combination therapy and as monotherapy in patients with type 2 diabetes mellitus: a meta-analysis. Diabetes, Obes Metab 16:30–37

    Article  CAS  PubMed  Google Scholar 

  81. Dogan EE (2021) Computational bioactivity analysis and bioisosteric investigation of the approved breast cancer drugs proposed new design drug compounds: increased bioactivity coming with silicon and boron. Lett Drug Des Discov 18:551–561

    Article  CAS  Google Scholar 

  82. Panaro BL, Coppage AL, Beaudry JL et al (2019) Fibroblast activation protein is dispensable for control of glucose homeostasis and body weight in mice. Mol Metab 19:65–74

    Article  CAS  PubMed  Google Scholar 

  83. Wu Y, Shi T, Wang J, He R (2021) Talabostat alleviates obesity and associated metabolic dysfunction via suppression of macrophage-driven adipose inflammation. Obesity 29:327–336

    Article  CAS  PubMed  Google Scholar 

  84. Tibullo D, Giallongo C, Romano A et al (2020) Mitochondrial functions, energy metabolism and protein glycosylation are interconnected processes mediating resistance to bortezomib in multiple myeloma cells. Biomolecules 10:696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ludman T, Melemedjian OK (2019) Bortezomib-induced aerobic glycolysis contributes to chemotherapy-induced painful peripheral neuropathy. Mol Pain 15:1744806919837429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xie Y, Yao K, Dong Z, Liu K (2021) Targeting nutrient metabolism with FDA-approved drugs for cancer chemoprevention: drugs and mechanisms. Cancer Lett 510:1–12

    Article  CAS  PubMed  Google Scholar 

  87. Besse L, Besse A, Mendez-Lopez M et al (2019) A metabolic switch in proteasome inhibitor-resistant multiple myeloma ensures higher mitochondrial metabolism, protein folding and sphingomyelin synthesis. Haematologica 104:e415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nocentini A, Supuran CT, Winum J-Y (2018) Benzoxaborole compounds for therapeutic uses: a patent review (2010–2018). Expert Opin Ther Pat 28:496–504. https://doi.org/10.1080/13543776.2018.1473379

    Article  CAS  Google Scholar 

  89. Sommer CA, Eichinger A, Skerra A (2020) A tetrahedral boronic acid diester formed by an unnatural amino acid in the ligand pocket of an engineered lipocalin. ChemBioChem 21:469–472

    Article  CAS  PubMed  Google Scholar 

  90. Edwardraja S, Eichinger A, Theobald I et al (2017) Rational design of an anticalin-type sugar-binding protein using a genetically encoded boronate side chain. ACS Synth Biol 6:2241–2247

    Article  CAS  PubMed  Google Scholar 

  91. Baspinar N, Basoglu A, Ozdemir O et al (2015) Effects of boron compounds in rabbits fed high protein and energy diet: a metabolomic and transcriptomic approach. Int J Anim Vet Sci 9:570–575

    Google Scholar 

  92. Sizmaz O, Koksal BH, YG, (2017) Rumen microbial fermentation, protozoan abundance and boron availability in yearling rams fed diets with different boron concentrations. J Anim Feed Sci 26:59–64

    Google Scholar 

  93. Hunt CD (2012) Dietary boron: progress in establishing essential roles in human physiology. J Trace Elem Med Biol 26:157–160

    Article  CAS  PubMed  Google Scholar 

  94. O’Connell DP, LeBlanc DF, Cromley D et al (2012) Design and synthesis of boronic acid inhibitors of endothelial lipase. Bioorg Med Chem Lett 22:1397–1401

    Article  PubMed  Google Scholar 

  95. Hong Q, Zhang L, Das B et al (2018) Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int 93:1330–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Plescia J, Moitessier N (2020) Design and discovery of boronic acid drugs. Eur J Med Chem 195:112270

    Article  CAS  PubMed  Google Scholar 

  97. Kuhnert R, Sárosi M, George S et al (2017) CarbORev-5901: the first carborane-based inhibitor of the 5-lipoxygenase pathway. ChemMedChem 12:1081–1086

    Article  CAS  PubMed  Google Scholar 

  98. Stockmann P, Gozzi M, Kuhnert R et al (2019) New keys for old locks: carborane-containing drugs as platforms for mechanism-based therapies. Chem Soc Rev 48:3497–3512

    Article  CAS  PubMed  Google Scholar 

  99. Paiva P, Medina FE, Viegas M et al (2021) Animal fatty acid synthase: a chemical nanofactory. Chem Rev 121:9502–9553

    Article  CAS  PubMed  Google Scholar 

  100. Reynolds RC, Campbell SR, Fairchild RG et al (2007) Novel boron-containing, nonclassical antifolates: synthesis and preliminary biological and structural evaluation. J Med Chem 50:3283–3289

    Article  CAS  PubMed  Google Scholar 

  101. Burnham BS (2005) Synthesis and pharmacological activities of amine-boranes. Curr Med Chem 12:1995–2010

    Article  CAS  PubMed  Google Scholar 

  102. Młodzik-Czyżewska MA, Szwengiel A, Malinowska AM, Chmurzynska A (2021) Comparison of associations between one-carbon metabolism, lipid metabolism, and fatty liver markers in normal-weight and overweight people aged 20–40 years. Ann Nutr Metab 77:221–230

    Article  PubMed  Google Scholar 

  103. G Sangu K, U Shinde A, Chopra S, B Rode H (2021) Evading antimicrobial resistance using boron-containing therapeutics

  104. Arciniega-Martínez IM, Romero-Aguilar KS, Farfán-García ED et al (2022) Diversity of effects induced by boron-containing compounds on immune response cells and on antibodies in basal state. J Trace Elem Med Biol 69:126901

    Article  PubMed  Google Scholar 

  105. M. Verma PAD (2017) Computational insights into biomimetic CO2 hydration activities of (poly)borate ions. J Phys Chem C. pp 17197–17206

  106. Guo D, Thee H, Da Silva G, Chen J, Fei W, S. Kentish GWS, (2011) Boratecatalyzed carbon dioxide hydration via the carbonic anhydrase mechanism. Environ Sci Technol 45:4802–4807

    Article  CAS  PubMed  Google Scholar 

  107. Beesley T, Gascoyne N, Knott-hunziker V et al (1983) The inhibition of class C Beta-lactamases by boronic acids 209:229–233

    CAS  Google Scholar 

  108. Takano J, Noguchi K, Yasumori M et al (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340. https://doi.org/10.1038/nature01139

    Article  CAS  PubMed  Google Scholar 

  109. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vithana EN, Morgan P, Sundaresan P et al (2006) Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2). Nat Genet 38:755–757

    Article  CAS  PubMed  Google Scholar 

  111. Desir J, Moya G, Reish O et al (2007) Borate transporter SLC4A11 mutations cause both Harboyan syndrome and non-syndromic corneal endothelial dystrophy. J Med Genet 44:322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Patricia Rico, Aleixandre Rodrigo-Navarro, Marcos de la Peña, Vladimira Moulisová, Mercedes Costell and MS-S (2019) Simultaneous boron ion-channel/growth factor receptor activation for enhanced vascularization. 1–12

  113. Imperio D, Panza L (2022) Sweet boron: boron-containing sugar derivatives as potential agents for boron neutron capture therapy. Symmetry (Basel) 14:182

    Article  CAS  Google Scholar 

  114. N. Rosalez M, Estevez-Fregoso E, Alatorre A, et al (2019) 2-Aminoethyldiphenyl borinate: a multitarget compound with potential as a drug precursor. Curr Mol Pharmacol 13:57–75. https://doi.org/10.2174/1874467212666191025145429

    Article  CAS  Google Scholar 

  115. Mautner HG, Bartels E (1970) Interactions of p-nitrobenzene diazonium fluoroborate and analogs with the active sites of acetylcholine-receptor and-esterase. Proc Natl Acad Sci 67:74–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kong YK, Song K-S, Jung ME et al (2022) Discovery of GCC5694A: a potent and selective sodium glucose co-transporter 2 inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem Lett 56:128466

    Article  CAS  PubMed  Google Scholar 

  117. Feng S, Ren Y, Li H et al (2021) Cancer cell–membrane biomimetic boron nitride nanospheres for targeted cancer therapy. Int J Nanomedicine 16:2123–2136. https://doi.org/10.2147/IJN.S266948

    Article  PubMed  PubMed Central  Google Scholar 

  118. Betzel T, Heß T, Waser B et al (2008) closo-borane conjugated regulatory peptides retain high biological affinity: synthesis of closo-borane conjugated Tyr3-octreotate derivatives for BNCT. Bioconjug Chem 19:1796–1802. https://doi.org/10.1021/bc800101h

    Article  CAS  PubMed  Google Scholar 

  119. Radhakrishnan S, Park JH, Neupane R et al (2019) Fluorinated boron nitride quantum dots: a new 0D material for energy conversion and detection of cellular metabolism. Part Part Syst Charact 36:1800346

    Article  Google Scholar 

  120. Barattucci A, Gangemi CMA, Santoro A, et al (2022) Bodipy-carbohydrate systems: synthesis and bio-applications. Org Biomol Chem

  121. Gurubasavaraj PM, Sajjan VP, Muñoz-Flores BM et al (2022) Recent advances in BODIPY compounds: synthetic methods, optical and nonlinear optical properties, and their medical applications. Molecules 27:1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kanyan D, Horacek-Glading M, Wildervanck MJ, et al (2022) O-BODIPYs as fluorescent labels for sugars: glucose, xylose and ribose. Org Chem Front

  123. Gomez AM, Lopez JC (2021) Bringing color to sugars: the chemical assembly of carbohydrates to BODIPY dyes. Chem Rec 21:3112–3130

    Article  CAS  PubMed  Google Scholar 

  124. Papalia T, Siracusano G, Colao I et al (2014) Cell internalization of BODIPY-based fluorescent dyes bearing carbohydrate residues. Dye Pigment 110:67–71

    Article  CAS  Google Scholar 

  125. Gao Y-G, Le My LT, Zhai X et al (2020) Measuring lipid transfer protein activity using Bicelle-Dilution model membranes. Anal Chem 92:3417–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang X, Bou S, Klymchenko AS et al (2021) Ultrabright green-emitting nanoemulsions based on natural lipids-BODIPY conjugates. Nanomaterials 11:826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kashirina AS, López-Duarte I, Kubánková M et al (2020) Monitoring membrane viscosity in differentiating stem cells using BODIPY-based molecular rotors and FLIM. Sci Rep 10:1–12

    Article  Google Scholar 

  128. Zhang M, Su R, Zhang Q et al (2018) Ultra-bright intercellular lipids pseudo Di-BODIPY probe with low molecular weight, high quantum yield and large two-photon action cross-sections. Sensors Actuators B Chem 261:161–168

    Article  CAS  Google Scholar 

  129. Namkoong Y, Oh J, Hong J-I (2020) Electrochemiluminescent detection of glucose in human serum by BODIPY-based chemodosimeters for hydrogen peroxide using accelerated self-immolation of boronates. Chem Commun 56:7577–7580

    Article  CAS  Google Scholar 

  130. Bernecic NC, Zhang M, Gadella BM et al (2019) BODIPY-cholesterol can be reliably used to monitor cholesterol efflux from capacitating mammalian spermatozoa. Sci Rep 9:1–12

    Article  CAS  Google Scholar 

  131. Mora AK, Murudkar S, Shivran N et al (2021) Monitoring the formation of insulin oligomers using a NIR emitting glucose-conjugated BODIPY dye. Int J Biol Macromol 166:1121–1130

    Article  CAS  PubMed  Google Scholar 

  132. Tian Y, Fang M, Lin Q (2021) Intracellular bioorthogonal labeling of glucagon receptor via tetrazine ligation. Bioorg Med Chem 43:116256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee J-S, Kang N, Kim YK et al (2009) Synthesis of a BODIPY library and its application to the development of live cell glucagon imaging probe. J Am Chem Soc 131:10077–10082

    Article  CAS  PubMed  Google Scholar 

  134. Williams GT, Kedge JL, Fossey JS (2021) Molecular boronic acid-based saccharide sensors. ACS sensors 6:1508–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bhavya NR, Mahendra M, Doreswamy BH et al (2019) Computational and spectroscopic investigations on boronic acid based fluorescent carbohydrate sensor in aqueous solution at physiological pH 7.5. J Mol Struct 1194:305–319

    Article  CAS  Google Scholar 

  136. Muz B, Azab AK, Confalonieri L et al (2022) Synthesis, equilibrium, and biological study of a C-7 glucose boronic acid derivative as a potential candidate for boron neutron capture therapy. Bioorg Med Chem 59:116659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the scholarship for postgraduate students from Consejo Nacional de Ciencia y Tecnología and Instituto Politécnico Nacional.

Funding

This study was supported by the Consejo Nacional de Ciencia y Tecnología and Secretaria de Investigación y Posgrado del Instituto Politécnico Nacional (M2143).

Author information

Authors and Affiliations

Authors

Contributions

M.A.S.U. and A.A.G. conceived the review. R.I.C.C. and F.C.R. collected and organized information. All authors wrote the drafts and main manuscript text. M.A.S.U. and A.A.G. prepared Figs. 1, 2, 3, 4, 5, 6, 7, and 8. All authors reviewed and edited the final manuscript.

Corresponding authors

Correspondence to Abad-García A or Soriano-Ursúa MA.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RI, CC., MF, CR., D, RV. et al. Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders. Biol Trace Elem Res 201, 2222–2239 (2023). https://doi.org/10.1007/s12011-022-03346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03346-9

Keywords

Navigation