Skip to main content

Advertisement

Log in

Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: an Overview

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Recently there had been a great interest in biologically synthesized nanoparticles (NPs) as potential therapeutic agents. The shortcomings of conventional non-biological synthesis methods such as generation of toxic byproducts, energy consumptions, and involved cost have shifted the attention towards green syntheses of NPs. Among noble metal NPs, gold nanoparticles (AuNPs) are the most extensively used ones, owing to the unique physicochemical properties. AuNPs have potential therapeutic applications, as those are synthesized with biomolecules as reducing and stabilizing agent(s). The green method of AuNP synthesis is simple, eco-friendly, non-toxic, and cost-effective with the use of renewable energy sources. Among all taxa, cyanobacteria have attracted considerable attention as nano-biofactories, due to cellular uptake of heavy metals from the environment. The cellular bioactive pigments, enzymes, and polysaccharides acted as reducing and coating agents during the process of biosynthesis. However, cyanobacteria-mediated AuNPs have potential biomedical applications, namely, targeted drug delivery, cancer treatment, gene therapy, antimicrobial agent, biosensors, and imaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NP:

Nanoparticle

AuNP:

Gold nanoparticle

NIR:

Near infrared

SPR:

Surface plasmon resonance

PEGyl:

Polyethylene glycol

FDA:

Food and Drug Administration

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

FTIR:

Fourier transform infrared

HAuCl4 :

Chloroauric acid

NADPH:

Nicotinamide adenine dinucleotide phosphate

NADH:

Nicotinamide adenine dinucleotide

EPS:

Extracellular polymeric substances or exopolysaccharide

H3N2:

Influenza A virus subtype

H1N1:

Swine flu

HIV:

Human immunodeficiency virus

AIDS:

Acquired immunodeficiency syndrome

AgNPs:

Silver nanoparticles

HSV:

Herpes simplex virus

SVN:

Scytovirin

GRFT:

Griffithsin

HCV:

Hepatitis C

RV:

Rotavirus

CVB3:

Coxsackievirus B3

References

  1. Baker S, Kumar KM, Santosh P, Rakshith D, Satish S (2015) Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity. Specochim Acta Part A: Molecular and Biomolecular Spectroscopy 136:1434–1440

    Article  CAS  Google Scholar 

  2. Khan ZU, Khan A, Chen Y, Shah NS, Muhammad N, Khan AU, Tahir K, Khan FU, Murtaza B, Hassan SU, Qaisrani SA (2017) Biomedical applications of green synthesized nobel metal nanoparticles. J Photochem Photobiol B: Bio 173:150–164

    Article  Google Scholar 

  3. Kalimuthu K, Cha BS, Kim S, Park KS (2020) Eco-friendly synthesis and biomedical applications of gold nanoparticles: a review. Microchem J 152:104296

  4. Wen ZQ, Li G, Ren D (2011) Detection of trace melamine in raw materials used for protein pharmaceutical manufacturing using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticles. Appl spectroscop 65(5):514–521

    Article  CAS  Google Scholar 

  5. Satyanarayana T, Reddy SS (2018) A review on chemical and physical synthesis methods of nanomaterials. Intl J Res Appl Sci Eng Technol 6

  6. Ali Dheyab M, Aziz AA, Jameel MS (2021) Recent advances in inorganic nanomaterials synthesis using sonochemistry: a comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. Molecules 26:2453

    Article  PubMed  PubMed Central  Google Scholar 

  7. Phan TT, Phan DT, Cao XT, Huynh TC, Oh J (2021) Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications. Nanomatrials 11:273

    Article  CAS  Google Scholar 

  8. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  9. Kamran U, Bhatti HN, Iqbal M, Nazir A (2019) Green synthesis of metal nanoparticles and their applications in different fields: a review. Z Phys Chem 233:1325–1349

    Article  CAS  Google Scholar 

  10. Saravanan A, Kumar PS, Karishma S, Vo DV, Jeevanantham S, Yaashikaa PR, George CS (2021) A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 1:128580.

  11. Qiao J, Qi L (2021) Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta 1:121396.

  12. Mishra MP, Padhy RN (2018) Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. J Applied Biomed 16:120–125

    Article  Google Scholar 

  13. Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Lunardi CN (2016) In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Matrl Sci Engin: C 65:199–204

    Article  CAS  Google Scholar 

  14. Essajai R, Rachadi A, Feddi E (2018) MD simulation-based study on the thermodynamic, structural and liquid properties of gold nanostructures. Material Chem Phy 218:116–121

    Article  CAS  Google Scholar 

  15. Yasothamani V, Vivek R (2019) Biosynthesis of Nanoparticles for cancer therapeutic applications. Biol Syn Nanopt Appl 6:105

    Google Scholar 

  16. Srivastava S, Pandey A (2021) Syngonium podophyllum leaf extract mediated synthesis and characterization of gold nanoparticles for biosensing potential: a sustainable approach Curr Nanosci 17:81-89

  17. Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S (2019) A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Microchim Acta 186:1–22

    Article  Google Scholar 

  18. Vidhya E, Vijayakumar S, Prathipkumar S, Praseetha PK (2020) Green way biosynthesis: characterization, antimicrobial and anticancer activity of ZnO nanoparticle. Gen Rept 20:100688

  19. Mata R, Nakkala JR, Sadras SR (2016) Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colloid Surf B: Biointerf 143:499–510

    Article  CAS  Google Scholar 

  20. Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, Ivanov A, Rumyantseva V, Shilov I, Ryabova A, Loshchenov V, Khlebtsov NG (2011) Nanocomposites containing silica-coated gold–silver nanocages and Yb–2, 4-dimethoxyhematoporphyrin: multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 5:7077–7089

    Article  CAS  PubMed  Google Scholar 

  21. Fu H, Yang X, Jiang X, Yu A (2013) Bimetallic Ag–Au nanowires: synthesis, growth mechanism, and catalytic properties Langmuir 29:7134–7142

  22. Rai M, Ingle AP, Gupta I, Brandelli A (2015) Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Intl J Pharmaceut 496:159–172

    Article  CAS  Google Scholar 

  23. Kreuter J (2007) Nanoparticles—a historical perspective. Intl J Pharmaceut 331:1

    Article  CAS  Google Scholar 

  24. Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S (2020) Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv 2:3764–3787

    Article  PubMed  PubMed Central  Google Scholar 

  25. Asharani PV, Lianwu YI, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicol 5:43–54

    Article  CAS  Google Scholar 

  26. Hainfeld JF, Slatkin DN, Smilowitz HM (2005) The use of gold nanoparticles to enhance radiotherapy in mice. American Asso Cancer Res 65(9)

  27. Kumar A, Zhang X, Liang XJ (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotech Adv 31:593–606

    Article  CAS  Google Scholar 

  28. Kesharwani P, Choudhury H, Meher JG, Pandey M, Gorain B (2019) Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog Materials Sci 1:484–508

    Article  Google Scholar 

  29. Katas H, Lim CS, Azlan AY, Buang F, Busra MF (2019) Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharmaceut J 27:283–292

    Article  Google Scholar 

  30. Khandelwal P, Singh DK, Poddar P (2019) Advances in the experimental and theoretical understandings of antibiotic conjugated gold nanoparticles for antibacterial applications. Chem Select 4(22):6719–6738

    CAS  Google Scholar 

  31. Badeggi UM, Ismail E, Adeloye AO, Botha S, Badmus JA, Marnewick JL, Cupido CN, Hussein AA (2020) Green synthesis of gold nanoparticles capped with Procyanidins from Leucosidea sericea as potential antidiabetic and antioxidant agents. Biomolecules 10(3):452

    Article  CAS  PubMed Central  Google Scholar 

  32. Milanezi FG, Meireles LM, de Christo Scherer MM, de Oliveira JP, da Silva AR, de Araujo ML, Endringer DC, Fronza M, Guimarães MC, Scherer R (2019) Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharmaceut J 27:968–974

    Article  CAS  Google Scholar 

  33. Peng C, Yu M, Zheng J (2019) In situ ligand-directed growth of gold nanoparticles in biological tissues. Nano Lett 20:1378–1382

    Article  Google Scholar 

  34. Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M (2019) Plasmonic gold nanoparticles: optical manipulation, imaging, drug delivery and therapy. J Controlled Release 311:170–189

    Article  Google Scholar 

  35. Gopinath V, Priyadarshini S, MubarakAli D, Loke MF, Thajuddin N, Alharbi NS, Yadavalli T, Alagiri M, Vadivelu J (2019) Anti-Helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: multifaceted application. Arabian J Chem 12:33–40

    Article  CAS  Google Scholar 

  36. Ilgin P, Ozay O, Ozay H (2019) A novel hydrogel containing thioether group as selective support material for preparation of gold nanoparticles: synthesis and catalytic applications. Appl Catalysis B: Env 241:415–423

    Article  CAS  Google Scholar 

  37. Fratoddi I, Venditti I, Cametti C, Russo MV (2015) How toxic are gold nanoparticles? The state-of-the-art. Nano Res 8:1771–1799

    Article  CAS  Google Scholar 

  38. Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506

    Article  CAS  Google Scholar 

  39. Zhang D, Du S, Su S, Wang Y, Zhang H (2019) Rapid detection method and portable device based on the photothermal effect of gold nanoparticles. Biosensors and Bioelectr 123:19–24

    Article  CAS  Google Scholar 

  40. Bromma K, Chithrani DB (2020) Advances in gold nanoparticle-based combined cancer therapy. Nanomaterials 10:1671

    Article  CAS  PubMed Central  Google Scholar 

  41. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceut Res 33:2373–2387

    Article  CAS  Google Scholar 

  42. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671

    Article  CAS  PubMed  Google Scholar 

  43. Correa SN, Naranjo AM, Herrera AP (2016) Biosynthesis and characterization of gold nanoparticles using extracts of Tamarindus indica L leaves. Int J Phy: Conference Series 687: 012082

  44. Golmoraj VE, Reza Khoshayand M, Amini M, Mollazadeh Moghadamd K, Amin G, Reza Shahverdi A (2011) The surface chemistry and stability of gold nanoparticles prepared using methanol extract of Eucalyptus camaldulensis. J Experil Nanosci 6:200–208

    Article  CAS  Google Scholar 

  45. Ramezani N, Ehsanfar Z, Shamsa F, Amin G, Shahverdi HR, Esfahani HR, Shamsaie A, Bazaz RD, Shahverdi AR (2008) Screening of medicinal plant methanol extracts for the synthesis of gold nanoparticles by their reducing potential. Zeitschrift für Naturforschung B 63:903–908

    Article  CAS  Google Scholar 

  46. Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioproc biosyst Eng 34:615–619

    Article  CAS  Google Scholar 

  47. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Matrl Lette 61:3984–3987

    Article  CAS  Google Scholar 

  48. Waghmare SS, Deshmukh AM, Sadowski Z (2014) Biosynthesis, optimization, purification and characterization of gold nanoparticles. Afric J Microbiol Res 8:138–146

    Article  Google Scholar 

  49. Stephen JR, Macnaughtont SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opi Biotechnol 10:230–233

    Article  CAS  Google Scholar 

  50. Camas M, Celik F, Sazak Camas A, Ozalp HB (2019) Biosynthesis of gold nanoparticles using marine bacteria and Box-Behnken design optimization. Particl Sci Technol 37:31–38

    Article  CAS  Google Scholar 

  51. Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8:904–917

    Article  CAS  PubMed  Google Scholar 

  52. Clarance P, Luvankar B, Sales J, Khusro A, Agastian P, Tack JC, Al Khulaifi MM, Al-Shwaiman HA, Elgorban AM, Syed A, Kim HJ (2020) Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in vitro anticancer and biomedical applications. Saudi J Biol Sci 27:706–712

    Article  CAS  PubMed  Google Scholar 

  53. Yang Z, Li Z, Lu X, He F, Zhu X, Ma Y, He R, Gao F, Ni W, Yi Y (2017) Controllable biosynthesis and properties of gold nanoplates using yeast extract. Nano-micro letter 9:1–3

    Google Scholar 

  54. Sahoo CR, Maharana S, Mandhata CP, Bishoyi AK, Paidesetty SK, Padhy RN (2020) Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi J Biol Sci 27:1580–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cepoi L, Zinicovscaia I, Rudi L, Chiriac T, Rotari I, Turchenko V, Djur S (2020) Effects of PEG-coated silver and gold nanoparticles on spirulina platensis biomass during its growth in a closed system. Coatings 10:717

    Article  CAS  Google Scholar 

  56. Hedges SB, Chen H, Kumar S, Wang DY, Thompson AS, Watanabe H (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Bio 1:1

    Article  Google Scholar 

  57. Huang IS, Zimba PV (2019) Cyanobacterial bioactive metabolites—a review of their chemistry and biology. Harmful Algae 86:139–209

    Article  CAS  PubMed  Google Scholar 

  58. Thuan NH, An TT, Shrestha A, Canh NX, Sohng JK, Dhakal D (2019) Recent advances in exploration and biotechnological production of bioactive compounds in three cyanobacterial genera: Nostoc, Lyngbya, and Microcystis. Fronti Chem 7:604

    Article  Google Scholar 

  59. Dahms HU, Ying X, Pfeiffer C (2006) Antifouling potential of cyanobacteria: a mini-review. Biofouling 22:317–327

    Article  CAS  PubMed  Google Scholar 

  60. Bloor S, England RR (1989) Antibiotic production by the cyanobacterium Nostoc muscorum. J Appl Phycol 1:367–372

    Article  Google Scholar 

  61. Kini S, Divyashree M, Mani MK, Mamatha BS (2020) Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. Advances in cyanobacterial biology, Academic Press, pp 173–194

  62. Seddek NH, Fawzy MA, El-Said WA, Ahmed MM (2019) Evaluation of antimicrobial, antioxidant and cytotoxic activities and characterization of bioactive substances from freshwater blue-green algae. Global Nest J 21:328–336

    CAS  Google Scholar 

  63. Safari M, Ahmady-Asbchin S, Zamanifar P (2019) In vitro evaluation of antimicrobial activities from aqueous and methanolic extracts of cyanobacteria. Europ J Biol Res 9:184–192

    CAS  Google Scholar 

  64. Fayyad RJ, Ali AN, Dwaish AS, Abboodi AK (2019) Anti-cancer activity of Spirulina platensis methanolic extracts against L20B and MCF7 human cancer cell lines. Plant Arch 19:1419–1426

    Google Scholar 

  65. Swain SS, Padhy RN, Singh PK (2015) Anticancer compounds from cyanobacterium Lyngbya species: a review. Antonie Van Leeuwenhoek 108:223–265

    Article  CAS  PubMed  Google Scholar 

  66. Sahoo CR, Paidesetty SK, Padhy RN (2019) Nornostocine congeners as potential anticancer drugs: an overview. Drug Dev Res 80:878–892

    Article  CAS  Google Scholar 

  67. Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front microbiol 7:529

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dyer BD, Krumbein WE, Mossman DJ (1994) Accumulation of gold in the sheath of Plectonema terebrans (filamentous marine cyanobacteria). Geomicrobiology J 12:91–98

    Article  CAS  Google Scholar 

  69. Zada S, Ahmad A, Khan S, Iqbal A, Ahmad S, Ali H, Fu P (2018) Biofabrication of gold nanoparticles by Lyptolyngbya JSC-1 extract as super reducing and stabilizing agents: synthesis, characterization and antibacterial activity. Microb Pathog 114:116–123

    Article  CAS  PubMed  Google Scholar 

  70. Asmathunisha. N, Anburaj. R, and Kathiresan. K (2018) Synthesis of silver and gold nanoparticles by mangrove derived cyanobacteria. J Adv Nanomatl 3

  71. Radtsig MA, Koksharova OA, Nadtochenko VA (2016) Production of gold nanoparticles by biogenesis using bacteria. Microbiol 85:63–70

    Article  CAS  Google Scholar 

  72. Parial D, Patra HK, Dasgupta AK, Pal R (2012) Screening of different algae for green synthesis of gold nanoparticles. European J Phycol 47:22–29

    Article  CAS  Google Scholar 

  73. Pan Z, Wen Y, Wang T, Wang K, Teng Y, Shao K (2020) One-step synthesis of hollow PEI-NaBiF4: Yb3+/Er3+ up conversion nanoparticles for water-responsive luminescent probe. J Rare Earths 38:362–368

    Article  CAS  Google Scholar 

  74. Purohit J, Chattopadhyay A, Singh NK (2019) Green synthesis of microbial nanoparticle: approaches to application. In Microb Nanobio 35–60

  75. Younis NS, Bakir EM, Mohamed ME, El Semary NA (2019) Cyanobacteria as nanogold factories II: chemical reactivity and anti-myocardial infraction properties of customized gold nanoparticles biosynthesized by Cyanothece sp. Mar Drugs 17:402

    Article  PubMed Central  Google Scholar 

  76. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surfaces B: Biointerfaces 57:97–101

    Article  CAS  Google Scholar 

  77. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Materl Sci 43:5115–5122

    Article  CAS  Google Scholar 

  78. Focsan M, Ardelean II, Craciun C, Astilean S (2011) Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnol 22:485101

  79. Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494

    Article  CAS  PubMed  Google Scholar 

  80. Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorganic chem appl 2011

  81. Hernandez-Adame L, Angulo C, Delgado K, Schiavone M, Castex M, Palestino G, Betancourt-Mendiola L, Reyes-Becerril M (2019) Biosynthesis of β-d-glucan-gold nanoparticles, cytotoxicity and oxidative stress in mouse splenocytes. Int J biol macromol 134:379–389

    Article  CAS  PubMed  Google Scholar 

  82. Hollmann F, Schmid A (2004) Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions. Biocatalys Biotransform 22:63–88

    Article  CAS  Google Scholar 

  83. Boroumand Moghaddam A, Namvar F, Moniri M, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kalabegishvili T, Kirkesali E, Rcheulishvili A (2012) Synthesis of gold nanoparticles by blue-green algae Spirulina platensis. Frank Lab. Neutron Phy

  85. Lenartowicz M, Marek PH, Madura ID, Lipok J (2017) Formation of variously shaped gold nanoparticles by Anabaena laxa. J Clust Sci 28:3035–3055

    Article  CAS  Google Scholar 

  86. Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation–a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  87. Menon S, Rajeshkumar S, Kumar V (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Effi Technol 3:516–527

    Google Scholar 

  88. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)− chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  PubMed  Google Scholar 

  89. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids surfaces B: Biointerf 65:150–153

    Article  CAS  Google Scholar 

  90. Bhatnagar S, Kobori T, Ganesh D, Ogawa K, Aoyagi H (2019) Biosynthesis of silver nanoparticles mediated by extracellular pigment from talaromyces purpurogenus and their biomedical applications. Nanomaterials 9:1042

    Article  CAS  PubMed Central  Google Scholar 

  91. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B Biointerfaces 79:488–493

    Article  CAS  PubMed  Google Scholar 

  92. Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J, Jones IP, Attard GA, Wood J, Selenska-Pobell S (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J Royal Soci Interf 9:1705–1712

    Article  CAS  Google Scholar 

  93. Gadd GM, de Rome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotech 29:610–617

    Article  CAS  Google Scholar 

  94. Yusof HM, Mohamad R, Zaidan UH (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Animal Sci Biotech 10:1–22

    Google Scholar 

  95. Rösken LM, Cappel F, Körsten S, Fischer CB, Schönleber A, van Smaalen S, Geimer S, Beresko C, Ankerhold G, Wehner S (2016) Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica. Beilstein J Nanotech 7:312-327

  96. Oza G, Pandey S, Shah R, Sharon M (2012) Extracellular fabrication of silver nanoparticles using Pseudomonas aeruginosa and its antimicrobial assay. Pelagia Res Lib Adv Appl Sci Res 3:1778–1783

    Google Scholar 

  97. Sicard C, Brayner R, Margueritat J, Hémadi M, Couté A, Yéprémian C, Djediat C, Aubard J, Fiévet F, Livage J, Coradin T (2010) Nano-gold biosynthesis by silica-encapsulated micro-algae: a “living” bio-hybrid material. J Materials Chem 20:9342–9347

    Article  CAS  Google Scholar 

  98. Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanopart Res 14:1–7

    Article  Google Scholar 

  99. Eroglu E, Eggers PK, Winslade M, Smith SM, Raston CL (2013) Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chem 15:3155–3159

    Article  CAS  Google Scholar 

  100. Jeffryes C, Agathos SN, Rorrer G (2015) Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotech 33:23–31

    Article  CAS  PubMed  Google Scholar 

  101. Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl phycol 24:55–60

    Article  CAS  Google Scholar 

  102. Parial D, Pal R (2014) Green synthesis of gold nanoparticles using cyanobacteria and their characterization. Indian J Appl Res 4:69–72

    Article  Google Scholar 

  103. Roychoudhury P, Ghosh S, Pal R (2016) Cyanobacteria mediated green synthesis of gold-silver nanoalloy. J Plant Biochem Biotech 25:73–78

    Article  Google Scholar 

  104. Sheikhloo Z, Salouti M. Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. Int J Nanosci Nanotech 7:102–105

  105. Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotech 7:2696–2708

    Article  CAS  Google Scholar 

  106. Zhang CC, Laurent S, Sakr S, Peng L, Bédu S (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59:367–375

    Article  CAS  PubMed  Google Scholar 

  107. Thiel T, Lyons EM, Erker JC, Ernst A (1995) A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proce Nat Academy Sci 92:9358–9362

    Article  CAS  Google Scholar 

  108. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  109. Zadvorny OA, Zorin NA, Gogotov IN (2006) Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Archiv Microbiol 184:279–285

    Article  CAS  Google Scholar 

  110. Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ (2005) Terminal oxidases of cyanobacteria. Biochem Soci Transac 33:832–835

    Article  CAS  Google Scholar 

  111. Boury B, Plumejeau S (2015) Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem 17:72–88

    Article  CAS  Google Scholar 

  112. Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837–846

    Article  CAS  Google Scholar 

  113. Philip D (2009) Honey mediated green synthesis of gold nanoparticles. Spectrochimica Acta Part A: Mol Biomol Spectroscopy 73:650–653

    Article  Google Scholar 

  114. Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem 8:34–38

    Article  CAS  Google Scholar 

  115. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotech 69:485–492

    Article  CAS  Google Scholar 

  116. Sharma A, Sharma S, Sharma K, Chetri SP, Vashishtha A, Singh P, Kumar R, Rathi B, Agrawal V (2016) Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 28:1759–1774

    Article  CAS  Google Scholar 

  117. Bakir EM, Younis NS, Mohamed ME, El Semary NA (2018) Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Mar Drugs 16:217

    Article  PubMed Central  Google Scholar 

  118. Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotech Rep 13:58–71

    Article  Google Scholar 

  119. Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotech Report 5:112–119

    Article  Google Scholar 

  120. Brock TD, Madigan MT. Mar Tinko JM, Parker J (1994). Biology of microorganisms.

  121. Mata YN, Torres E, Blazquez ML, Ballester A, González FM, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazardous Matrls 166:612–618

    Article  CAS  Google Scholar 

  122. Kuyucak N (1989) Accumulation of gold by algal biosorbent. Biorecovery 1:189–204

    CAS  Google Scholar 

  123. Herrero A, Stavans J, Flores E (2016) The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microb Revie 40:831–854

    Article  CAS  Google Scholar 

  124. Flores E (2012) Restricted cellular differentiation in cyanobacterial filaments. Proce National Academy Sci 109:15080–15081

    Article  CAS  Google Scholar 

  125. Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme and Microb Tech 45:267–273

    Article  CAS  Google Scholar 

  126. Govender Y, Riddin TL, Gericke M, Whiteley CG (2010) On the enzymatic formation of platinum nanoparticles. J Nanopart Res 12:261–271

    Article  CAS  Google Scholar 

  127. Nadagouda MN, Hoag G, Collins J, Varma RS (2009) Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. Crystal Growth Design 9:4979–4983

    Article  CAS  Google Scholar 

  128. Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioreso Tech 97:1822–1827

    Article  CAS  Google Scholar 

  129. Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2014) A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res 16:1–2

    Article  CAS  Google Scholar 

  130. Dahoumane SA, Mechouet M, Alvarez FJ, Agathos SN, Jeffryes C (2016) Microalgae: an outstanding tool in nanotechnology. Bionatura 1:196–201

    Article  Google Scholar 

  131. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  132. Hammami I, Alabdallah N (2021) Gold nanoparticles: synthesis properties and applications. J King Saud Univ-Sci 10:101560

  133. Azzazy HM, Mansour MM (2009) In vitro diagnostic prospects of nanoparticles. Clin Chim Acta 403:1–8

    Article  CAS  PubMed  Google Scholar 

  134. Uehara N (2010) Polymer-functionalized gold nanoparticles as versatile sensing materials. Analyt Sci 26:1219–1228

    Article  CAS  Google Scholar 

  135. Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J American Chem Soci 132:4678–4684

    Article  CAS  Google Scholar 

  136. Alexander CM, Maye MM, Dabrowiak JC (2011) DNA-capped nanoparticles designed for doxorubicin drug delivery. Chem Commun 47:3418–3420

    Article  CAS  Google Scholar 

  137. Mugaka BP, Hu Y, Ma Y, Ding Y (2019) Surface modification of gold nanoparticles for targeted drug delivery. In Surface Modific Nanopart Targeted Drug Deliv 391–403

  138. Javanshir R, Honarmand M, Hosseini M, Hemmati M (2020) Anti-dyslipidemic properties of green gold nanoparticle: improvement in oxidative antioxidative balance and associated atherogenicity and insulin resistance. Clinical Phytosci 6:1

    Article  Google Scholar 

  139. Tian EK, Wang Y, Ren R, Zheng W, Liao W (2021) Gold nanoparticle: recent progress on its antibacterial applications and mechanisms. J Nanomaterials

  140. Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Matrl Sci Eng: C 47:351–356

    Article  Google Scholar 

  141. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Controlled Rel 149:65–71

    Article  CAS  Google Scholar 

  142. Zheng K, Setyawati MI, Leong DT, Xie J (2017) Antimicrobial gold nanoclusters. ACS Nano 11(7):6904–6910

    Article  CAS  PubMed  Google Scholar 

  143. Zawrah MF, Abd El-Moez SI (2011) Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci J 8:37–44

    Google Scholar 

  144. Hamza WT, Taha HM, Abouelkheir SS (2018) Spirulina platensis synthesized gold nanoparticles (AuNPs) as an antibacterial and antioxidant agent. Egypt Soc Exp Biol 14:385–391

    Google Scholar 

  145. El-Sheekh MM, Hassan LH, Morsi HH (2021) Evaluation of antimicrobial activities of blue-green algae-mediated silver and gold nanoparticles. Rendiconti Lincei Scienze Fisiche e Naturali 18:1–3

    Google Scholar 

  146. Mandhata CP, Sahoo CR, Mahanta CS, Padhy RN (2021) Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides. Biopros Biosys Eng 11:1

    Google Scholar 

  147. Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Coll Surf B: Biointerf 107:227–234

    Article  CAS  Google Scholar 

  148. Zhang Y, Peng H, Huang W, Zhou Y, Yan D (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J coll Interf Sci 325:371–376

    Article  CAS  Google Scholar 

  149. Zhou X, Xu W, Liu G, Panda D, Chen P (2010) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J American Chem Soci 132:138–146

    Article  CAS  Google Scholar 

  150. Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol App Sci 3:71–84

    Google Scholar 

  151. Mmola M, Roes-Hill ML, Durrell K, Bolton JJ, Sibuyi N, Meyer ME, Beukes DR, Antunes E (2016) Enhanced antimicrobial and anticancer activity of silver and gold nanoparticles synthesised using Sargassum incisifolium aqueous extracts. Molecules 21:1633

    Article  CAS  PubMed Central  Google Scholar 

  152. Zhang Y, Shareena Dasari TP, Deng H, Yu H (2015) Antimicrobial activity of gold nanoparticles and ionic gold. J Env Sci Health, Part C 33:286–327

    Article  CAS  Google Scholar 

  153. Tan YN, Lee KH, Su X (2011) Study of single-stranded DNA binding protein–nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms. Analyt Chem 83:4251–4257

    Article  CAS  Google Scholar 

  154. Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Coll Surf B: Biointerf 101:162–170

    Article  CAS  Google Scholar 

  155. Folorunso A, Akintelu S, Oyebamiji AK, Ajayi S, Abiola B, Abdusalam I, Morakinyo A (2019) Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostr Chem 9:111–117

    Article  CAS  Google Scholar 

  156. Kumar PV, Kala SM, Prakash KS (2018) Synthesis of gold nanoparticles using Xanthium Strumarium leaves extract and their antimicrobial studies: a green approach. Rasayan J Chem 11:1544–1551

    Article  CAS  Google Scholar 

  157. Volk RB, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186

    Article  CAS  PubMed  Google Scholar 

  158. Malathi T, Ramesh Babu M, Mounika T, Digamber Rao B (2015) Antimicrobial activity of blue-green algae, Calothrix braunii (A. Br.) Bornet et Flahault. Int J Innov Sci Eng Tech 2:104–112

    Google Scholar 

  159. Abo-State MA, Shanab SM, Ali HE, Abdullah MA (2015) Screening of antimicrobial activity of selected Egyptian cyanobacterial species. J Ecol Health Envion 3:7–13

    Google Scholar 

  160. Kajiyama SI, Kanzaki H, Kawazu K, Kobayashi A (1998) Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune. Tetrahedron Lett 39:3737–3740

    Article  CAS  Google Scholar 

  161. Bonnard I, Rolland M, Salmon JM, Debiton E, Barthomeuf C, Banaigs B (2007) Total structure and inhibition of tumor cell proliferation of laxaphycins. J Med Chem 50:1266–1279

    Article  CAS  PubMed  Google Scholar 

  162. MacMillan JB, Molinski TF (2002) Lobocyclamide B from lyngbya confervoides. Configuration and asymmetric synthesis of β-hydroxy-α-amino acids by (−)-sparteine-mediated aldol addition. Org letters 4:1883–1886

    Article  CAS  Google Scholar 

  163. Vestola J, Shishido TK, Jokela J, Fewer DP, Aitio O, Permi P, Wahlsten M, Wang H, Rouhiainen L, Sivonen K (2014) Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proce Nat Academy Sci 111:E1909-1917

    CAS  Google Scholar 

  164. Marrez DA, Sultan YY (2016) Antifungal activity of the cyanobacterium Microcystis aeruginosa against mycotoxigenic fungi. J Appl Pharm Sci 6:191–198

    Article  CAS  Google Scholar 

  165. Dananjaya SH, Thao NT, Wijerathna HM, Lee J, Edussuriya M, Choi D, Kumar RS (2020) In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using Spirulina maxima polysaccharide. Process Biochem 92:138–148

    Article  CAS  Google Scholar 

  166. Chen L, Liang J (2020) An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Matrl Sci Eng: C 112:110924

  167. Lysenko V, Lozovski V, Lokshyn M, Gomeniuk YV, Dorovskih A, Rusinchuk N, Pankivska Y, Povnitsa O, Zagorodnya S, Tertykh V, Bolbukh Y (2013) Nanoparticles as antiviral agents against adenoviruses. Adv Natu Sci: Nanosci Nanotech 9:025021

  168. Lysenko V, Lozovski V, Spivak M (2013) Nanophysics antiviral therapy Ukrainian J Phy 58:77–90

    Article  CAS  Google Scholar 

  169. Kesarkar R, Oza G, Pandey S, Dahake R, Mukherjee S, Chowdhary A, Sharon M (2012) Gold nanoparticles: effective as both entry inhibitors and virus neutralizing agents against HIV. J Microbiol Biotech Res 2:276–283

    CAS  Google Scholar 

  170. Rafiei S, Rezatofighi SE, Ardakani MR, Rastegarzadeh S (2015) Gold nanoparticles impair foot-and-mouth disease virus replication. IEEE Transactions Nanobiosci 15:34–40

    Article  Google Scholar 

  171. Luis Elechiguerra J, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Jose Yacaman M (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotec 3:1

    Article  Google Scholar 

  172. Vijayakumar S, Ganesan S (2012) Gold nanoparticles as an HIV entry inhibitor. Curr HIV Res 10:643–646

    Article  CAS  PubMed  Google Scholar 

  173. Nath A, Schiess N, Venkatesan A, Rumbaugh J, Sacktor N, Mcarthur J (2008) Evolution of HIV dementia with HIV infection. Int Rev Psychiatry 20:25–31

    Article  PubMed  Google Scholar 

  174. Durdagi S, Supuran CT, Strom TA, Doostdar N, Kumar MK, Barron AR, Mavromoustakos T, Papadopoulos MG (2009) In silico drug screening approach for the design of magic bullets: a successful example with anti-HIV fullerene derivatized amino acids. J Chem Info Modeling 49:1139–1143

    Article  CAS  Google Scholar 

  175. Patterson GM, Baker KK, Baldwin CL, Bolis CM, Caplan FR, Larsen LK, Levine IA, Moore RE, Moore E, Nelson CS, Tschappat KD (1993) Antiviral activity of cultured blue-green algae (cyanophyta) 1. J Phycol 29:125–130

    Article  Google Scholar 

  176. Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Env Safety 45:208–227

    Article  CAS  Google Scholar 

  177. Zainuddin E, Mundt S, Wegner U, Mentel R (2002) Cyanobacteria a potential source of antiviral substances against influenza virus. Med Microbiol Immunology 191:181–182

    Article  CAS  Google Scholar 

  178. Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharma: Vascul Sys 29:497–511

    Article  CAS  Google Scholar 

  179. Huleihel M, Ishanu V, Tal J, Arad SM (2001) Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J Applied Phycol 13:127–134

    Article  CAS  Google Scholar 

  180. Hernández-Corona A, Nieves I, Meckes M, Chamorro G, Barron BL (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Res 56:279–285

    Article  PubMed  Google Scholar 

  181. Shih SR, Tsai KN, Li YS, Chueh CC, Chan EC (2003) Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. J Med Virol 70:119–125

    Article  CAS  PubMed  Google Scholar 

  182. Sharaf M, Amara A, Aboul-Enein A, Helmi S, Ballot A, Astani A, Schnitzler P (2010) Molecular authentication and characterization of the antiherpetic activity of the cyanobacterium Arthrospira fusiformis. Die Pharmazie- Int J Pharma Sci 65:132–136

    CAS  Google Scholar 

  183. Mori T, O’Keefe BR, Sowder RC II, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW Jr, McMahon JB, Boyd MR (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Bio Chem 280:9345–9353

    Article  CAS  Google Scholar 

  184. McFeeters RL, Xiong C, O’Keefe BR, Bokesch HR, McMahon JB, Ratner DM, Castelli R, Seeberger PH, Byrd RA (2007) The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J Mol Bio 369:451–461

    Article  CAS  Google Scholar 

  185. Moulaei T, Botos I, Ziółkowska NE, Bokesch HR, Krumpe LR, McKee TC, O’Keefe BR, Dauter Z, Wlodawer A (2007) Atomic-resolution crystal structure of the antiviral lectin scytovirin. Protein Sci 16:2756–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Takebe Y, Saucedo CJ, Lund G, Uenishi R, Hase S, Tsuchiura T, Kneteman N, Ramessar K, Tyrrell DL, Shirakura M, Wakita T. Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus. PLoS One 8:e64449

  187. Deyab M, Mofeed J, El-Bilawy E, Ward F (2020) Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch Microbiol 202:213–223

    Article  CAS  PubMed  Google Scholar 

  188. El-Sheekh MM, Shabaan MT, Hassan L, Morsi HH (2020) Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. Int J Environ Health Res 6:1–2

    Google Scholar 

  189. Benelli G (2018) Gold nanoparticles–against parasites and insect vectors. Acta Trop 178:73–80

    Article  CAS  PubMed  Google Scholar 

  190. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Expe Sarasitol 153:129–138

    Article  CAS  Google Scholar 

  191. Chen AY, Lü JM, Yao Q, Chen C (2016) Entacapone is an antioxidant more potent than vitamin C and vitamin E for scavenging of hypochlorous acid and peroxynitrite, and the inhibition of oxidative stress-induced cell death. Med Sci Monitor: Int Medical J Experimental Clinic Res 22:687

    Article  CAS  Google Scholar 

  192. Kim JH, Hong CO, Koo YC, Choi HD, Lee KW (2012) Anti-glycation effect of gold nanoparticles on collagen. Biol Pharmaceut Bulletin 35:260–264

    Article  CAS  Google Scholar 

  193. Qiao J, Qi L (2021) Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta 223:121396

  194. Ullah R, Khan M, Shah SA, Saeed K, Kim MO (2019) Natural antioxidant anthocyanins—a hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration. Nutrients 11:1195

    Article  CAS  PubMed Central  Google Scholar 

  195. Usman AI, Aziz AA, Noqta OA (2019) Application of green synthesis of gold nanoparticles: a review. J Teknologi 81

  196. Stozhko NY, Bukharinova MA, Khamzina EI, Tarasov AV, Vidrevich MB, Brainina KZ (2019) The effect of the antioxidant activity of plant extracts on the properties of gold nanoparticles. Nanomaterials 9:1655

    Article  CAS  PubMed Central  Google Scholar 

  197. Oueslati MH, Tahar LB, Harrath AH (2020) Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from Lotus leguminosae. Arabian J Chem 13:3112–3122

    Article  CAS  Google Scholar 

  198. Shaabani E, Amini SM, Kharrazi S, Tajerian R (2017) Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles. Nanomed J 4:115–125

    CAS  Google Scholar 

  199. Singh DP, Prabha R, Verma S, Meena KK, Yandigeri M (2017) Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotech 7:1–4

  200. Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Climate Change Env Sustainability 2:133–137

    Google Scholar 

  201. Renugadevi K, Nachiyar CV, Sowmiya P, Sunkar S (2018) Antioxidant activity of phycocyanin pigment extracted from marine filamentous cyanobacteria Geitlerinema sp TRV57. Biocat Agri Biotech 16:237–242

    Article  Google Scholar 

  202. Pant G, Kumar G, Karthik L, Prasuna RG, Vankata K, Rao B (2012) Effect of electric treatment on total phenolic content and antioxidant activity of Anabaena variabilis. Int J Pharm Pharm Sci 4:128–131

    CAS  Google Scholar 

  203. Rajishamol MP, Lekshmi S, Vijayalakshmy KC, Saramma AV (2016) Antioxidant activity of cyanobacteria isolated from Cochin estuary. Ind J Geo-Marine Sci 45:974–977

    Google Scholar 

  204. Zayadi RA, Bakar FA (2020) Comparative study on stability, antioxidant and catalytic activities of bio-stabilized colloidal gold nanoparticles using microalgae and cyanobacteria. J Environ Chemica Engineering 8:103843

  205. Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S (2020) Antibody-gold nanoparticle bioconjugates for biosensors: synthesis, characterization and selected applications. Biosensors Bioelectr 112370

  206. Li K, Liu G, Wu Y, Hao P, Zhou W, Zhang Z (2014) Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta 120:419–424

    Article  CAS  PubMed  Google Scholar 

  207. Adena SK, Upadhyay M, Vardhan H, Mishra B (2018) Development, optimization, and in vitro characterization of dasatinib-loaded PEG functionalized chitosan capped gold nanoparticles using Box-Behnken experimental design. Drug Develop Industrial Pharm 44:493–501

    Article  CAS  Google Scholar 

  208. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soci Rev 37(9):1896–1908

    Article  CAS  Google Scholar 

  209. Tao Y, Yin D, Jin M, Fang J, Dai T, Li Y, Li Y, Pu Q, Xie G (2017) Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA. Biosensors and Bioelectr 96:99–105

    Article  CAS  Google Scholar 

  210. Ye X, Zheng C, Chen J, Gao Y, Murray CB (2013) Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 13:765–771

    Article  CAS  PubMed  Google Scholar 

  211. Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G, Chen X. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS nano 7:5320–5329

  212. Tabatabaei MS, Islam R, Ahmed M (2021) Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: a review. Anal Chim Acta 1143:250–266

    Article  CAS  PubMed  Google Scholar 

  213. Cai H, Zhu N, Jiang Y, He P, Fang Y (2003) Cu@ Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosensors and Bioelectr 18:1311–1319

    Article  CAS  Google Scholar 

  214. Wang J, Zhou H, Liu J, He J, Liu J, Yang W (2021) Electrochemical detection of DNA by formation of efficient electron transfer pathways through adsorbing gold nanoparticles to DNA modified electrodes. Microchemical J 169:106581

  215. Huo Q, Colon J, Cordero A, Bogdanovic J, Baker CH, Goodison S, Pensky MY (2011) A facile nanoparticle immunoassay for cancer biomarker discovery. J Nanobiotech 9:1–2

    Article  Google Scholar 

  216. Fang SB, Tseng WY, Lee HC, Tsai CK, Huang JT, Hou SY (2009) Identification of Salmonella using colony-print and detection with antibody-coated gold nanoparticles. J Microbiol Methods 77:225–228

    Article  CAS  PubMed  Google Scholar 

  217. Kuppusamy P, Mashitah MY, Maniam GP, Govindan N (2014) Biosynthesized gold nanoparticle developed as a tool for detection of HCG hormone in pregnant women urine sample. Asian Pacif J Tropic Disease 4:237

    Article  Google Scholar 

  218. Zhang Y, Gao G, Qian Q, Cui D (2012) Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res letters 7:1–8

    Article  CAS  Google Scholar 

  219. Patil AV, Rychak JJ, Klibanov AL, Hossack JA (2011) Real-time technique for improving molecular imaging and guiding drug delivery in large blood vessels: in vitro and ex vivo results. Mol Imaging 10:7290–7291

    Article  Google Scholar 

  220. Epstein E, Testa A, Gaurilcikas A, Di Legge A, Ameye L, Atstupenaite V, Valentini AL, Gui B, Wallengren NO, Pudaric S, Cizauskas A (2013) Early-stage cervical cancer: tumor delineation by magnetic resonance imaging and ultrasound—a European multicenter trial. Gyne Oncology 128:449–453

    Article  Google Scholar 

  221. Eser S, Messer M, Eser P, von Werder A, Seidler B, Bajbouj M, Vogelmann R, Meining A, von Burstin J, Algül H, Pagel P (2011) In vivo diagnosis of murine pancreatic intraepithelial neoplasia and early-stage pancreatic cancer by molecular imaging. Proce Nat Academy Sci 108:9945–9950

    Article  CAS  Google Scholar 

  222. Sarkar R, Kumbhakar P, Mitra AK (2010) Green synthesis of silver nanoparticles and its optical properties. Dig J Nanomater Biostruct 5:491–496

    Google Scholar 

  223. Nakamura Y, Mochida A, Choyke PL, Kobayashi H (2016) Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjugate Chem 27:2225–2238

    Article  CAS  Google Scholar 

  224. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WC (2016) Analysis of nanoparticle delivery to tumours. Nature Rev Materials 1:1–2

    Article  Google Scholar 

  225. Torrice M (2016) Does nanomedicine have a delivery problem? ACS Cent Sci 2:434–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Koonce NA, Quick CM, Hardee ME, Jamshidi-Parsian A, Dent JA, Paciotti GF, Nedosekin D, Dings RP, Griffin RJ (2015) Combination of gold nanoparticle-conjugated tumor necrosis factor-α and radiation therapy results in a synergistic antitumor response in murine carcinoma models. Int J Radiation Onco* Bio* Phy 93:588–596

  227. Wang H, Zheng L, Peng C, Guo R, Shen M, Shi X, Zhang G (2011) Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 32:2979–2988

    Article  CAS  PubMed  Google Scholar 

  228. Zhao D, Yu Y, Long H, Cao Y (2014) Improved photocatalytic activity of self-assemble TiO2 nanobelts with Au nanoparticles. Appl Surface Sci 315:247–251

    Article  CAS  Google Scholar 

  229. Kim CS, Ingato D, Wilder-Smith P, Chen Z, Kwon YJ (2018) Stimuli-disassembling gold nanoclusters for diagnosis of early stage oral cancer by optical coherence tomography. Nano Convergence 5:1–1

    Article  Google Scholar 

  230. Leduc C, Jung JM, Carney RR, Stellacci F, Lounis B (2011) Direct investigation of intracellular presence of gold nanoparticles via photothermal heterodyne imaging. ACS Nano 5:2587–2592

    Article  CAS  PubMed  Google Scholar 

  231. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proce Nat Academy Sci 106:13511–13516

    Article  CAS  Google Scholar 

  232. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8:4593–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer− gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696

    Article  CAS  PubMed  Google Scholar 

  234. Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotech Bio Med 6:214–226

    Article  CAS  Google Scholar 

  235. Moghimi SM, Vega E, Garcia ML, Al-Hanbali OA, Rutt KJ (2006) Polymeric nanoparticles as drug carriers and controlled release implant devices. In Nanoparticulates Drug Carriers 29–42

  236. Liu XY, Wang JQ, Ashby Jr CR, Zeng L, Fan YF, Chen ZS (2021) Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug discovery today

  237. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  PubMed  Google Scholar 

  238. Jain KK (2009) The role of nanobiotechnology in drug discovery. Pharmaceut Biotech 37–43

  239. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, Muders M, Wang S, Buhrow SA, Safgren SL, Yaszemski MJ (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–1978

    Article  CAS  PubMed  Google Scholar 

  240. Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Sci Eng: C 53:298–309

    Article  CAS  Google Scholar 

  241. Lu L, Li K, Mao YH, Qu H, Yao B, Zhong WW, Ma B, Wang ZY (2015) Gold-chrysophanol nanoparticles suppress human prostate cancer progression through inactivating AKT expression and inducing apoptosis and ROS generation in vitro and in vivo. Int J onco 51:1089–1103

    Article  Google Scholar 

  242. Afifi MM, Austin LA, Mackey MA, El-Sayed MA (2017) XAV939: from a small inhibitor to a potent drug bioconjugate when delivered by gold nanoparticles. Bioconjugate Chem 25:207–215

    Article  Google Scholar 

  243. Kim CK, Ghosh P, Rotello VM (2009) Multimodal drug delivery using gold nanoparticles. Nanoscale 1:61–67

    Article  CAS  PubMed  Google Scholar 

  244. Bhat IU, Khanam Z, Bhat AH (2017) Current trends in the preparation of nanoparticles for drug delivery. InEngin Appl Nanotech 313–334

  245. Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Ramanujam VS, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Comm 393:649–655

    Article  CAS  PubMed  Google Scholar 

  246. Lee KS, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phy Chem B 109:20331–20338

    Article  CAS  Google Scholar 

  247. Li JL, Gu M (2010) Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials 31:9492–9498

    Article  CAS  PubMed  Google Scholar 

  248. Tomić S, Đokić J, Vasilijić S, Ogrinc N, Rudolf R, Pelicon P, Vučević D, Milosavljević P, Janković S, Anžel I, Rajković J (2014) Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PloS one 9:e96584

  249. Ahmad T, Sarwar R, Iqbal A, Bashir U, Farooq U, Halim SA, Khan A, Al-Harrasi A (2020) Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomed 15:1221–1237

    Article  CAS  Google Scholar 

  250. Wu T, Duan X, Hu C, Wu C, Chen X, Huang J, Liu J, Cui S (2019) Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artificial Cells Nanomed Biotech 47:512–523

    Article  Google Scholar 

  251. Jordan A, Hadfield JA, Lawrence NJ, McGown AT (1998) Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 18:259–296

    Article  CAS  PubMed  Google Scholar 

  252. Gerwick WH, Tan LT, Sitachitta N (2001) Nitrogen-containing metabolites from marine cyanobacteria. Alkaloids Chem Biol 57:75–184

    Article  CAS  PubMed  Google Scholar 

  253. Watanabe J, Minami M, Kobayashi M (2006) Antitumor activity of TZT-1027 (Soblidotin). Anticancer Res 26:1973–1981

    CAS  PubMed  Google Scholar 

  254. Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochem 68:954–979

    Article  CAS  Google Scholar 

  255. Tan LT (2010) Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol 22:659–676

    Article  CAS  Google Scholar 

  256. Berry JP, Gantar M, Gawley RE, Wang M, Rein KS (2004) Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everglades. Comp Biochem Physiol Part C: Toxicology Pharma 139:231–238

    Google Scholar 

  257. Ghosh AK, Bischoff A (2000) A convergent synthesis of (+)-cryptophycin B, a potent antitumor macrolide from Nostoc sp. cyanobacteria. Org Lett 2:1573–1575

    Article  CAS  PubMed  Google Scholar 

  258. Lesk AM, Fordham WD (1996) Conservation and variability in the structures of serine proteinases of the chymotrypsin family. J Molecular Bio 258:501–537

    Article  CAS  Google Scholar 

  259. Simmons TL, McPhail KL, Ortega-Barría E, Mooberry SL, Gerwick WH (2006) Belamide A, a new antimitotic tetrapeptide from a Panamanian marine cyanobacterium. Tetrahedr Letters 47:3387–3390

    Article  CAS  Google Scholar 

  260. Leusch H (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca sp. VP642 and total stereo-chemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

    Article  Google Scholar 

  261. Banker R, Carmeli S (1998) Tenuecyclamides A− D, Cyclic Hexapeptides from the Cyanobacterium Nostoc spongiaeforme var. tenue. J Natural Products 61:1248–1251

    Article  CAS  Google Scholar 

  262. Geetha S, Sathakkathulzariya J, Aarthi R, Blessie H (2014) Green synthesis of gold nanoparticle using marine cyanobacteria Gloeocapsa sp and the antitumor potential. J Chem Pharm Sci 4:172–174

    Google Scholar 

  263. El-Sheekh MM, Hassan LH, Morsi HH (2021) Assessment of the in vitro anticancer activities of cyanobacteria mediated silver oxide and gold nanoparticles in human colon CaCo-2 and cervical HeLa cells. Environ Nanotechnol Monitoring Management 16:100556

  264. Liang XJ, Chen C, Zhao Y, Jia L, Wang PC (2008) Biopharmaceutics therapeutic potential of engineered nanomaterials. Curr Drug Metabolism 9:697–709

    Article  CAS  Google Scholar 

  265. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotech Bio Med 8:147–166

    Article  CAS  Google Scholar 

  266. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surfaces B: Biointerfaces 66:274–280

    Article  CAS  PubMed  Google Scholar 

  267. Yafout M, Ousaid A, Khayati Y, El Otmani IS (2021) Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Scientific African 11:e00685

  268. Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Delivery Rev 65:663–676

    Article  CAS  Google Scholar 

  269. Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SM, Mirshekari H, Amiri M, Pishabad ZS, Aslani A, Bozorgomid M, Ghosh D (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soci Rev 45:1457–1501

    Article  CAS  Google Scholar 

  270. Amina SJ, Guo B (2020) A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed 15:9823

    Article  CAS  Google Scholar 

  271. Love AJ, Makarov VV, Sinitsyna OV, Shaw J, Yaminsky IV, Kalinina NO, Taliansky M (2015) A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor. Front Plant Sci 6:984

    Article  PubMed  PubMed Central  Google Scholar 

  272. Lu X, Guo Q, Zhou W, Li X, Chen J, Zhou X, Sun N, Fang Z (2019) Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles. Microchim Acta 186:1–7

    Article  Google Scholar 

  273. Ruks T, Loza K, Heggen M, Prymak O, Sehnem AL, Oliveira CL, Bayer P, Beuck C, Epple M (2021) Peptide-conjugated ultrasmall gold nanoparticles (2 nm) for selective protein targeting. ACS Appl Bio Materials 4:945–965

    Article  CAS  Google Scholar 

  274. Trigueros S, Domènech B, E, Toulis V, Marfany G, (2019) In vitro gene delivery in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes 10:289

    Article  CAS  PubMed Central  Google Scholar 

  275. Epanchintseva AV, Poletaeva JE, Dovydenko IS, Chelobanov BP, Pyshnyi DV, Ryabchikova EI, Pyshnaya IA (2021) A lipid-coated nanoconstruct composed of gold nanoparticles noncovalently coated with small interfering RNA: preparation, purification and characterization. Nanomaterials 11:2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Wei A, Thomas M, Mehtala J, Wang J (2013) Gold nanoparticles (GNPs) as multifunctional materials for cancer treatment. InBiomaterials Cancer Therapeut 349–389e.

  277. Sathiyaseelan A, Saravanakumar K, Mariadoss AV, Wang MH (2021) pH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment. Carbohydrate Polymers 262:117907

  278. Joshi HM, Bhumkar DR, Joshi K, Pokharkar V, Sastry M (2006) Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 22:300–305

    Article  CAS  PubMed  Google Scholar 

  279. Chamberland DL, Agarwal A, Kotov N, Fowlkes JB, Carson PL, Wang X (2008) Photoacoustic tomography of joints aided by an etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study. Nanotech 19:095101

  280. Liu H, Lian T, Liu Y, Hong Y, Sun D, Li Q (2017) Plant-mediated synthesis of Au nanoparticles: separation and identification of active biomolecule in the water extract of Cacumen Platycladi. Indus Engin Chemi Res 56:5262–5270

    Article  CAS  Google Scholar 

  281. Venkatpurwar V, Shiras A, Pokharkar V (2011) Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study. Int J Pharmaceut 409:314–320

    Article  CAS  Google Scholar 

  282. Fang C, Ma Z, Chen L, Li H, Jiang C, Zhang W (2019) Biosynthesis of gold nanoparticles, characterization and their loading with zonisamide as a novel drug delivery system for the treatment of acute spinal cord injury. J Photochem Photobiol B: Biol 190:72–75

    Article  CAS  Google Scholar 

  283. Ali M, Ahmed T, Wu W, Hossain A, Hafeez R, Islam Masum M, Wang Y, An Q, Sun G, Li B (2020) Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10:1146

    Article  CAS  PubMed Central  Google Scholar 

  284. Singh P, Singh H, Ahn S, Castro-Aceituno V, Jiménez Z, Simu SY, Kim YJ, Yang DC (2017) Pharmacological importance, characterization and applications of gold and silver nanoparticles synthesized by Panax ginseng fresh leaves. Artificial cells Nanomed Biotech 45:1415–1424

    Article  CAS  Google Scholar 

  285. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Tech Adv Materials 6(3–4):335

    Article  CAS  Google Scholar 

  286. El-Kassas HY, El-Sheekh MM (2014) Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pacific J Cancer Prev 15:4311–4317

    Article  Google Scholar 

  287. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  288. Katas H, Moden NZ, Lim CS, Celesistinus T, Chan JY, Ganasan P, Suleman Ismail Abdalla S (2018) Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J Nanotechnol

  289. Goel A, Bhatia AK (2019) Phytosynthesized nanoparticles for effective cancer treatment: a review. Nanosci Nanotech 9:437–443

    CAS  Google Scholar 

  290. Ichwan GP (2018) Ayurvedic mediated green synthesis of gold and silver nanoparticles from marine microalgae Isochrysis sp. Int J Eng Technol 7:422–425

    Google Scholar 

  291. Han SG, Song JM, Lee J (2017) Formulating a therapeutic cream for burn injury using cyanobacterial extracts and gold nanoparticles. Int J Med Res Pharmaceut Sci 4:45–53

    Google Scholar 

  292. Gelagutashvili E, Ginturi E, Rcheulichvili A, Tsakadze K, Bagdavadze N, Kuchava N, Djandjalia M (2012) Ability of cyanobacteria and arthrobacter species to remove gold ions from solution. ArXiv Preprint arXiv:1207.2222

Download references

Acknowledgements

The authors are grateful to Dean IMS and SUM Hospital, Siksha O Anusandhan Deemed to be University (SOADU) for necessary facilities. This is a piece of work supported by SOADU, Fellowship No.1981611007/2019 to CP Mandhata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra Nath Padhy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Recent advances in biogenic synthesis of gold nanoparticles

• Structural integument of gold nanoparticles and cyanobacteria

• Biomedical application of synthesized gold nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandhata, C.P., Sahoo, C.R. & Padhy, R.N. Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: an Overview. Biol Trace Elem Res 200, 5307–5327 (2022). https://doi.org/10.1007/s12011-021-03078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03078-2

Keywords

Navigation