Skip to main content
Log in

Investigative Analysis of Lanthanum Oxide Nanoparticles on Elements in Bone of Wistar Rats After 30 Days of Repeated Oral Administration

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Accumulation of lanthanum oxide nanoparticles (La2O3NPs) in the femur bone of rats after 30 days of oral administration was explored. Also, the influence of La2O3NPs on macro and trace elements in the rats’ femur bone was assessed. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical spectrometry (ICP OES) were used for total element determination in the bone after decomposition while laser ablation-ICP-MS (LA-ICP-MS) was used to investigate element distribution (bio-imaging) in the bone. Some differences in element concentrations in the bone between the rats treated with La2O3NPs at 1.0 mg kg−1 (T1), 10.0 mg kg−1 (T2), and 100 mg kg−1 (T3) body weight (bw) and the control rats (CTR) were observed. More differences were observed in the bone of rat treated with 10.0 mg kg−1 La2O3NPs bw. However, the highest change observed was for Mg, which concentration ranged from 5230 ± 12 μg kg−1 for the CTR group to 4130 ± 138 μg kg−1 for the T3 group. Minor changes were observed for Ba, Ca, Cr, Cu, Fe, Mg, Na, Pb, Sr, and Zn between CTR and animals treated with La2O3NPs at the different levels of concentration. It was possible to observe from LA-ICP-MS analysis that La2O3NPs were accumulated only on the surface of the bone, not deeper than about 5 μm. LA-ICP-MS allowed also to investigate the distribution of La and the other elements in a cross section of the femur bone head, where higher amounts of the elements are present at the external part of the bone. Therefore, it was demonstrated that La2O3NPs are incorporated on the surface of the bone and it has a small influence on some of the other elements evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aaseth J, Boivin G, Andersen O (2012) Osteoporosis and trace elements-an overview. J Trace Elem Med Biol 26:149–152

    Article  CAS  PubMed  Google Scholar 

  2. Arnay-De-La-Rosa M, Gonzalez-Reimers E, Velasco-Vazquez J, Galindo-Martin L, Delgado-Ureta E, Santolaria-Fernandez F, Barros-Martin N (1998) Comparison of bone lead in Pre-Hispanic, 18th century and modern population of Tenerife. Sci Total Environ 209:107–111

    Article  CAS  PubMed  Google Scholar 

  3. Barta CA, Sachs-Barrable K, Jia J, Thompson KH, Wasan KM, Orvig C (2007) Lanthanide containing compounds for therapeutic care in bone resorption disorders. Dalton Trans 21:5019–5030

    Article  CAS  Google Scholar 

  4. Becker JS, Matusch A, Wu B (2014) Bio-imaging mass spectrometry of trace elements - recent advance and applications of LA-ICP-MS: a review. Anal Chim Acta 835:1–18

    Article  CAS  PubMed  Google Scholar 

  5. Becker JS, Zoriy M, Dressler LV, Wu B, Becker JS (2008) Bio-imaging of biological tissues by means of laser ablation with inductively coupled of plasma and mass spectrometry. Pure Appl Chem 80:2643–2655

    Article  CAS  Google Scholar 

  6. Behets GJ, Dams G, Vercauteren SR (2004) Does the phosphate binder lanthanum carbonate affect bone in rats with chronic renal failure? J Am Soc Nephrol 15:2219–2228

    Article  CAS  PubMed  Google Scholar 

  7. Copeland SR, Sponheimer M, Lee-Thorp JA, le Roux PJ, de Ruiter DJ, Richards MP (2010) Strontium isotope ratios in fossil teeth from South Africa: assessing laser ablation MC-ICP-MS analysis and the extent of diagenesis. J Archaeol Sci 37:1437–1446

    Article  Google Scholar 

  8. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone. 28:446–453

    Article  CAS  PubMed  Google Scholar 

  9. Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 32:86–106

    Article  CAS  PubMed  Google Scholar 

  10. Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed 41:3130–3146

    Article  CAS  Google Scholar 

  11. Elliott JC (2002) Calcium Phosphate Biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and material importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Washington, DC, pp 427–454

    Chapter  Google Scholar 

  12. Evans CH (1990) Biochemistry of the lanthanides. Plenum Press, New York, p 211

    Book  Google Scholar 

  13. González-Reimers E, Arnay-de-la-Rosa M, Velasco-Vázquez J, Galindo-Martín L, Santolaria-Fernández F (2005) Bone cadmium and lead in the ancient population from El Hierro, Canary Islands. Biol Trace Elem Res 105:37–51

    Article  PubMed  Google Scholar 

  14. Granadillo VA, Navarro JA, Campos S, Avila Major A, Cardozo J, Romero RA (1992) Total metal content of normal human bone from inhabitants of Maracaibo city, Venezuela. Trace Elem Med 9:139–143

    CAS  Google Scholar 

  15. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936

    Article  CAS  PubMed  Google Scholar 

  16. Hodges GM, Carr EA, Hazzard RA, O’Reilly C, Carr KE (1995) A commentary on morphological and quantitative aspects of microparticle translocation across the gastrointestinal mucosa. J Drug Target 3:57–60

    Article  CAS  PubMed  Google Scholar 

  17. Helliwell TR, Kelly SA, Walsh HPL, Klenerman L, Haines J, Clark R, Roberts NB (1996) Elemental analysis of femoral bone from patients with fractured neck of femur or osteoporosis. Bone 18:151–157

    Article  CAS  PubMed  Google Scholar 

  18. Hsiao, I-L., Bierkandt, F.S, Reichardt, P., Luch, A., Huang, Y-J., Jakubowski, N., Tentschert, J., Haase, A. (2016). Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. J Nanobiotechnology, 14:50. doi: https://doi.org/10.1186/s12951-016-0203-z

  19. Hu H, Shih R, Rothenberg S, Schwartz BS (2007) The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ Health Perspect 115:455–462

    Article  CAS  PubMed  Google Scholar 

  20. Hyndman KA (2015) The evolution and comparative physiology of endothelin regulation of sodium transport. In K. A. Hyndman & T. L. Pannabecker (Eds.), Sodium and water homeostasis, comparative, evolutionary and genetic models. Physiology in health and disease. Springer; Verlag. P. 119-140.

  21. Jurkiewicz A, Wiechuła D, Nowak R, Loska K (2005) Lead content in the femoral heads of inhabitants of Silesia (Poland). J Trace Elem Med Biol 19:165–170

    Article  CAS  PubMed  Google Scholar 

  22. Kaimal B, Johnson R, Hannigan R (2009) Distinguishing breeding populations of mallards (Anasplatyrhynchos) using trace elements. J Geochem Explor 102:44–48

    Article  CAS  Google Scholar 

  23. Kang D, Amarasiriwardena D, Goodman AH (2004) Application of laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) to investigate trace metal spatial distributions in human tooth enamel and dentin growth layers and pulp. Anal Bioanal Chem 378:1608–1615

    Article  CAS  PubMed  Google Scholar 

  24. Kindness A, Sekaran CN, Feldmann F (2003) Two-dimensional mapping of copper and zinc in liver sections by laser ablation–inductively coupled plasma mass spectrometry. Clin Chem 49:1916–1923

    Article  CAS  PubMed  Google Scholar 

  25. Kourkoumelis N, Balatsoukas I, Tzaphlidou M (2012) Infrared spectroscopic assessment of the inflammation-mediated osteoporosis (IMO) model applied to rabbit bone. J Biol Phys 38:632–635

    Google Scholar 

  26. Kuo H-W, Kuo S-M, Chou C-H, Lee T-C (2000) Determination of 14 elements in Taiwanese bones. Sci Total Environ 255:45–54

    Article  CAS  PubMed  Google Scholar 

  27. Larsen EH, Andersen NL, Moller A, Petersen A, Mortensen GK, Petersen J (2002) Monitoring the content and intake of trace elements from food in Denmark. Food Addit Contam 19:33–46

    Article  CAS  PubMed  Google Scholar 

  28. Lee KM, Appleton J, Cooke M, Keenan F, Sawicka-Kapusta K (1999) Use of laser ablation inductively coupled plasma mass spectrometry to provide element versus time profiles in teeth. Anal Chim Acta 395:179–185

    Article  CAS  Google Scholar 

  29. Macdonald HM, Hardcastle AC, Jugdaohsingh R, Fraser WD, Reid DM, Powell JJ (2012) Dietary silicon interacts with oestrogen to influence bone health: evidence from the Aberdeen Prospective Osteoporosis Screening Study. Bone. 50:681–687

    Article  CAS  PubMed  Google Scholar 

  30. Matczuk M, Ruzik L, Aleksenko SS, Keppler BK, Jarosz M, Timerbaev AR (2019) Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal Chim Acta 1052:1–9

    Article  CAS  PubMed  Google Scholar 

  31. Nielsen SP (2004) The biological role of strontium. Bone 35:583–588

    Article  CAS  Google Scholar 

  32. Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the Toxicology of Metals, 3rd. ed. Elsevier, The Netherlands.

  33. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  PubMed  Google Scholar 

  34. Nunes MAG, Voss M, Corazza G, Flores EMM, Dressler VL (2016) External calibration strategy for trace element quantification in botanical samples by LA-ICP-MS using filter paper. Anal Chim Acta 905:51–57

    Article  CAS  PubMed  Google Scholar 

  35. Okano T (1996) Effects of essential trace elements on bone turnover in relation to the osteoporosis. Nippon Rinsho 54:148–154

    CAS  PubMed  Google Scholar 

  36. Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, Van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238

    Article  CAS  PubMed  Google Scholar 

  37. Pozebon D, Dressler VL, Scheffler GL (2017) Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review. J Anal At Spectrom 32:890–919

    Article  CAS  Google Scholar 

  38. Pozebon D, Scheffer GL, Dressler VL, Nunes MAG (2014) Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples. J Anal At Spectrom 29:2204–2228

    Article  CAS  Google Scholar 

  39. Price, C.T, Koval, K.J., Langford, J.R. (2013). Silicon: a review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int J Endocrinol. 316783 ID. doi: https://doi.org/10.1155/2013/316783.

  40. Salgueiro MJ, Torti H, Meseri E, Weill R, Orlandini J, Urriza R, Boccio J (2006) Dietary zinc effects on zinc, calcium, and magnesium content in bones of growing rats. Biol Trace Elem Res 110:73–77

    Article  CAS  PubMed  Google Scholar 

  41. Shih RA, Hu H, Weisskopf MG, Schwartz BS (2007) Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115:483–492

    Article  CAS  PubMed  Google Scholar 

  42. Sky-Peck HH, Joseph BJ (1981) Determination of trace elements in human serum by energy dispersive X-ray fluorescence. Clin Biochem 14:126–131

    Article  CAS  PubMed  Google Scholar 

  43. Uryu T, Yoshinaga J, Yanagisawa Y, Endo M, Takahashi J (2003) Analysis of lead in tooth enamel by laser ablation-inductively coupled plasma-mass spectrometry. Anal Sci 19:1413–1416

    Article  CAS  PubMed  Google Scholar 

  44. Voss M, Nunes MAG, Corazza G, Flores EMM, Müller EI, Dressler VL (2017) A new approach to calibration and determination of selected trace elements in food contact polymers by LA-ICP-MS. Talanta 170:488–495

    Article  CAS  PubMed  Google Scholar 

  45. Wakamura M, Kandori K, Ishikawa T (2000) Surface structure and composition of calcium hydroxyapatite substituted with Al(III), La(III) and Fe(III) ions. Colloids and Surfaces A Physicochemical and Engineering Aspects 164:297–305

    Article  CAS  Google Scholar 

  46. Wang S, Brown R, Gray DJ (1994) Application of laser ablation-ICP-MS to the spatially resolved micro-analysis of biological tissue. Appl Spectrosc 48:1321–1325

    Article  CAS  Google Scholar 

  47. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, Chai Z, Wang H, Wang J (2008) Acute toxicological impact of nano and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276

    Article  CAS  Google Scholar 

  48. Ward NI, Durrant SF, Gray AL (1992) Analysis of biological standard reference materials by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 7:1139–1146

    Article  CAS  Google Scholar 

  49. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143

    Article  CAS  Google Scholar 

  50. Yoshinaga J, Suzuki T, Morita M, Hayakawa M (1995) Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Sci Total Environ 162:239–252

    Article  CAS  PubMed  Google Scholar 

  51. Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135

    Article  CAS  Google Scholar 

  52. Zaichick V, Tzaphlidou M (2002) Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis. Appl Radiat Isot 56:781–786

    Article  CAS  PubMed  Google Scholar 

  53. Zaichick V, Tzaphlidou M (2003) Calcium and phosphorus concentration and the calcium/ phosphorus ratio in trabecular bone from the femoral neck of healthy humans as determined by neutron activation analysis. Appl Radiat Isot 58:623–627

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. Nr. 120230/2017-8 and Proc. nr. 306052/2017-2) for scholarships and supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valderi Luiz Dressler.

Ethics declarations

All procedures performed in studies involving animals were approved by the Animals Ethics Committee of the Federal University of Santa Maria (CEUA, protocol number 4250170317). CEUA follows the guidelines of “Conselho Nacional de Controle de Experimentação Animal (CONCEA), which is the “Brazilian Guide for the Production, Maintenance or Use of Animals for Teaching or Scientific Research Activities”.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dressler, V.L., Ogunmodede, O.T., Heidrich, G.M. et al. Investigative Analysis of Lanthanum Oxide Nanoparticles on Elements in Bone of Wistar Rats After 30 Days of Repeated Oral Administration. Biol Trace Elem Res 196, 153–167 (2020). https://doi.org/10.1007/s12011-019-01907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01907-z

Keywords

Navigation