Skip to main content

Advertisement

Log in

Biodistribution of strontium and barium in the developing and mature skeleton of rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone acts as a reservoir for many trace elements. Understanding the extent and pattern of elemental accumulation in the skeleton is important from diagnostic, therapeutic, and toxicological perspectives. Some elements are simply adsorbed to bone surfaces by electric force and are buried under bone mineral, while others can replace calcium atoms in the hydroxyapatite structure. In this article, we investigated the extent and pattern of skeletal uptake of barium and strontium in two different age groups, growing, and skeletally mature, in healthy rats. Animals were dosed orally for 4 weeks with either strontium chloride or barium chloride or combined. The distribution of trace elements was imaged in 3D using synchrotron K-edge subtraction micro-CT at 13.5 µm resolution and 2D electron probe microanalysis (EPMA). Bulk concentration of the elements in serum and bone (tibiae) was also measured by mass spectrometry to study the extent of uptake. Toxicological evaluation did not show any cardiotoxicity or nephrotoxicity. Both elements were primarily deposited in the areas of active bone turnover such as growth plates and trabecular bone. Barium and strontium concentration in the bones of juvenile rats was 2.3 times higher, while serum levels were 1.4 and 1.5 times lower than adults. In all treatment and age groups, strontium was preferred to barium even though equal molar concentrations were dosed. This study displayed spatial co-localization of barium and strontium in bone for the first time. Barium and strontium can be used as surrogates for calcium to study the pathological changes in animal models of bone disease and to study the effects of pharmaceutical compounds on bone micro-architecture and bone remodeling in high spatial sensitivity and precision.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3D:

3-Dimensional

ANOVA:

Analysis of variance

BMIT:

Biomedical imaging and therapy

CLS:

Canadian light source

ECG:

Electrocardiogram

ELISA:

Enzyme-linked immunosorbent assay

EPMA:

Electron probe micro analysis

GLM:

General linear model

ICP-MS:

Inductively coupled plasma mass spectrometry

ICP-OES:

Inductively coupled plasma optical emission spectrometry

KES:

K-edge subtraction

Micro-CT:

Micro-computed tomography

PET:

Positron emission tomography

SPECT:

Single-photon-emission computed tomography

XRF:

X-ray fluorescence imaging

References

  1. Pemmer B, Roschger A, Wastl A, Hofstaetter JG, Wobrauschek P, Simon R, Thaler HW, Roschger P, Klaushofer K, Streli C (2013) Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 57:184–193. https://doi.org/10.1016/j.bone.2013.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang J, Zhang TL, Xu SJ, Li RC, Wang K, Zhang J, Xie YN (2006) Effects of lanthanum on composition, crystal size, and lattice structure of femur bone mineral of Wistar rats. Calcif Tissue Int 78:241–247. https://doi.org/10.1007/s00223-005-0294-2

    Article  CAS  PubMed  Google Scholar 

  3. Bourgeois D, Burt-Pichat B, Le Goff X, Garrevoet J, Tack P, Falkenberg G, Van Hoorebeke L, Vincze L, Denecke MA, Meyer D, Vidaud C, Boivin G (2015) Micro-distribution of uranium in bone after contamination: new insight into its mechanism of accumulation into bone tissue. Anal Bioanal Chem 407:6619–6625. https://doi.org/10.1007/s00216-015-8835-7

    Article  CAS  PubMed  Google Scholar 

  4. Hughes JM, Cameron M, Mariano AN (1991) Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites. Am Miner 76:1165–1173

    CAS  Google Scholar 

  5. Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25:968–975. https://doi.org/10.1359/jbmr.091038

    Article  CAS  PubMed  Google Scholar 

  6. Ellsasser JC, Farnham JE, Marshall JH (1969) Comparative kinetics and autoradiography of 45Ca and 133Ba in ten-year-old beagle dogs. The diffuse component distribution throughout the skeleton. J Bone Joint Surg Am 51:1397–1412

    Article  CAS  PubMed  Google Scholar 

  7. Fuster D, Herranz D, Vidal-Sicart S, Munoz M, Conill C, Mateos JJ, Martin F, Pons F (2000) Usefulness of strontium-89 for bone pain palliation in metastatic breast cancer patients. Nucl Med Commun 21:623–626

    Article  CAS  PubMed  Google Scholar 

  8. Zenda S, Nakagami Y, Toshima M, Arahira S, Kawashima M, Matsumoto Y, Kinoshita H, Satake M, Akimoto T (2013) Strontium-89 (Sr-89) chloride in the treatment of various cancer patients with multiple bone metastases. Int J Clin Oncol. https://doi.org/10.1007/s10147-013-0597-7

    Article  PubMed  Google Scholar 

  9. Seeman E, Boonen S, Borgstrom F, Vellas B, Aquino JP, Semler J, Benhamou CL, Kaufman JM, Reginster JY (2010) Five years treatment with strontium ranelate reduces vertebral and nonvertebral fractures and increases the number and quality of remaining life-years in women over 80 years of age. Bone 46:1038–1042. https://doi.org/10.1016/j.bone.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  10. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822. https://doi.org/10.1210/jc.2004-1774

    Article  CAS  PubMed  Google Scholar 

  11. Weekes DM, Cawthray JF, Rieder M, Syeda J, Ali M, Wasan E, Kostelnik TI, Patrick BO, Panahifar A, Al-Dissi A, Cooper D, Wasan KM, Orvig C (2017) La(iii) biodistribution profiles from intravenous and oral dosing of two lanthanum complexes, La(dpp)3 and La(XT), and evaluation as treatments for bone resorption disorders. Metallomics 9:902–909. https://doi.org/10.1039/c7mt00133a

    Article  CAS  PubMed  Google Scholar 

  12. von Rosenberg SJ, Wehr UA (2012) Lanthanum salts improve bone formation in a small animal model of post-menopausal osteoporosis. J Anim Physiol Anim Nutr (Berl) 96:885–894. https://doi.org/10.1111/j.1439-0396.2012.01326.x

    Article  CAS  Google Scholar 

  13. Blake GM, Fogelman I (2007) The correction of BMD measurements for bone strontium content. J Clin Densitom 10:259–265

    Article  PubMed  Google Scholar 

  14. Panahifar A, Cooper DM, Doschak MR (2015) 3-D localization of non-radioactive strontium in osteoarthritic bone: role in the dynamic labeling of bone pathological changes. J Orthop Res 33:1655–1662. https://doi.org/10.1002/jor.22937

    Article  CAS  PubMed  Google Scholar 

  15. Panahifar A, Swanston TM, Pushie JM, Belev G, Chapman D, Weber L, Cooper DM (2016) Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging. Phys Med Biol 61:5077–5088. https://doi.org/10.1088/0031-9155/61/13/5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cooper DM, Chapman LD, Carter Y, Wu Y, Panahifar A, Britz HM, Bewer B, Zhouping W, Duke MJ, Doschak M (2012) Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging. Phys Med Biol 57:5777–5786. https://doi.org/10.1088/0031-9155/57/18/5777

    Article  CAS  PubMed  Google Scholar 

  17. Panahifar A, Maksymowych WP, Doschak MR (2012) Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium as a molecular tracer of bone formation. Osteoarthritis Cartilage 20:694–702. https://doi.org/10.1016/j.joca.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Adeeb SM, Duke MJ, Munoz-Paniagua D, Doschak MR (2013) Compositional and material properties of rat bone after bisphosphonate and/or Strontium ranelate drug treatment. J Pharm Pharm Sci 16:52–64

    Article  PubMed  Google Scholar 

  19. Thomlinson W, Elleaume H, Porra L, Suortti P (2018) K-edge subtraction synchrotron X-ray imaging in bio-medical research. Physica Medica 49:58–76

    Article  CAS  PubMed  Google Scholar 

  20. Panahifar A, Samadi N, Swanston TM, Chapman LD, Cooper DM (2016) Spectral K-edge subtraction imaging of experimental non-radioactive barium uptake in bone. Phys Med 32:1765–1770

    Article  PubMed  Google Scholar 

  21. National Toxicology Program (1994) NTP toxicology and carcinogenesis studies of barium chloride dihydrate (CAS No. 10326-27-9) in F344/N rats and B6C3F1 mice (drinking water studies). Natl Toxicol Program Tech Rep Ser 432:1–285

    Google Scholar 

  22. Dietz DD, Elwell MR, Davis WE Jr, Meirhenry EF (1992) Subchronic toxicity of barium chloride dihydrate administered to rats and mice in the drinking water. Fundam Appl Toxicol 19:527–537

    Article  CAS  PubMed  Google Scholar 

  23. Borzelleca JF, Condie LW, Egle JL (1988) Short-term toxicity (one-and ten-day gavage) of barium chloride in male and female rats. Int J Toxicol 7:675–685. https://doi.org/10.3109/10915818809019542

    Article  CAS  Google Scholar 

  24. Chavassieux P, Meunier PJ, Roux JP, Portero-Muzy N, Pierre M, Chapurlat R (2014) Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women: randomized comparison to alendronate. J Bone Miner Res 29:618–628. https://doi.org/10.1002/jbmr.2074

    Article  CAS  PubMed  Google Scholar 

  25. Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, Keck B, Phipps RJ, Burr DB (2008) Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 19:1331–1341. https://doi.org/10.1007/s00198-008-0602-6

    Article  CAS  PubMed  Google Scholar 

  26. Bolland MJ, Grey A (2016) Ten years too long: strontium ranelate, cardiac events, and the European Medicines Agency. BMJ 354:i5109. https://doi.org/10.1136/bmj.i5109

    Article  PubMed  Google Scholar 

  27. Lund Rasmussen K, Skytte L, D’imporzano P, Orla Thomsen P, Sovso M, Lier Boldsen J, (2017) On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals. Am J Phys Anthropol 162:90–102. https://doi.org/10.1002/ajpa.23099

    Article  PubMed  Google Scholar 

  28. Ezzo JA (1994) Putting the “chemistry” back into archaeological bone chemistry analysis: modeling potential paleodietary indicators. J Anthropol Archaeol 13:1–34. https://doi.org/10.1006/jaar.1994.1002

    Article  Google Scholar 

  29. Wysokinski TW, Chapman D, Adams G, Renier M, Suortti P, Thomlinson W (2007) Beamlines of the biomedical imaging and therapy facility at the Canadian light source—part 1. Nucl Instrum Methods Phys Res Sect A 582:73–76. https://doi.org/10.1016/j.nima.2007.08.087

    Article  CAS  Google Scholar 

  30. Weitkamp T, Haas D, Wegrzynek D, Rack A (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18:617–629. https://doi.org/10.1107/S0909049511002895

    Article  CAS  PubMed  Google Scholar 

  31. Reeves A (1986) Barium. In: Friberg L, Nordberg G, Vouk V (eds) Handbook of metals, 2nd edn. Elsevier Science Publishers, New York, pp 88–89

    Google Scholar 

  32. Harrison GE, Carr TE, Sutton A (1967) Distribution of radioactive calcium, strontium, barium and radium following intravenous injection into a healthy man. Int J Radiat Biol Relat Stud Phys Chem Med 13:235–247

    Article  CAS  PubMed  Google Scholar 

  33. McCauley PT, Washington IS (1983) Barium bioavailability as the chloride, sulfate, or carbonate salt in the rat. Drug Chem Toxicol 6:209–217. https://doi.org/10.3109/01480548309016025

    Article  CAS  PubMed  Google Scholar 

  34. Sips AJ, van der Vijgh WJ, Barto R, Netelenbos JC (1995) Intestinal strontium absorption: from bioavailability to validation of a simple test representative for intestinal calcium absorption. Clin Chem 41:1446–1450

    CAS  PubMed  Google Scholar 

  35. Taylor DM, Bligh PH, Duggan MH (1962) The absorption of calcium, strontium, barium and radium from the gastrointestinal tract of the rat. Biochem J 83:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Costa E, Fernandes J, Ribeiro S, Sereno J, Garrido P, Rocha-Pereira P, Coimbra S, Catarino C, Belo L, Bronze-da-Rocha E, Vala H, Alves R, Reis F, Santos-Silva A (2013) Aging is associated with impaired renal function, INF-gamma induced inflammation and with alterations in iron regulatory proteins gene expression. Aging Dis 5:356–365. https://doi.org/10.14366/AD.2014.0500356

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu Y, Samadi N, Martinson M, Bassey B, Wei Z, Belev G, Chapman D (2014) Spectral K-edge subtraction imaging. Phys Med Biol 59:2485–2503. https://doi.org/10.1088/0031-9155/59/10/2485

    Article  CAS  PubMed  Google Scholar 

  38. Deman P, Tan S, Belev G, Samadi N, Martinson M, Chapman D, Ford NL (2017) Respiratory-gated KES imaging of a rat model of acute lung injury at the Canadian Light Source. J Synchrotron Radiat 24:679–685. https://doi.org/10.1107/S160057751700193X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Sylvia Fedoruk Canadian Centre for Nuclear Innovation. DMLC and LDC are supported, in part, by the Canada Research Chairs program. AP is a Saskatchewan Health Research Foundation (SHRF) fellow as well as a fellow in the Canadian Institutes of Health Research Training Grant in Health Research Using Synchrotron Techniques (CIHR-THRUST). NS is a CIHR-THRUST fellow. The research described in this paper was performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation, Natural Sciences and Engineering Research Council of Canada, the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: AP and DMLC. Collection and assembly of data: AP and NS. Analysis and interpretation of the data: AP, LDC, LW, and DMLC. Statistical expertise: AP and DMLC. Obtaining of funding: LDC and DMLC. Drafting of the article: AP. Revising manuscript content: AP, LDC, LW, NS, and DMLC. Final approval of the article: AP, LDC, LW, NS, and DMLC. AP and DMLC take responsibility for the integrity of the data analysis.

Corresponding author

Correspondence to Arash Panahifar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (BMP 4352 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panahifar, A., Chapman, L.D., Weber, L. et al. Biodistribution of strontium and barium in the developing and mature skeleton of rats. J Bone Miner Metab 37, 385–398 (2019). https://doi.org/10.1007/s00774-018-0936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-018-0936-x

Keywords

Navigation