Skip to main content

Advertisement

Log in

Chronic Exposure to Fluoride During Gestation and Lactation Increases Mandibular Bone Volume of Suckling Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We aimed to investigate the effect of maternal exposure to NaF on mandibular bone microarchitecture and phosphocalcic plasma parameters of the offspring. For this purpose, 10-, 15-, and 21-day-old pups (n = 6–8 per group) from two groups of mothers, control and NaF 50mg/L treated dams, were used. Plasma calcium (Ca) and phosphorus (P) levels and alkaline phosphatase activity (ALP) were measured. Fluoride concentration (F) in bone and in stomach content was measured using potentiometry after isothermal distillation. Morphometric, histological, and histomorphometric analyses of the jaw bones were performed. Plasma Ca and P levels and ALP activity increased in 10-day and decreased in 21-day-old pups from NaF-treated mothers. Fluoride concentration in stomach content samples of 15- and 21-day-old nursing pups from mothers exposed to NaF in their drinking water was higher compared to that observed in control dam offspring. Mandibular F content was higher in 21-day-old pups born to F-exposed dams compared to those observed in age-matched control pups. Mandibular area increased in 21-day-old pups born to treated mothers as compared to controls. Mandibular bone volume BV/TV (%) was higher in offspring from NaF-exposed dams than in controls at all the studied times. The increase in bone volume after exposure to F was concomitant with the increase in trabecular thickness and the decrease in trabecular separation. Altogether, our results showed that exposure to NaF during gestation and lactation increased mandibular area and bone volume of pups, with concomitant changes in phosphocalcic parameters associated with the bone modeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DenBesten P, Li W (2011) Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci 22:81–96. https://doi.org/10.1159/000327028

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perumal E, Paul V, Govindarajan V, Panneerselvam L (2013) A brief review on experimental fluorosis. Toxicol Lett 223(2):236–251. https://doi.org/10.1016/j.toxlet.2013.09.005

    Article  PubMed  CAS  Google Scholar 

  3. Ohmi K, Nakagaki H, Tsuboi S, Okumura A, Sugiyama T, Thuy TT, Robinson C (2005) The effect of fluoridation and its discontinuation on fluoride profiles in the alveolar bone of rat. Calcif Tissue Int 77(4):226–232. https://doi.org/10.1007/s00223-004-1304-5

    Article  PubMed  CAS  Google Scholar 

  4. Buzalaf MA, Whitford GM (2011) Fluoride metabolism. In: Buzalaf M (ed). Fluoride and the oral environment. Monogr Oral Sci Karger 22:20–36. https://doi.org/10.1159/000325107

    Article  Google Scholar 

  5. Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560. https://doi.org/10.1177/0022034510384626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Qu H, Wei M (2006) The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater Res 2(1):113–119. https://doi.org/10.1016/j.actbio.2005.09.003

    Article  Google Scholar 

  7. Pan L, Shi X, Liu S, Guo X, Zhao M, Cai R, Sun G (2014) Fluoride promotes osteoblastic differentiation through canonical Wnt/β-catenin signaling pathway. Toxicol Lett 225(1):34–42. https://doi.org/10.1016/j.toxlet.2013.11.029

    Article  PubMed  CAS  Google Scholar 

  8. Qu WJ, Zhong DB, Wu PF, Wang JF, Han B (2008) Sodium fluoride modulates caprine osteoblast proliferation and differentiation. J Bone Miner Metab 26(4):328–234. https://doi.org/10.1007/s00774-007-0832-2

    Article  PubMed  CAS  Google Scholar 

  9. Nanci A (2008) Ten Cate’s oral histology: development, structure, and function, 8th edn. Mosby Elsevier, St Louis

    Google Scholar 

  10. Sanz-Salvador L, García-Pérez MA, Tarín JJ, Cano A (2015) Bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture. Eur J Endocrinol 172:53–65

    Article  CAS  Google Scholar 

  11. Brambilla E, Belluomo G, Malerba A, Buscaglia M, Strohmenger L (1994) Oral administration of fluoride in pregnant women, and the relation between concentration in maternal plasma and in amniotic fluid. Arch Oral Biol 39:991–994

    Article  PubMed  CAS  Google Scholar 

  12. Gurumurthy SM, Shruti M, Sapna V, Aparna VB, Pragna R (2011) Transplacental transport of fluoride, calcium and magnesium. Natl J Int Res Med 2:51–55

    Google Scholar 

  13. Messer HH, Armstrong WD, Singer L (1974) Effect of maternal fluoride intake on preweaning bone fluoride concentrations in mice. J Dent Res 53(1):145. https://doi.org/10.1177/00220345740530011501

    Article  PubMed  CAS  Google Scholar 

  14. Speirs RL (1986) The relationship between fluoride concentrations in serum and in mineralized tissues in the rat. Arch Oral Biol 31(6):373–381. https://doi.org/10.1016/0003-9969(86)90160-3

    Article  PubMed  CAS  Google Scholar 

  15. Narayanaswamy M, Piler MB (2010) Effect of maternal exposure of fluoride on biometals and oxidative stress parameters in developing CNS of rat. Biol Trace Elem Res 133(1):71–82. https://doi.org/10.1007/s12011-009-8413-y

    Article  PubMed  CAS  Google Scholar 

  16. Rigalli A, Alloatti R, Puche RC (1999) Measurement of total and diffusible serum fluoride. J Clin Lab Anal 13:151–157

    Article  PubMed  CAS  Google Scholar 

  17. Eratalay YK, Simmons DJ, El-Mofty SK, Rosenberc GD, Nelson W, Haus E, Halberg F (1981) Bone growth in the rat mandible following every-day or alternate-day methylprednisolone treatment schedules. Arch Oral Biol 26(10):769–777. https://doi.org/10.1016/0003-9969(81)90172-2

    Article  PubMed  CAS  Google Scholar 

  18. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone Histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry nomenclature committee. J Bone Miner Res 28(1):2–17. https://doi.org/10.1002/jbmr.1805

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grynpas MD, Chachra D, Limeback H (2000) The action of fluoride on bone. In: Henderson JE, Goltzman D (eds) The osteoporosis primer. Cambridge University Press, Cambridge, pp 318–330

    Chapter  Google Scholar 

  20. Drinkard CR, Deaton TG, Bawden JW (1985) Enamel fluoride in nursing rats with mothers drinking water with high fluoride concentrations. J Dent Res 64(6):877–880. https://doi.org/10.1177/00220345850640060301

    Article  PubMed  CAS  Google Scholar 

  21. Saiani RA, Porto IM, Marcantonio Junior E, Cury JA, De Sousa FB, Gerlach RF (2009) Morphological characterization of rat incisor fluorotic lesions. Arch Oral Biol 54(11):1008–1015. https://doi.org/10.1016/j.archoralbio.2009.08.009

    Article  PubMed  CAS  Google Scholar 

  22. Centeno VA, Fontanetti PA, Interlandi V, Ponce RH, Gallará RV (2015) Fluoride alters connexin expression in rat incisor pulp. Arch Oral Biol 60(2):313–319. https://doi.org/10.1016/j.archoralbio.2014.11.003

    Article  PubMed  CAS  Google Scholar 

  23. Dunapice A, Brizendine E, Zhang W, Wilson M, Miller L, Warrick B, Stookey G (1995) Effect of aging on animal response to chronic fluoride exposure. J Dent Res 74:358–368

    Article  Google Scholar 

  24. Buzalaf MA, Moraes CM, Olympio KP, Pessan JP, Grizzo LT, Silva TL, Magalhães AC, Oliveira RC, Groisman S, Ramires I (2013) Seven years of external control of fluoride levels in the public water supply in Bauru, São Paulo, Brazil. J Appl Oral Sci 21(1):92–98. https://doi.org/10.1590/1678-7757201302196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Whitford GM (1999) Fluoride metabolism and excretion in children. J Public Health Dent 59(4):224–228. https://doi.org/10.1111/j.1752-7325.1999.tb03273.x

    Article  PubMed  CAS  Google Scholar 

  26. Schour I, Massler M (1949) The teeth. In: Farris EJ, Griffith JQ (eds) The rat in laboratory investigation, J. B. Lippincott Company, Philadelphia, pp 104–160

    Google Scholar 

  27. Sener Y, Tosun G, Kahvecioglu F, Gökalp A, Koç H (2007) Fluoride levels of human plasma and breast milk. Eur J Dent 1:21–24

    PubMed  PubMed Central  Google Scholar 

  28. Seifert M, Nelke KH, Noczyńska A, Łysenko L, Kubacka M, Gerber H (2015) Bone markers in craniofacial bone deformations and dysplasias. Postepy Hig Med Dosw 28:1176–1181

    Article  Google Scholar 

  29. Chandrajith R, Dissanayake CB, Ariyarathna T, Herath HM, Padmasiri JP (2011) Dose-dependent Na and ca in fluoride-rich drinking water--another major cause of chronic renal failure in tropical arid regions. Sci Total Environ 409:671–675

    Article  PubMed  CAS  Google Scholar 

  30. Zhou Z, Wang H, Zheng B, Han Z, Chen Y, Ma Y (2017) A rat experimental study of the relationship between fluoride exposure and sensitive biomarkers. Biol Trace Elem Res 180:100–109

    Article  PubMed  CAS  Google Scholar 

  31. Huang H, Ba Y, Wu JJ, Li EW, Ma JG, Li SH et al (2007) Effects of the contents of Ca2 and Mg2 in drinking water on serum alkaline phosphatase in fluoride exposed population. J Zhengzhou Univ (Med Sci) 42:55–57

    CAS  Google Scholar 

  32. Song Y, Tan H, Liu KJ, Zhang Y, Liu Y, Lu C, Yu D, Tu J, Cui C (2011) Effect of fluoride exposure on bone metabolism indicators ALP, BALP and BGP. Environ Health Prev Med 16(3):158–163. https://doi.org/10.1007/s12199-010-0181-y

    Article  PubMed  CAS  Google Scholar 

  33. Wise GE, Yao S, Henk W (2007) Bone formation as a potential motive force of tooth eruption in the rat molar. Clin Anat 20:632–639

    Article  PubMed  Google Scholar 

  34. Wise GE, King GJ (2008) Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87(5):414–434. https://doi.org/10.1177/154405910808700509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wise GE (2009) Cellular and molecular basis of tooth eruption. Orthod Craniofacial Res 12(2):67–73. https://doi.org/10.1111/j.1601-6343.2009.01439.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Germán Tirao for his technical assistance and to Alfredo Rigalli for his generous and dedicated collaboration. This work was funded by SECyT-Universidad Nacional de Córdoba (UNC) No 202/2016 and FO-UNC: 242/2014 (Viviana Centeno), CICyT-Universidad Nacional de La Rioja (Raquel Gallará).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana A. Centeno.

Ethics declarations

The animal protocol was approved by the Bioethics Committee of the School of Medicine of the National University of Córdoba (Argentina) and is in keeping with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals (NIH Publications No 8023, revised 1978).

Conflict of Interest

We declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Interlandi, V., Fontanetti, P.A., Ponce, R.H. et al. Chronic Exposure to Fluoride During Gestation and Lactation Increases Mandibular Bone Volume of Suckling Rats. Biol Trace Elem Res 185, 395–403 (2018). https://doi.org/10.1007/s12011-018-1258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1258-5

Keywords

Navigation