Skip to main content

Advertisement

Log in

Soil Nematodes as the Silent Sufferers of Climate-Induced Toxicity: Analysing the Outcomes of Their Interactions with Climatic Stress Factors on Land Cover and Agricultural Production

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Unsustainable anthropogenic activities over the last few decades have resulted in alterations of the global climate. It can be perceived through changes in the rainfall patterns and rise in mean annual temperatures. Climatic stress factors exert their effects on soil health mainly by modifying the soil microenvironments where the soil fauna reside. Among the members of soil fauna, the soil nematodes have been found to be sensitive to these stress factors primarily because of their low tolerance limits. Additionally, because of their higher and diverse trophic positions in the soil food web they can integrate the effects of many stress factors acting together. This is important because under natural conditions the climatic stress factors do not exert their effect individually. Rather, they interact amongst themselves and other abiotic stress factors in the soil to generate their impacts. Some of these interactions may be synergistic while others may be antagonistic. As such, it becomes very difficult to assess their impacts on soil health by simply analysing the physicochemical properties of soil. This makes soil nematodes outstanding candidates for studying the effects of climatic stress factors on soil biology. The knowledge obtained therefrom can be used to design sustainable agricultural practices because most of the conventional techniques aim at short-term benefits with complete disregard of soil biology. This can partly ensure food security in the coming decades for the expanding population. Moreover, understanding soil biology can help to preserve landscapes that have developed over long periods of climatic stability and belowground soil biota interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

All the data relevant to this manuscript have been given in the article.

References

  1. Sun, F., Pan, K., Tariq, A., Zhang, L., Sun, X., Li, Z., & Olatunji, O. A. (2016). The response of the soil microbial food web to extreme rainfall under different plant systems. Scientific Reports, 6, 37662. https://doi.org/10.1038/srep37662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nkem, J. N., Virginia, R. A., Barret, J. E., Wall, D. H., & Li, G. (2006). Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biology, 29, 643–651. https://doi.org/10.1007/s00300-005-0101-6

    Article  Google Scholar 

  3. Hiltpold, I., Moore, B. D., & Johnson, S. N. (2019). Elevated atmospheric carbon dioxide concentrations alter root morphology and reduce the effectiveness of entomopathogenic nematodes. Plant and Soil, 447(1), 29–38. https://doi.org/10.1007/s11104-019-04075-0

    Article  CAS  Google Scholar 

  4. Zhao, J., Wang, X., Wang, X., & Fu, S. (2014). Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant and Soil, 385, 273–286. https://doi.org/10.1007/s11104-014-2234-2

    Article  CAS  Google Scholar 

  5. Shao, Y., Wang, X., Zhao, J., Wu, J., Zhang, W., Neher, D. A., & Fu, S. (2016). Subordinate plants sustain the complexity and stability of soil micro-food webs in natural bamboo forest ecosystems. Journal of Applied Ecology, 53, 130–139. https://doi.org/10.1111/1365-2664.12538

    Article  Google Scholar 

  6. Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37(2), 112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x

    Article  CAS  PubMed  Google Scholar 

  7. Wagner, D., Eisenhauer, N., & Cesarz, S. (2015). Plant species richness does not attenuate responses of soil microbial and nematode communities to a flood event. Soil Biology and Biochemistry, 89, 135–149. https://doi.org/10.1016/j.soilbio.2015.07.001

    Article  CAS  Google Scholar 

  8. Hu, N., Li, H., Tang, Z., Li, Z., Tian, J., Lou, Y., & Hu, X. (2016). Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil. Scientific reports, 6, 28138. https://doi.org/10.1038/srep28138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong, Z., Hou, R., Chen, Q., Ouyang, Z., & Ge, F. (2013). Response of soil nematodes to elevated temperature in conventional and no-tillage cropland systems. Plant and Soil, 373, 907–918. https://doi.org/10.1007/s11104-013-1846-2

    Article  CAS  Google Scholar 

  10. Nguyen, B. A. T., Chen, Q. L., Yan, Z. Z., Li, C., He, J. Z., & Hu, H. W. (2021). Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems. Soil Biology and Biochemistry, 160, 108317. https://doi.org/10.1016/j.soilbio.2021.108317

    Article  CAS  Google Scholar 

  11. Song, Y., Liu, J., & Chen, F. (2020). Elevated CO2 not increased temperature has specific effects on soil nematode community either with planting of transgenic Bt rice or non-Bt rice. PeerJ, 8, e8547. https://doi.org/10.7717/peerj.8547

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, D., Cheng, J., Chu, P., Hu, S., Xie, Y., Tuvshintogtokh, I., & Bai, Y. (2015). Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau: Relationships with climate, soil, and plants. Ecography, 38, 622–631. https://doi.org/10.1111/ecog.01226

    Article  CAS  Google Scholar 

  13. Mueller, K. E., Blumenthal, D. M., Pendall, E., Carrillo, Y., Dijkstra, F. A., Williams, D. G., & Morgan, J. A. (2016). Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecology Letters, 19, 956e966. https://doi.org/10.1111/ele.12634

    Article  Google Scholar 

  14. Chabrier, C., Carles, C., Quénéhervé, P., & Cabidoche, Y. M. (2008). Nematode dissemination by water leached in soil: Case study of Radopholus similis (Cobb) Thorne on nitisol under simulated rainfall. Applied Soil Ecology, 40(2), 299–308. https://doi.org/10.1016/j.apsoil.2008.05.004

    Article  Google Scholar 

  15. Zhao, J., Wang, X., Shao, Y., Xu, G., & Fu, S. (2011). Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry, 43(5), 954–960. https://doi.org/10.1016/j.soilbio.2011.01.010

    Article  CAS  Google Scholar 

  16. Kardol, P., Cregger, M., Campany, C. E., & Classen, A. T. (2010). Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 91(3), 767–781. https://doi.org/10.1890/09-0135.1

    Article  PubMed  Google Scholar 

  17. Thakur, M. P., Reich, P. B., Fisichelli, N. A., Stefanski, A., Cesarz, S., Dobies, T., & Eisenhauer, N. (2014). Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone. Oecologia, 175, 713–723. https://doi.org/10.1007/s00442-014-2927-5

    Article  PubMed  Google Scholar 

  18. Bonkowski, M., Villenave, C., & Griths, B. (2009). Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil, 321, 213–233. https://doi.org/10.1007/s11104-009-0013-2

    Article  CAS  Google Scholar 

  19. Tahat, M. M., Alananbeh, K. M., Othman, Y. A., & Leskovar, D. I. (2020). Soil Health and Sustainable Agriculture. Sustainability, 12(12), 4859. https://doi.org/10.3390/su12124859

    Article  CAS  Google Scholar 

  20. Rogers, H. H., Prior, S. A., Runion, G. B., & Mitchell, R. J. (1996). Root to shoot ratio of crops as influenced by CO2 Plant and Soil, 187, 229–248. https://doi.org/10.1007/BF00017090

    Article  CAS  Google Scholar 

  21. Gregory, P. J. (2006). Plant roots - growth, activity and interaction with soils (1st ed.). Blackwell Publishing

    Book  Google Scholar 

  22. Demarta, L., Hibbard, B. E., Bohn, M. O., & Hiltpolda, I. (2014). The role of root architecture in foraging behavior of entomopathogenic nematodes. Journal of Invertebrate Pathology, 122, 32–39. https://doi.org/10.1016/j.jip.2014.08.002

    Article  PubMed  Google Scholar 

  23. Bokhorst, S., Phoenix, G. K., Bjerke, J. W., Callaghan, T. V., Huyer-Brugman, F., & Berg, M. P. (2012). Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biology, 18(3), 1152–1162. https://doi.org/10.1111/j.1365-2486.2011.02565.x

    Article  Google Scholar 

  24. Anderson, R. V., & Coleman, D. C. (1982). Nematode temperature responses: a niche dimension in populations of bacterial-feeding nematodes. Journal of Nematology, 14(1), 69–76

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Garrigues, E., Corson, M. S., Angers, D. A., van der Werf, H. M. G., & Walter, C. (2012). Soil quality in life cycle assessment: Towards development of an indicator. Ecological Indicators, 18, 434–442

    Article  CAS  Google Scholar 

  26. Bone, J., Barraclough, D., Eggleton, P., Head, M., Jones, D. T., & Voulvoulis, N. (2014). Prioritising soil quality assessment through the screening of sites: The use of publicly collected data. Land Degradation and Development, 25, 251–266. https://doi.org/10.1002/ldr.2138

    Article  Google Scholar 

  27. Yeates, G. W., Bongers, T., De Goede, R. G. M., Freckman, D. W., & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology, 25(3), 315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bongers, T., & Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10, 239–251. https://doi.org/10.1016/S0929-1393(98)00123-1

    Article  Google Scholar 

  29. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(2), 415–427

    Article  Google Scholar 

  30. Slack, D. A., Riggs, R. D., & Hamblen, M. L. (1972). The effect of temperature and moisture on the survival of Heterodera glycines in the absence of a host. Journal of Nematology, 4(4), 263–266

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rebois, R. V. (1973). Effect of soil temperature on infectivity and development of Rotylenchulus reniformis on resistant and susceptible soybeans, Glycine max Journal of Nematology, 5(1), 10–13

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Twinn, D. C. (1974). In C. H. Dickinson & G. J. F. Pugh (Eds.), The biology of plant litter decomposition, Nematodes (pp. 421–465). Academic

    Chapter  Google Scholar 

  33. Matute, M. M. (2013). Soil Nematodes of Brassica rapa: Influence of Temperature and pH. Advances in Natural Science, 6(4), 20–26. https://doi.org/10.3968/j.ans.1715787020130604.2858

    Article  Google Scholar 

  34. Song, M., Li, X., Jing, S., Lei, L., Wang, J., & Wan, S. (2016). Responses of soil nematodes to water and nitrogen additions in an old-field grassland. Applied Soil Ecology, 102, 53–60. https://doi.org/10.1016/j.apsoil.2016.02.011

    Article  Google Scholar 

  35. Harris, J. (2009). Soil microbial communities and restoration ecology: Facilitators or followers? Science, 325(5940), 573–574. https://doi.org/10.1126/science.1172975

    Article  CAS  PubMed  Google Scholar 

  36. Dominati, E., Patterson, M., & Mackay, A. (2010). A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69, 1858–1868. https://doi.org/10.1016/j.ecolecon.2010.05.002

    Article  Google Scholar 

  37. Ferris, H., Bongers, T., & de Goede, R. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13–29. https://doi.org/10.1016/S0929-1393(01)00152-4

    Article  Google Scholar 

  38. Bongers, T. (1990). The Maturity Index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14–19. https://doi.org/10.1007/BF00324627

    Article  PubMed  Google Scholar 

  39. Bongers, T., de Goede, R. G. N., Korthals, G. W., & Yeates, G. W. (1995). Proposed changes of c-p classification for nematodes. Russian Journal of Nematology, 3(1), 61–62

    Google Scholar 

  40. Zhao, J., Wang, F., Li, J., Zou, B., Wang, X., Li, Z., & Fu, S. (2014). Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry, 7, 1–10. https://doi.org/10.1016/j.soilbio.2014.03.019

    Article  CAS  Google Scholar 

  41. Liu, X., Zhang, D., Li, H., Qi, X., Gao, Y., Zhang, Y., & Li, H. (2020). Soil nematode community and crop productivity in response to 5-year biochar and manure addition to yellow cinnamon soil. BMC Ecology, 20, 39. https://doi.org/10.1186/s12898-020-00304-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ankrom, K. E., Franco, A., Fonte, S. J., Gherardi, L. A., de Tomasel, C. M., Andriuzzi, W. S., & Wall, D. H. (2020). Ecto- and endoparasitic nematodes respond differently across sites to changes in precipitation. Oecologia, 193(3), 761–771. https://doi.org/10.1007/s00442-020-04708-7

    Article  PubMed  Google Scholar 

  43. Andrei, A. (2010). Comparative analysis of freshwater nematode communities from three sites in the Dniester river. Oltenia - studii si comunicari stiintele naturii, 1(26), 81–86

    Google Scholar 

  44. Neher, D. A., Williams, K. M., & Lovell, S. T. (2017). Environmental indicators reflective of road design in a forested landscape. Ecosphere, 8(3), e01734. https://doi.org/10.1002/ecs2.1734

    Article  Google Scholar 

  45. Šalamún, P., Renčo, M., Miklisová, D., & Hanzelová, V. (2011). Nematode community structure in the vicinity of a metallurgical factory. Environmental Monitoring and Assessment, 183, 451–464. https://doi.org/10.1007/s10661-011-1932-y

    Article  CAS  PubMed  Google Scholar 

  46. Osman, H. A., Ahmed, A. R., & Mohamed, M. M. M. (2016). Effects of salt-affected soil ameliorated with gypsum, compost or sulphuric acid on the reproductive parameters of root knot nematode, Meloidogyne incognita infecting tomato plants var. castle rock under green house conditions. International Journal of PharmTech Research, 9(9), 66–74

    Google Scholar 

  47. Franco, A., Gherardi, L. A., de Tomasel, C. M., Andriuzzi, W. S., Ankrom, K. E., Shaw, E. A., & Wall, D. H. (2019). Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands. Proceedings of the National Academy of Sciences of the United States of America, 116(26), 12883–12888. https://doi.org/10.1073/pnas.1900572116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simmons, B. L., Wall, D. H., Adams, B. J., Ayres, E., Barrett, J. E., & Virginia, R. A. (2009). Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biology and Biochemistry, 41(10), 2052–2060. https://doi.org/10.1016/j.soilbio.2009.07.009

    Article  CAS  Google Scholar 

  49. Darby, B. J., Neher, D. A., Housman, D. C., & Belnap, J. (2011). Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna. Soil Biology and Biochemistry, 43, 1474–1481. https://doi.org/10.1016/j.soilbio.2011.03.020

    Article  CAS  Google Scholar 

  50. Sylvain, Z. A., Wall, D. H., Cherwin, K. L., Peters, D. P., Reichmann, L. G., & Sala, O. E. (2014). Soil animal responses to moisture availability are largely scale, not ecosystem dependent: insight from a cross-site study. Global Change Biology, 20(8), 2631–2643. https://doi.org/10.1111/gcb.12522

    Article  PubMed  Google Scholar 

  51. Wang, C., Bruening, G., & Williamson, V. M. (2009). Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel. Journal of Chemical Ecology, 35, 1242–1251. https://doi.org/10.1007/s10886-009-9703-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barbehenn, R. V., Chen, Z., Karowe, D. N., & Spickard, A. (2004). C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2 Global Change Biology, 10, 1565–1575. https://doi.org/10.1111/j.1365-2486.2004.00833.x

    Article  Google Scholar 

  53. Dijkstra, F. A., Pendall, E., Morgan, J. A., Blumenthal, D. M., Carrillo, Y., LeCain, D. R., & Williams, D. G. (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. The New Phytologist, 196, 807e815. https://doi.org/10.1111/j.1469-8137.2012.04349.x

    Article  CAS  Google Scholar 

  54. Neher, D. A., Weicht, T. R., Moorhead, D. L., & Sinsabaugh, R. L. (2004). Elevated CO2 alters functional attributes of nematode communities in forest soils. Functional Ecology, 18(4), 584–591. https://doi.org/10.1111/j.0269-8463.2004.00866.x

    Article  Google Scholar 

  55. Curtis, P. S., Zak, D. R., Pregitzer, K. S., Lussenhop, J., & Teeri, J. A. (1996). In G. W. Koch & H. A. Mooney (Eds.), Carbon Dioxide and Terrestrial Ecosystems, Linking above- and belowground responses to rising CO2 in northern deciduous forest species (pp. 41–51). Academic

    Google Scholar 

  56. Jones, T. H., Thompson, L. J., Lawton, J. H., Bezemer, T. M., Bardgett, R. D., Blackburn, T. M., & Ritchie, D. A. (1998). Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science, 280(5362), 441–443. https://doi.org/10.1126/science.280.5362.441

    Article  CAS  PubMed  Google Scholar 

  57. Newman, J. A., Anand, M., Henry, H. A. L., & Hunt, S. (2011). Climate change biology. CABI

    Book  Google Scholar 

  58. Gregory, P. J., & Nortcliff, S. (2013). In P. J. Gregory & S. Nortcliff (Eds.), Soil conditions and plant growth, The new challenge – sustainable production in a changing environment (pp. 417–448). Wiley Blackwell

    Chapter  Google Scholar 

  59. Cohen, I., Rapaport, T., Berger, R. T., & Rachmilevitch, S. (2018). The effects of elevated CO2 and nitrogen nutrition on root dynamics. Plant Science, 272, 294–300. https://doi.org/10.1016/j.plantsci.2018.03.034

    Article  CAS  PubMed  Google Scholar 

  60. Körner, C., & Arnone, I. I. I. (1992). Responses to elevated carbon di-oxide in artificial tropical ecosystems. Science, 257(5077), 1672–1675. https://doi.org/10.1126/science.257.5077.1672

    Article  PubMed  Google Scholar 

  61. Zak, D. R., Ringelberg, D. B., Pregitzer, K. S., Randlett, D. L., White, D. C., & Curtis, P. S. (1996). Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2 Ecological Applications, 6(1), 257–262. https://doi.org/10.2307/2269568

    Article  Google Scholar 

  62. Griffiths, B. S., Bonkowski, M., Dobson, G., & Caul, S. (1999). Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia, 43, 297e304

    Google Scholar 

  63. García-Palacios, P., Vandegehuchte, M. L., Shaw, E. A., Dam, M., Post, K. H., & Ramirez, K. S. (2015). Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? a global perspective. Global Change Biology, 21(4), 1590–1600. https://doi.org/10.1111/gcb.12788

    Article  PubMed  Google Scholar 

  64. Hartley, S. E., Jones, C. G., Couper, G. C., & Jones, T. H. (2000). Biosynthesis of plant phenolic compounds in elevated atmospheric CO2 Global Change Biology, 6, 497–506. https://doi.org/10.1046/j.1365-2486.2000.00333.x

    Article  Google Scholar 

  65. McClure, M. A. (1977). Meloidogyne incognita: a metabolic sink. Journal of Nematology, 9(1), 88–90

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Banerjee, N., & Hallem, E. A. (2020). The role of carbon dioxide in nematode behaviour and physiology. Parasitology, 147, 841–854. https://doi.org/10.1017/S0031182019001422

    Article  PubMed  Google Scholar 

  67. Sikder, M. M., & Vestergård, M. (2020). Impacts of Root Metabolites on Soil Nematodes. Frontiers in Plant Science, 10, 1792. https://doi.org/10.3389/fpls.2019.01792

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mathesius, U., & Costa, S. R. (2021). Plant signals differentially affect rhizosphere nematode populations. Journal of Experimental Botany, 72(10), 3496–3499. https://doi.org/10.1093/jxb/erab149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bell, C. A., Lilley, C. J., McCarthy, J., Atkinson, H. J., & Urwin, P. E. (2019). Plant-parasitic nematodes respond to root exudate signals with host-specific gene expression patterns. PloS Pathogens, 15(2), e1007503. https://doi.org/10.1371/journal.ppat.1007503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamaguchi, T., Sato, K., Vicente, C. S. L., & Hasegawa, K. (2019). Nematicidal actions of the marigold exudate alpha-terthienyl: oxidative stress-inducing compound penetrates nematode hypodermis. Biology Open, 8(4), bio038646. https://doi.org/10.1242/bio.038646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duceppe, M. O., Lafond-Lapalme, J., Palomares-Rius, J. E., Sabeh, M., Blok, V., Moffett, P., & Mimee, B. (2017). Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida. Scientific Reports, 7(1), 3882. https://doi.org/10.1038/s41598-017-03871-x

  72. Sun, Y., Yin, J., Cao, H., Li, C., Kang, L., & Ge, F. (2011). Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS One1, 6(5), e19751. https://doi.org/10.1371/journal.pone.0019751

    Article  CAS  Google Scholar 

  73. Li, C. R., Gan, L. J., Xia, K., Zhou, X., & Hew, C. S. (2002). Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant Cell and Environment, 25(3), 369–377. https://doi.org/10.1046/j.0016-8025.2001.00818.x

    Article  CAS  Google Scholar 

  74. Peng, J., Deng, X., Huang, J., Jia, S., Miao, X., & Huang, Y. (2004). Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner. Zeitschrift fur Naturforschung C Journal of biosciences, 59(11–12), 856–862. https://doi.org/10.1515/znc-2004-11-1215

    Article  CAS  PubMed  Google Scholar 

  75. Felix, M. A., & Duveau, F. (2012). Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae BMC Biology, 10, 59. https://doi.org/10.1186/1741-7007-10-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carrillo, M. A., & Hallem, E. A. (2015). Gas Sensing in Nematodes. Molecular Neurobiology, 51, 919–931. https://doi.org/10.1007/s12035-014-8748-z

    Article  CAS  PubMed  Google Scholar 

  77. Johnson, S. N., & McNicol, J. W. (2010). Elevated CO2 and aboveground belowground herbivory by the clover root weevil. Oecologia, 162, 209–216. https://doi.org/10.1007/s00442-009-1428-4

    Article  PubMed  Google Scholar 

  78. Hu, Z., Zhu, C., Chen, X., Bonkowski, M., Griffiths, B., & Chen, F. (2017). Responses of rice paddy micro-food webs to elevated CO2, are modulated by nitrogen fertilization and crop cultivars. Soil Biology and Biochemistry, 114, 104113. https://doi.org/10.1016/j.soilbio.2017.07.008

    Article  CAS  Google Scholar 

  79. Johnson, S. N., Barton, A. T., Clark, K. E., Gregory, P. J., McMenemy, L. S., & Hancock, R. D. (2011). Elevated atmospheric carbon dioxide impairs the performance of root-feeding vine weevils by modifying root growth and secondary metabolites. Global Change Biology, 17, 688–695. https://doi.org/10.1111/j.1365-2486.2010.02264.x

    Article  Google Scholar 

  80. Sun, Y., Cao, H., Yin, J., Kang, L., & Ge, F. (2010). Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant Cell and Environment, 33(5), 729–739. https://doi.org/10.1111/j.1365-3040.2009.02098.x

    Article  CAS  Google Scholar 

  81. Li, Q., Liang, W. J., Jiang, Y., & Neher, D. A. (2007). Effect of elevated CO2 and N fertilisation on soil nematode abundance and diversity in wheat field. Applied Soil Ecology, 36(1), 63–69. https://doi.org/10.1016/j.apsoil.2006.11.003

    Article  Google Scholar 

  82. Frederiksen, H. B., Kraglund, H. O., & Ekelund, F. (2001). Microfaunal primary succession on the volcanic island of Surtsey, Iceland. Polar Research, 20(1), 61–73. https://doi.org/10.1111/j.1751-8369.2001.tb00039.x

    Article  Google Scholar 

  83. Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41. https://doi.org/10.1016/j.jip.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  84. Grewal, P. S., Lewis, E. E., Gaugler, R., & Campbell, J. F. (1994). Host finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology, 108(2), 207–215. https://doi.org/10.1017/S003118200006830X

    Article  Google Scholar 

  85. Lewis, E. E., Campbell, J., Griffin, C., Kaya, H., & Peters, A. (2006). Behavioral ecology of entomopathogenic nematodes. Biological Control, 38(1), 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007

    Article  Google Scholar 

  86. Block, A., Vaughan, M. M., Christensen, S. A., Alborn, H. T., & Tumlinson, J. H. (2017). Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays Plant Cell and Environment, 40, 1725–1734. https://doi.org/10.1111/pce.12976

    Article  CAS  Google Scholar 

  87. Ennis, D. E., Dillon, A. B., & Griffin, C. T. (2010). Simulated roots and host feeding enhance infection of subterranean insects by the entomopathogenic nematode Steinernema carpocapsae Journal of Invertebrate Pathology, 103(2), 140–143. https://doi.org/10.1016/j.jip.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  88. Hiltpold, I., Toepfer, S., Kuhlmann, U., & Turlings, T. C. J. (2010). How maize root volatiles affect the efficacy of entomopathogenic nematodes in controlling the western corn rootworm? Chemoecology, 20, 155–162. https://doi.org/10.1007/s00049-009-0034-6

    Article  CAS  Google Scholar 

  89. Stiling, P., & Cornelissen, T. (2007). How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13(9), 1823–1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x

    Article  Google Scholar 

  90. Li, P., Ainsworth, E. A., Leakey, A. D. B., Ulanov, A., Lozovaya, V., Ort, D. R., & Bohnert, H. J. (2008). Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell and Environment, 31(11), 1673–1687. https://doi.org/10.1111/j.1365-3040.2008.01874.x

    Article  CAS  Google Scholar 

  91. Hiltpold, I., Johnson, S. N., Le Bayon, R. C., & Nielsen, U. (2017). In S. N. Johnson & T. H. Jones (Eds.), Global climate change and terrestrial invertebrates, Climate change in the underworld: impacts for soil-dwelling invertebrates (pp. 201–228). Wiley

    Google Scholar 

  92. Howe, G. A., & Jander, G. (2007). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 41–66. https://doi.org/10.1146/annurev.arplant.59.032607.092825

    Article  CAS  Google Scholar 

  93. Bhattarai, K. K., Xie, Q. G., Mantelin, S., Bishnoi, U., Girke, T., Navarre, D. A., & Kaloshian, I. (2008). Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signalling pathway. Molecular Plant-Microbe Interactions, 21, 1205–1214. https://doi.org/10.1094/MPMI-21-9-1205

    Article  CAS  PubMed  Google Scholar 

  94. Vuorinen, T., Nerg, A. M., Ibrahim, M. A., Reddy, G. V. P., & Holopainen, J. K. (2004). Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiology, 135(4), 1984–1992. https://doi.org/10.1104/pp.104.047084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Holbein, J., Grundler, F. M. W., & Siddique, S. (2016). Plant basal resistance to nematodes: an update. Journal of Experimental Botany, 67(7), 2049–2061. https://doi.org/10.1093/jxb/erw005

    Article  CAS  PubMed  Google Scholar 

  96. Carrillo, M. A., Guillermin, M. L., Rengarajan, S., Okubo, R., & Hallem, E. A. (2013). O2-sensing neurons control CO2 response in C. elegans The Journal of Neuroscience, 33(23), 9675–9683. https://doi.org/10.1523/JNEUROSCI.4541-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mueller, K. E., Blumenthal, D. M., Carrillo, Y., Cesarz, S., Ciobanu, M., Hines, J., & Eisenhauer, N. (2016). Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biology and Biochemistry, 103, 46–51. https://doi.org/10.1016/j.soilbio.2016.08.005

    Article  CAS  Google Scholar 

  98. Dillman, A. R., Guillermin, M. L., Lee, J. H., Kim, B., Sternberg, P. W., & Hallem, E. A. (2012). Olfaction shapes host-parasite interactions in parasitic nematodes. Proceedings of the National Academy of Sciences USA, 109, E2324–E2333. https://doi.org/10.1073/pnas.1211436109

  99. Turlings, T. C., Hiltpold, I., & Rasmann, S. (2012). The importance of root produced volatiles as foraging cues for entomopathogenic nematodes. Plant and Soil, 358, 51–60. https://doi.org/10.1007/s11104-012-1295-3

    Article  CAS  Google Scholar 

  100. Lee, J., Dillman, A. R., & Hallem, E. A. (2016). Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biology, 14, 36. https://doi.org/10.1186/s12915-016-0259-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Robinson, A. F. (1995). Optimal release rates for attracting Meloidogyne incognita, Rotylenchulus reniformis, and other nematodes to carbon dioxide in sand. Journal of Nematology, 27(1), 42–50

    CAS  PubMed  PubMed Central  Google Scholar 

  102. McCallum, M. E., & Dusenbery, D. B. (1992). Computer tracking as a behavioural GC detector: nematode responses to vapor of host roots. Journal of Chemical Ecology, 18, 585–592. https://doi.org/10.1007/BF00987821

    Article  CAS  PubMed  Google Scholar 

  103. Wu, Y., Wickham, J. D., Zhao, L., & Sun, J. (2019). CO2 drives the pine wood nematode off its insect vector. Current Biology, 29(13), R619–R620. https://doi.org/10.1016/j.cub.2019.05.033

    Article  CAS  PubMed  Google Scholar 

  104. Hoeksema, J. D., Lussenhop, J., & Teeri, J. A. (2000). Soil nematodes indicate food web responses to elevated atmospheric CO2 Pedobiologia, 44(6), 725–735. https://doi.org/10.1078/S0031-4056(04)70085-2

    Article  Google Scholar 

  105. Sharabi, K., Hurwitz, A., Simon, A. J., Beitel, G. J., Morimoto, R. I., Rechavi, G. … Gruenbaum, Y. (2009). Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA, 106(10), 4024–4029. https://doi.org/10.1073/pnas.0900309106

  106. Jessen, P., Strauch, O., Wyss, U., Luttmann, R., & Ehlers, R. (2000). Carbon dioxide triggers recovery from dauer juvenile stage in entomopathogenic nematodes (Heterorhabditis spp.). Nematology, 2(3), 319–324. https://doi.org/10.1163/156854100509196

    Article  Google Scholar 

  107. Hansen, E. L., & Buecher, E. J. (1970). Biochemical approach to systematic studies with axenic nematodes. Journal of Nematology, 2, 1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Susan, S. (Ed.). (2007). Climate change 2007-the physical science basis: working group I to the fourth assessment report of the IPPC (Vol. 4). University Press

  109. Yan, X., Wang, K., Song, L., Wang, X., & Wu, D. (2017). Daytime warming has stronger negative effects on soil nematodes than night-time warming. Scientific Reports, 7, 108. https://doi.org/10.1038/s41598-017-00218-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ruess, L., Michelsen, A., & Jonasson, S. (1999). Simulated climate change in subarctic soils: responses in nematode species composition and dominance structure. Nematology, 1(5), 513–526. https://doi.org/10.1163/156854199508513

    Article  Google Scholar 

  111. Zhou, L., Dickinson, R. E., Dai, A., & Dirmeyer, P. (2010). Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: comparing multi-model simulations with observations. Climate Dynamics, 35, 1289–1307. https://doi.org/10.1007/s00382-009-0644-2

    Article  Google Scholar 

  112. Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L., & O’Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105–108. https://doi.org/10.1038/nature11118

    Article  CAS  PubMed  Google Scholar 

  113. Peng, S., Piao, S., Ciais, P., Myneni, R. B., Chen, A., Chevallier, F., & Zeng, H. (2013). Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 88–92. https://doi.org/10.1038/nature12434

    Article  CAS  PubMed  Google Scholar 

  114. Barrett, J. E., Virginia, R. A., Wall, D. H., Parsons, A. N., Powers, L. E., & Burkins, M. B. (2004). Variation in biogeochemistry and soil biodiversity across spatial scales in a Polar Desert Ecosystem. Ecology, 85, 3105–3118. https://doi.org/10.1890/03-0213

    Article  Google Scholar 

  115. Wall, D. H. (2007). Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philosophical transactions of the Royal Society of London Series B Biological sciences, 362, 2291–2306. https://doi.org/10.1098/rstb.2006.1950

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhang, C., Wang, J., Ren, Z., Hu, Z., Tian, S., Fan, W., & Liu, M. (2020). Root traits mediate functional guilds of soil nematodes in an ex-arable field. Soil Biology and Biochemistry, 151, 108038. https://doi.org/10.1016/j.soilbio.2020.108038

    Article  CAS  Google Scholar 

  117. Boyd, F. T., & Perry, V. G. (1970). The effect of sting nematodes on establishment, yield, and growth of forage grasses on Florida sandy soils. Proceedings. Soil and Crop Science Society of Florida, 29, 288–300

  118. Brodie, B. B. (1976). Vertical distribution of three nematode species in relation to certain soil properties. Journal of Nematology, 8(3), 243–247

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Barker, K. R., Nusbaum, C. J., & Nelson, L. A. (1969). Effects of storage temperature and extraction procedure on recovery of plant-parasitic nematodes from field soils. Journal of Nematology, 1, 240–247

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma, Q., Yu, H., Liu, X., Xu, Z., Zhou, G., & Shi, Y. (2018). Climatic warming shifts the soil nematode community in a desert steppe. Climatic Change, 150, 243–258. https://doi.org/10.1007/s10584-018-2277-0

    Article  Google Scholar 

  121. Kamra, A., & Sharma, S. B. (2000). Soil temperature regimes and nematode distribution in India. Indian Journal of Nematology, 30(2), 219–224

    Google Scholar 

  122. Bakonyi, G., & Nagy, P. (2000). Temperature- and moisture – induced changes in the structure of the nematode fauna of a semiarid grassland—patterns and mechanisms. Global Change Biology, 6, 697–707. https://doi.org/10.1046/j.1365-2486.2000.00354.x

    Article  Google Scholar 

  123. Sen, D. (2017). Population fluctuation of soil inhabiting nematodes in relation to soil temperature and moisture at guava orchard in West Bengal, India. Records of the Zoological Survey of India, 117(4), 376–382. https://doi.org/10.26515/rzsi/v117/i4/2017/121402

    Article  Google Scholar 

  124. Ramana, K. V., Prasad, J. S., & Seshagiri Rao, Y. (1978). Influence of atmospheric conditions and soil temperature on the prevalence of the lance nematode (Hoplolaimus indicus Sher, 1963) in rice fields. Proceedings of the Indian Academy of Sciences (Animal Sciences), 87B(3), 39–43

  125. Sabir, N. (2000). Population fluctuation of important nematodes in the rhizosphere of papaya in Lucknow. Indian Journal of Nematology, 30(2), 261–263

    Google Scholar 

  126. Nisa, R. U., Tantray, A. Y., Kouser, N., Allie, K. A., Wani, S. M., Alamri, S. A., & Shah, A. A. (2021). Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi Journal of Biological Sciences, 28(5), 3049–3059. https://doi.org/10.1016/j.sjbs.2021.02.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tyson, T., O’Mahony Zamora, G., Wong, S., Skelton, M., Daly, B., Jones, J. T., & Burnell, A. M. (2012). A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags. BMC Research Notes, 5, 68. https://doi.org/10.1186/1756-0500-5-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ruess, L., Michelsen, A., Schmidt, I. K., & Jonasson, S. (1999). Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant and Soil, 212, 63–73. https://doi.org/10.1023/A:1004567816355

    Article  CAS  Google Scholar 

  129. Sudhaus, W. (1980). Vergleichende Untersuchungen Zur Oberen Grenztemperatur Saprobionter Nematoden Der Gattung Rhabditis. Nematologica, 26(1), 75–82. https://doi.org/10.1163/187529280X00585

    Article  Google Scholar 

  130. Robbins, R. T., & Barker, K. R. (1974). The effects of soil type, particle size, temperature, and moisture on reproduction of Belonolaimus longicaudatus Journal of Nematology, 6(1), 1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Shinners, K. J., Nelson, W. S., & Wang, R. (1994). Effects of residue-free band-width on soil-temperature and water-content. Transactions of the ASAE (USA), 37(1), 39–49

    Article  Google Scholar 

  132. Dendooven, L., Patino-Zuniga, L., Verhulst, N., Luna-Guido, M., Marsch, R., & Govaerts, B. (2012). Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agriculture Ecosystems and Environment, 152, 50–58. https://doi.org/10.1016/j.agee.2012.02.010

    Article  Google Scholar 

  133. Bakonyi, G., Nagy, P., Kovács-Láng, E., Kovács, E., Barabás, S., Répási, V., & Seres, A. (2007). Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Applied Soil Ecology, 37, 31–40. https://doi.org/10.1016/j.apsoil.2007.03.008

    Article  Google Scholar 

  134. Nielsen, U. N., Ayres, E., Wall, D. H., Li, G., Bardgett, R. D., Wu, T., & Garey, J. R. (2014). Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23(9), 968–978. https://doi.org/10.1111/geb.12177

    Article  Google Scholar 

  135. De Veen, G. F., Kardol, P., Sundqvist, M. K., Snoek, L. B., & Wardle, D. A. (2017). Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos, 126(11), 1586–1599. https://doi.org/10.1111/oik.04158

    Article  Google Scholar 

  136. Song, Z., Zhang, B., Tian, Y., Deng, A., Zheng, C., Islam, M. N., & Zhang, W. (2014). Impacts of night-time warming on the soil nematode community in a winter wheat field of Yangtze Delta Plain, China. Journal of Integrative Agriculture, 13(7), 1477–1485. https://doi.org/10.1016/s2095-3119(14)60807-8

    Article  Google Scholar 

  137. Harte, J., Rawa, A., & Price, V. (1996). Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biology and Biochemistry, 28(3), 313–322. https://doi.org/10.1016/0038-0717(95)00139-5

    Article  CAS  Google Scholar 

  138. Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173. https://doi.org/10.1038/nature04514

    Article  CAS  PubMed  Google Scholar 

  139. Briones, M. J. I., Ineson, P., & Piearce, T. G. (1997). Effects of climate change on soil fauna responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Applied Soil Ecology, 6(2), 117–134. https://doi.org/10.1016/S0929-1393(97)00004-8

    Article  Google Scholar 

  140. Lindberg, N., Engtsson, J. B., & Persson, T. (2002). Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39(6), 924–936. https://doi.org/10.1046/j.1365-2664.2002.00769.x

    Article  Google Scholar 

  141. Yeates, G. W., Dando, J. L., & Shepherd, T. G. (2002). Pressure plate studies to determine how moisture affects access of bacterial-feeding nematodes to food in soil. European Journal of Soil Science, 53(3), 355–365. https://doi.org/10.1046/j.1365-2389.2002.00466.x

    Article  Google Scholar 

  142. Chowdhury, B. N., & Phukan, P. N. (1990). Seasonal fluctuation of nematode population in banana. Indian Journal of Nematology, 20(2), 189–192

    Google Scholar 

  143. Jones, F. G. W. (1980). In J. Polti & J. Kranz (Eds.), Comparative epidemiology: a tool for better disease management, Some aspects of the epidemiology of plant parasitic nematodes (pp. 71–92). Pudoc

    Google Scholar 

  144. Rama, K., & Dasgupta, M. K. (2000). Population ecology and community structure of plant parasitic nematodes associated with coconut and arecanut in northern West Bengal. Indian Journal of Nematology, 30(2), 175–182

    Google Scholar 

  145. Sen, D., Chatterjee, A., & Manna, B. (2008). Population fluctuation of Helicotylenchus steiner, 1945 in relation to soil temperature, moisture and pH in guava orchard at South 24 Parganas, West Bengal, India. Records of the Zoological Survey of India, l08(2), 75–81

  146. Pillai, J. K., & Taylor, D. P. (1967). Effect of temperature on the time required for hatching and duration of life cycle of five mycophagous nematodes. Nematologica, 13(4), 512–516. https://doi.org/10.1163/187529267X00319

    Article  Google Scholar 

  147. Griffin, G. D. (1969). Effect of temperature on Meloidogyne hapla in alfalfa. Phytopathology, 59, 599–602

    Google Scholar 

  148. Evans, A. A. F., & Fisher, J. M. (1970). Some factors affecting the number and size of nematodes in populations of Aphelenchus avenae Nematologica, 16(2), 295–304

    Article  Google Scholar 

  149. Bird, A. F. (1972). Influence of temperature on embryogenesis in Meloidogyne javanica Journal of Nematology, 4(3), 206–213

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hopper, B. E., Fell, J. W., & Cefalu, R. C. (1973). Effect of temperature on life cycles of nematodes associated with the mangrove (Rhizophora mangle) detrital system. Marine Biology, 23, 293–296. https://doi.org/10.1007/BF00389336

    Article  Google Scholar 

  151. Blankinship, J. C., Niklaus, P. A., & Hungate, B. A. (2011). A meta-analysis of responses of soil biota to global change. Oecologia, 165, 553–565. https://doi.org/10.1007/s00442-011-1909-0

    Article  PubMed  Google Scholar 

  152. Yang, H., Li, Y., Wu, M., Zhang, Z., Li, L., & Wan, S. (2011). Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 17(9), 2936–2944. https://doi.org/10.1111/j.1365-2486.2011.02423.x

    Article  Google Scholar 

  153. Todd, T., Blair, J., & Milliken, G. (1999). Effects of altered soil-water availability on a tallgrass prairie nematode community. Applied Soil Ecology, 13(1), 45–55. https://doi.org/10.1016/S0929-1393(99)00022-0

    Article  Google Scholar 

  154. Zhao, J., Zeng, Z. X., He, X. Y., Chen, H. S., & Wang, K. L. (2015). Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. European Journal of Soil Biology, 68, 61–68. https://doi.org/10.1016/j.ejsobi.2015.03.008

    Article  CAS  Google Scholar 

  155. Cooke, D. A. (1973). The effect of plant parasitic nematodes, rainfall and other factors on docking disorder of Sugar Beet. Plant Pathology, 22, 161–170

    Article  Google Scholar 

  156. Landesman, W. J., Treonis, A. M., & Dighton, J. (2011). Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 54(2), 87–91. https://doi.org/10.1016/j.pedobi.2010.10.002

    Article  Google Scholar 

  157. Wright, A. J., Ebeling, A., de Kroon, H., Roscher, C., Weigelt, A., Buchmann, N., & Eisenhauer, N. (2015). Flooding disturbances increase resource availability and productivity but reduce stability in diverse plant communities. Nature Communications, 6, 6092. https://doi.org/10.1038/ncomms7092

    Article  CAS  PubMed  Google Scholar 

  158. Chen, J., Yao, Y., Wang, G., Zhong, X., Yang, T., & Sun, W. (2021). Decreased precipitation frequency altered abundance, but not community structure, of soil nematodes in degraded grasslands. Ecological Indicators, 131, 108184. https://doi.org/10.1016/j.ecolind.2021.108184

    Article  Google Scholar 

  159. Griffiths, B. S., & Caul, S. (1993). Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biology and Fertility of Soils, 15, 201–207. https://doi.org/10.1007/BF00361612

    Article  Google Scholar 

  160. Harris, R. F., et al. (1981). In J. F. Parr (Ed.), Water Potential Relations in Soil Microbiology, Effect of water potential on microbial growth and activity (pp. 23–95). Soil Science Society of America

    Google Scholar 

  161. Jennings, D. H., et al. (1990). In A. F. In Harrison (Ed.), Nutrient Cycling in Terrestrial Ecosystems, The ability of basidiomycete mycelium to move nutrients through the soil ecosystem (pp. 233–245). Elsevier Science Publishers

    Google Scholar 

  162. Unger, I. M., Kennedy, A. C., & Muzika, R. M. (2009). Flooding effects on soil microbial communities. Applied Soil Ecology, 42(1), 1–8. https://doi.org/10.1016/j.apsoil.2009.01.007

    Article  Google Scholar 

  163. Khan, M. L., & Sharma, G. C. (1990). Effect of temperature and moisture on population fluctuation of nematodes in an apple orchard. Indian Journal of Nematology, 20(1), 10–13

    Google Scholar 

  164. McSorley, R. (1997). Relationship of crop and rainfall to soil nematode community structure in perennial agroecosystems. Applied Soil Ecology, 6(2), 147–159. https://doi.org/10.1016/S0929-1393(97)00001-2

    Article  Google Scholar 

  165. Porazinska, D. L., McSorley, R., Duncan, L. W., Graham, J. H., Wheaton, T. A., & Parsons, L. R. (1998). Nematode community composition under various irrigation schemes in a citrus soil ecosystem. Journal of Nematology, 30(2), 170–178

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Griffin, G. D., Asay, K. H., & Horton, W. H. (1996). Factors affecting population trends of plant-parasitic nematodes on rangeland grasses. Journal of Nematology, 28(1), 107–114

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Landesman, W. J., & Dighton, J. (2010). Response of soil microbial communities and the production of plant-available nitrogen to a two-year rainfall manipulation in the New Jersey Pinelands. Soil Biology and Biochemistry, 42(10), 1751–1758. https://doi.org/10.1016/j.soilbio.2010.06.012

    Article  CAS  Google Scholar 

  168. Jastrow, J. D., & Miller, R. M., et al. (1998). In R. Lal (Ed.), Soil Processes and the Carbon Cycle, Soil aggregate stabilization and carbon sequestration: Feedbacks through organomineral associations (pp. 207–223). CRC Press

    Google Scholar 

  169. Moorhead, D. L., Freckman, D. W., Reynolds, J. F., & Whitford, W. G. (1987). A simulation model of soil nematode population-dynamics–Effects of moisture and temperature. Pedobiologia (Jena), 30(5), 361–372

    Google Scholar 

  170. Vandegehuchte, M. L., Sylvain, Z. A., Reichmann, L. G., de Tomasel, C. M., Nielsen, U. N., Wall, D. H., & Sala, O. E. (2015). Responses of a desert nematode community to changes in water availability. Ecosphere, 6(3), 44. https://doi.org/10.1890/ES14-00319.1

    Article  Google Scholar 

  171. Freckman, D. W., Whitford, W. G., & Steinberger, Y. (1987). Effect of irrigation on nematode population dynamics and activity in desert soils. Biology and Fertility of Soils, 3, 3–10. https://doi.org/10.1007/BF00260571

    Article  Google Scholar 

  172. Voesenek, L., & Bailey-Serres, J. (2013). Flooding tolerance: O2 sensing and survival strategies. Current Opinion in Plant Biology, 16(5), 647–653. https://doi.org/10.1016/j.pbi.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  173. Cesarz, S., Reich, P. B., Scheu, S., Ruess, L., Schaefer, M., & Eisenhauer, N. (2015). Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia, 58(1), 23–32. https://doi.org/10.1016/j.pedobi.2015.01.001

    Article  Google Scholar 

  174. Back, M. A., Haydock, P. P. J., & Jenkinson, P. (2002). Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology, 51, 683–697. https://doi.org/10.1046/j.1365-3059.2002.00785.x

    Article  Google Scholar 

  175. Colagiero, M., & Ciancio, A. (2011). Climate changes and nematodes: Expected effects and perspectives for plant protection. Redia, XCIV, 113–118

  176. Hakes, A. S., & Cronin, J. T. (2011). Environmental heterogeneity and spatio-temporal variability in plant defense traits. Oikos, 120, 452–462. https://doi.org/10.1111/j.1600-0706.2010.18679.x

    Article  Google Scholar 

  177. Kandel, S. L., Smiley, R. W., Garland-Campbell, K., Elling, A. A., Abatzoglou, J., Huggins, D., & Paulitz, T. C. (2013). Relationship between climatic factors and distribution of Pratylenchus spp. in the dryland wheat-production areas of Eastern Washington. Plant Disease, 97(11), 1448–1456. https://doi.org/10.1094/PDIS-11-12-1060-RE

    Article  PubMed  Google Scholar 

  178. Hunt, H. W., Coleman, D. C., Ingham, E. R., Ingham, R. E., Elliott, E. T., Moore, J. C., & Morley, C. R. (1987). The detrital food web in a shortgrass prairie. Biology and Fertility of Soils, 3, 57e68. https://doi.org/10.1007/BF00260580

    Article  Google Scholar 

  179. Cesarz, S., Ciobanu, M., Wright, A. J., Ebeling, A., Vogel, A., Weisser, W. W., & Eisenhauer, N. (2017). Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations. Oecologia, 184, 715–728. https://doi.org/10.1007/s00442-017-3893-5

    Article  PubMed  Google Scholar 

  180. Geng, S. M., Yan, D. H., Zhang, T. X., Weng, B. S., Zhang, Z. B., & Qin, T. L. (2015). Effects of drought stress on agriculture soil. Natural Hazards, 75, 1997–2011. https://doi.org/10.1007/s11069-014-1409-8

    Article  Google Scholar 

  181. Yan, D., Yan, D., Song, X., Yu, Z., Peng, D., Ting, X., & Weng, B. (2018). Community structure of soil nematodes under different drought conditions. Geoderma, 325(1), 110–116. https://doi.org/10.1016/j.geoderma.2018.03.028

    Article  Google Scholar 

  182. Ettema, C., & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology and Evolution, 17(4), 177–183. https://doi.org/10.1016/S0169-5347(02)02496-5

    Article  Google Scholar 

  183. Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., & Blöschl, G. (2017). Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water resources research, 53(7), 5209–5219. https://doi.org/10.1002/2017WR020723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hirabayashi, Y., & Kanae, S. (2009). First estimate of the future global population at risk of flooding. Hydrological Research Letters, 3, 6–9. https://doi.org/10.3178/hrl.3.6

    Article  Google Scholar 

  185. Stagl, J., Mayr, E., Koch, H., Hattermann, F. F., & Huang, S. (2014). In S. Rannow & M. Neubert (Eds.), Managing protected areas in central and eastern europe under climate change. advances in global change research, Vol 58: Effects of climate change on the hydrological cycle in Central and Eastern Europe (pp. 31–43). Springer. https://doi.org/10.1007/978-94-007-7960-0_3

  186. Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., & Živković, N. (2017). Changing climate shifts timing of European floods. Science, 357(6531), 588–590. https://doi.org/10.1126/science.aan2506

    Article  CAS  PubMed  Google Scholar 

  187. Ponting, J., Kelly, T. J., Verhoef, A., Watts, M. J., & Sizmur, T. (2021). The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil - A review. Science of The Total Environment, 754, 142040. https://doi.org/10.1016/j.scitotenv.2020.142040

    Article  CAS  PubMed  Google Scholar 

  188. Barber, L. B., Paschke, S. S., Battaglin, W. A., Douville, C., Fitzgerald, K. C., Keefe, S. H., & Vajda, A. M. (2017). Effects of an extreme flood on trace elements in river water- from urban stream to major river basin. Environmental Science & Technology, 51, 10344–10356. https://doi.org/10.1021/acs.est.7b01767

    Article  CAS  Google Scholar 

  189. Dadson, S. J., Hall, J. W., Murgatroyd, A., Acreman, M., Bates, P., Beven, K. … Wilby, R. (2017). A restatement of the natural science evidence concerning catchment-based ‘natural’ flood management in the UK. Proceedings Mathematical, Physical, and Engineering Sciences, 473(2199), 20160706. https://doi.org/10.1098/rspa.2016.0706

  190. Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., & Sherstyukov, B. (2014). Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59(1), 1–28. https://doi.org/10.1080/02626667.2013.857411

    Article  Google Scholar 

  191. Harvey, R. J., Chadwick, D. R., Sánchez-Rodríguez, A. R., & Jones, D. L. (2019). Agroecosystem resilience in response to extreme winter flooding. Agriculture Ecosystems & Environment, 279, 1–13. https://doi.org/10.1016/j.agee.2019.04.001

    Article  Google Scholar 

  192. Brown, E. A., Zhang, L., McMahon, A. T., Western, W. A., & Vertessy, A. R. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1–4), 28–61. https://doi.org/10.1016/j.jhydrol.2004.12.010

    Article  Google Scholar 

  193. Zink, A., Fleige, H., & Horn, R. (2011). Prediction and detection of harmful compaction impact in loess soils with a threshold value based indicator system. Soil and Tillage Research, 114(2), 127–134. https://doi.org/10.1016/j.still.2011.04.004

    Article  Google Scholar 

  194. Biswal, D. (2022). Nematodes as ghosts of land use past: Elucidating the roles of soil nematode community studies as indicators of soil health and land management practices. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-022-03808-9

  195. Cerdà, A., Flanagan, D. C., le Bissonnais, Y., & Boardman, J. (2009). Soil erosion and agriculture. Soil and Tillage Research, 106(1), 107–108. https://doi.org/10.1016/j.still.2009.10.006

    Article  Google Scholar 

  196. Wheater, H., & Evans, E. (2009). Land use, water management and future flood risk. Land Use Policy, 26(S1), S251–S264. https://doi.org/10.1016/j.landusepol.2009.08.019

    Article  Google Scholar 

  197. Lane, S. N. (2017). Natural flood management. WIREs Water, 4(3), e1211. https://doi.org/10.1002/wat2.1211

    Article  Google Scholar 

  198. Vink, J. P. M., & Meeussen, J. C. L. (2007). BIOCHEM–ORCHESTRA: a tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems. Environmental Pollution, 148(3), 833–841. https://doi.org/10.1016/j.envpol.2007.01.041

    Article  CAS  PubMed  Google Scholar 

  199. Arnell, N. W., Halliday, S. J., Battarbee, R. W., Skeffington, R. A., & Wade, A. J. (2015). The implications of climate change for the water environment in England. Progress in Physical Geography: Earth and Environment, 39(1), 93–120. https://doi.org/10.1177/0309133314560369

    Article  Google Scholar 

  200. Rodgers, K., Hursthouse, A., & Cuthbert, S. (2015). The potential of sequential extraction in the characterisation and management of wastes from steel processing: a prospective review. International Journal of Environmental Research and Public Health, 12(9), 11724–11755. https://doi.org/10.3390/ijerph120911724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Domergue, F. L., & Vedy, J. C. (1992). Mobility of heavy metals in soil profiles. International Journal of Environmental Analytical Chemistry, 46, 13–23. https://doi.org/10.1080/03067319208026993

    Article  CAS  Google Scholar 

  202. Min, J. G., Park, E. H., Moon, H. S., & Kim, J. K. (2005). Chemical properties and heavy metal content of forest soils around abandoned coal mine lands in the Mungyeong area. Korean Journal of Agricultural and Forest Meteorology, 7, 265–273

    Google Scholar 

  203. Shao, Y., Zhang, W., Shen, J., Zhou, L., Xia, H., Shu, W., & Fu, S. (2008). Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biology and Biochemistry, 40(8), 2040–2046. https://doi.org/10.1016/j.soilbio.2008.04.014

    Article  CAS  Google Scholar 

  204. Park, B. Y., Lee, J. K., Ro, H. M., & Kim, Y. H. (2016). Short-term effects of low-level heavy metal contamination on soil health analyzed by nematode community structure. The Plant Pathology Journal, 32(4), 329–339. https://doi.org/10.5423/PPJ.OA.12.2015.0272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zaharescu, D., Hooda, P., Soler, A., Fernandez, J., & Burghelea, C. (2009). Trace metals and their source in the catchment of the high altitude Lake Respomuso, Central Pyrenees. Science of the Total Environment, 407(11), 3546–3553. https://doi.org/10.1016/j.scitotenv.2009.02.026

    Article  CAS  PubMed  Google Scholar 

  206. Harikumar, P. S., & Jisha, T. S. (2010). Distribution pattern of trace metal pollutants in the sediments of an urban wet- land in the southwest coast of India. International Journal of Engineering Science and Technology, 2(5), 840–850

    Google Scholar 

  207. Richardson, C. J., Reiss, P., Husain, N. A., Alwash, A. J., & Pool, D. J. (2005). The restoration potential of the Mesopotamian Marshes of Iraq. Science, 307(5713), 1307–1310. https://doi.org/10.1126/science.1105750

    Article  CAS  PubMed  Google Scholar 

  208. Douabul, A., Al-Mudhafer, N., Alhello, A., Al-Saad, H., & Al-Maarofi, S. S. (2012). Restoration versus re-flooding: Mesopotamia Marshlands. Hydrology Current Research, 3(5), 140. https://doi.org/10.4172/2157-7587.1000140

    Article  Google Scholar 

  209. Al-Maarofi, S. S., Alhello, A. Z. A. R., Fawzi, N. A. M., Douabul, A. A. Z., & Al-Saad, H. T. (2013). Desiccation versus re-flooding: Heavy metals mobilization—Part 1. Journal of Environmental Protection, 4, 27–36. https://doi.org/10.4236/jep.2013.48A2004

    Article  CAS  Google Scholar 

  210. Maggioni, V., & Massari, C. (2018). On the performance of satellite precipitation products in riverine flood modeling: a review. Journal of Hydrology, 558, 214–224. https://doi.org/10.1016/j.jhydrol.2018.01.039

    Article  Google Scholar 

  211. Ciszewski, D., & Grygar, T. M. (2016). A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water Air & Soil Pollution, 227, 239. https://doi.org/10.1007/s11270-016-2934-8

    Article  CAS  Google Scholar 

  212. Schintu, M., Kudo, A., Sarritzu, G., & Contu, A. (1991). Heavy metal distribution and mobilization in sediments from a drinking water reservoir near a mining area. Water Air & Soil Pollution, 57, 329–338. https://doi.org/10.1007/BF00282896

    Article  Google Scholar 

  213. Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J., & Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720), 376–380. https://doi.org/10.1126/science.1109454

    Article  CAS  PubMed  Google Scholar 

  214. Zhao, Q., Liu, S., Deng, L., Dong, S., & Wang, C. (2013). Longitudinal distribution of heavy metals in sediments of a canyon reservoir in Southwest China due to dam construction. Environmental Monitoring and Assessment, 185, 6101–6110. https://doi.org/10.1007/s10661-

    Article  CAS  PubMed  Google Scholar 

  215. Mueller, C. S., Ramelow, G. J., & Beck, J. N. (1989). Spatial and temporal variation of heavy metals in sediment cores from the Calcasien River/Lake complex. Water Air Soil Pollution, 43(3–4), 213–230

    Article  CAS  Google Scholar 

  216. Hooda, P. S. (Ed.). (2010). Trace elements in soils. Wiley. https://doi.org/10.1002/9781444319477

  217. Schulz-Zunkel, C., Rinklebe, J., & Bork, H. R. (2015). Trace element release patterns from three floodplain soils under simulated oxidized–reduced cycles. Ecological Engineering, 83, 485–495. https://doi.org/10.1016/j.ecoleng.2015.05.028

    Article  Google Scholar 

  218. Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of The Total Environment, 407(13), 3972–3985. https://doi.org/10.1016/J.SCITOTENV.2008.07.025

    Article  CAS  PubMed  Google Scholar 

  219. González-Alcaraz, M. N., & van Gestel, C. A. M. (2015). Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation. Environmental Research, 142, 177–184. https://doi.org/10.1016/j.envres.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  220. Stafford, A., Jeyakumar, P., Hedley, M., & Anderson, C. (2018). Influence of soil moisture status on soil cadmium phytoavailability and accumulation in plantain (Plantago lanceolata). Soil Systems, 2(1), 9. https://doi.org/10.3390/soils2010009

    Article  CAS  Google Scholar 

  221. Poot, A., Gillissen, F., & Koelmans, A. A. (2007). Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system. Environmental Pollution, 148(3), 779–787. https://doi.org/10.1016/j.envpol.2007.01.045

    Article  CAS  PubMed  Google Scholar 

  222. Ciszewski, D. (1997). Source of pollution as a factor controlling distribution of heavy metals in bottom sediments of Chechlo River (south Poland). Environmental Geology, 29, 50–57. https://doi.org/10.1007/s002540050103

    Article  CAS  Google Scholar 

  223. Ciszewski, D., Czajka, A., & Błażej, S. (2008). Rapid migration of heavy metals and 137Cs in alluvial sediments, Upper Odra River valley, Poland. Environmental Geology, 55, 1577–1586. https://doi.org/10.1007/s00254-007-1108-9

    Article  CAS  Google Scholar 

  224. Grygar, T. M., Elznicová, J., Tůmová, Š, Faměra, M., Balogh, M., & Kiss, T. (2016). Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography. Geomorphology, 254, 41–56. https://doi.org/10.1016/j.geomorph.2015.11.012

    Article  Google Scholar 

  225. Middelkoop, H. (2000). Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Netherlands Journal of Geosciences - Geologie En Mijnbouw, 79(4), 411–427. https://doi.org/10.1017/S0016774600021910

    Article  Google Scholar 

  226. González Macé, O., Steinauer, K., Jousset, A., Eisenhauer, N., & Scheu, S. (2016). Flood-Induced changes in soil microbial functions as modified by plant diversity. PLoS One1, 11(11), e0166349. https://doi.org/10.1371/journal.pone.0166349

    Article  CAS  Google Scholar 

  227. Zhao, Y., & Marriott, S. B. (2013). Dispersion and remobilisation of heavy metals in the river Severn system, UK. Procedia Environmental Sciences, 18, 167–173. https://doi.org/10.1016/j.proenv.2013.04.022

    Article  CAS  Google Scholar 

  228. Kelly, T. J., Hamilton, E., Watts, M. J., Ponting, J., & Sizmur, T. (2020). The effect of flooding and drainage duration on the release of trace elements from floodplain soils. Environmental Toxicology and Chemistry, 39(11), 2124–2135. https://doi.org/10.1002/etc.4830

    Article  CAS  PubMed  Google Scholar 

  229. Adamo, P., Iavazzo, P., Albanese, S., Agrelli, D., De Vivo, B., & Lima, A. (2014). Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Science of The Total Environment, 500–501, 11–22. https://doi.org/10.1016/J.SCITOTENV.2014.08.085

    Article  PubMed  Google Scholar 

  230. Wyszkowska, J., Borowik, A., Kucharski, M., & Kucharski, J. (2013). Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. Journal of Elementology, 18, 769–796. https://doi.org/10.5601/jelem.2013.18.4.455

    Article  Google Scholar 

  231. Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533. https://doi.org/10.1016/j.chemosphere.2017.03.074

    Article  CAS  PubMed  Google Scholar 

  232. Chrzan, A. (2016). Monitoring bioconcentration of potentially toxic trace elements in soils trophic chains. Environmental Earth Sciences, 75, 1–8. https://doi.org/10.1007/s12665-016-5595-4

    Article  CAS  Google Scholar 

  233. Alloway, B. J. (Ed.). (2013). Heavy metals in soils (3rd ed.). Springer. https://doi.org/10.1007/978-94-007-4470-7_1

  234. Lučić, M., Jurina, I., Ščančar, J., Mikac, N., & Vdović, N. (2019). Sedimentological and geochemical characterization of river suspended particulate matter (SPM) sampled by time integrated mass flux sampler (TIMS) in the Sava River (Croatia). Journal of Soils and Sediments, 19, 989–1004. https://doi.org/10.1007/s11368-018-2104-2

    Article  CAS  Google Scholar 

  235. Schulz-Zunkel, C., & Krueger, F. (2009). Trace metal dynamics in floodplain soils of the River Elbe: a review. Journal of Environmental Quality, 38(4), 1349–1362. https://doi.org/10.2134/jeq2008.0299

    Article  CAS  PubMed  Google Scholar 

  236. Rinklebe, J., Knox, A. S., Paller, M., Knox, A. S., & Paller, M. (2016). In J. Rinklebe, A. S. Knox, & M. Paller (Eds.), Trace Elements in Waterlogged Soils and Sediments, Chap. 13 - Potential mobility, bioavailability, and plant uptake of toxic elements in temporary flooded soils. CRC Press: Taylor & Francis Group

    Google Scholar 

  237. Wijngaard, R. R., van der Perk, M., van der Grift, B., de Nijs, T. C. M., & Bierkens, M. F. P. (2017). The impact of climate change on metal transport in a lowland catchment. Water Air & Soil Pollution, 228, 107. https://doi.org/10.1007/s11270-017-3261-4

    Article  CAS  Google Scholar 

  238. Antoniadis, V., Shaheen, S. M., Tsadilas, C. D., & Selim, M. H. (2018). Zinc sorption by different soils as affected by selective removal of carbonates and hydrous oxides. Applied Geochemistry, 88, 49–58. https://doi.org/10.1016/J.APGEOCHEM.2017.04.007

    Article  CAS  Google Scholar 

  239. Frohne, T., Diaz-Bone, R. A., Laing, D., & Rinklebe, J. (2015). Impact of systematic change of redox potential on the leaching of Ba, Cr, Sr, and V from a riverine soil into water. Journal of Soils and Sediments, 15, 623–633. https://doi.org/10.1007/s11368-014-1036-8

    Article  CAS  Google Scholar 

  240. Loeb, R., Lamers, L. P. M., & Roelofs, J. G. M. (2008). Prediction of phosphorus mobilisation in inundated floodplain soils. Environmental Pollution, 156(2), 325–331. https://doi.org/10.1016/j.envpol.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  241. Carlyle, G. C., & Hill, A. R. (2001). Groundwater phosphate dynamics in a river riparian zone: effects of hydrologic flowpaths, lithology and redox chemistry. Journal of Hydrology, 247(3–4), 151–168. https://doi.org/10.1016/S0022-1694(01)00375-4

    Article  CAS  Google Scholar 

  242. Baldwin, D., & Mitchell, A. (2000). The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis. Regulated Rivers: Research & Management, 16(5), 457–467. https://doi.org/10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B

    Article  Google Scholar 

  243. Rochette, E. A., Bostick, B. C., Li, G. C., & Fendorf, S. (2000). Kinetics of arsenate reduction by dissolved sulfide. Environmental Science & Technology, 34(22), 4714–4720. https://doi.org/10.1021/es000963y

    Article  CAS  Google Scholar 

  244. Poulton, S. W., Krom, M. D., & Raiswell, R. (2004). A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochimica et Cosmochimica Acta, 68(18), 3703–3715. https://doi.org/10.1016/j.gca.2004.03.012

    Article  CAS  Google Scholar 

  245. Root, R. A., Vlassopoulos, D., Rivera, N. A., Rafferty, M. T., Andrews, C., & O’Day, P. A. (2009). Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer. Geochimica et Cosmochimica Acta, 73(19), 5528–5553. https://doi.org/10.1016/j.gca.2009.06.025

    Article  CAS  Google Scholar 

  246. Johnston, S. G., Keene, A. F., Burton, E. D., Bush, R. T., Sullivan, L. A., McElnea, A., & Hocking, R. K. (2010). Arsenic mobilization in a seawater inundated acid sulfate soil. Environmental science & technology, 44(6), 1968–1973. https://doi.org/10.1021/es903114z

    Article  CAS  Google Scholar 

  247. Kirk, M. F., Roden, E. E., Crossey, L. J., Brearley, A. J., & Spilde, M. N. (2010). Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochimica et Cosmochimica Acta, 74(9), 2538–2555. https://doi.org/10.1016/j.gca.2010.02.002

    Article  CAS  Google Scholar 

  248. Johnston, S. G., Burton, E. D., Keene, A. F., Planer-Friedrich, B., Voegelin, A., Blackford, M. G., & Lumpkin, G. R. (2012). Arsenic mobilisation and iron transformations during sulfidization of As(V)-bearing jarosite. Chemical Geology, 334, 9–24. https://doi.org/10.1016/j.chemgeo.2012.09.045

    Article  CAS  Google Scholar 

  249. Burton, E. D., Johnston, S. G., & Kocar, B. D. (2014). Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environmental Science & Technology, 48(23), 13660–13667. https://doi.org/10.1021/es503963k

    Article  CAS  Google Scholar 

  250. Dawson, J. J. C., Tetzlaff, D., Carey, A. M., Raab, A., Soulsby, C., Killham, K., & Meharg, A. A. (2010). Characterizing Pb mobilization from upland soils to streams using 206Pb/207Pb isotopic ratios. Environmental Science & Technology, 44(1), 243–249. https://doi.org/10.1021/es902664d

    Article  CAS  Google Scholar 

  251. Frohne, T., Rinklebe, J., Diaz-Bone, R. A., & Du Laing, G. (2011). Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma, 160(3–4), 414–424. https://doi.org/10.1016/J.GEODERMA.2010.10.012

    Article  CAS  Google Scholar 

  252. He, Y., Men, B., Yang, X., Li, Y., Xu, H., & Wang, D. (2019). Relationship between heavy metals and dissolved organic matter released from sediment by bioturbation/bioirrigation. Journal of Environmental Sciences, 75, 216–223. https://doi.org/10.1016/j.jes.2018.03.031

    Article  CAS  Google Scholar 

  253. Abgottspon, F., Bigalke, M., & Wilcke, W. (2015). Fast colloidal and dissolved release of trace elements in a carbonatic soil after experimental flooding. Geoderma, 259–260, 156–163. https://doi.org/10.1016/J.GEODERMA.2015.06.005

    Article  Google Scholar 

  254. Rinklebe, J., & Shaheen, S. M. (2017). Redox chemistry of nickel in soils and sediments: a review. Chemosphere, 179, 265–278. https://doi.org/10.1016/J.CHEMOSPHERE.2017.02.153

    Article  CAS  PubMed  Google Scholar 

  255. Giacalone, A., Gianguzza, A., Orecchio, S., Piazzese, D., Dongarrà, G., Sciarrino, S., & Varrica, D. (2005). Metals distribution in the organic and inorganic fractions of soil: a case study on soils from Sicily. Chemical Speciation & Bioavailability, 17(3), 83–93. https://doi.org/10.3184/095422905782774892

    Article  CAS  Google Scholar 

  256. Sherene, T. (2010). Mobility and transport of heavy metals in polluted soil environment. Biological Forum — An International Journal, 2(2), 112–121

    Google Scholar 

  257. Ma, R., McBratney, A., Whelan, B., Minasny, B., & Short, M. (2011). Comparing temperature correction models for soil electrical conductivity measurement. Precision Agriculture, 12, 55–66. https://doi.org/10.1007/s11119-009-9156-7

    Article  Google Scholar 

  258. Lu, S., Ren, T., Gong, Y., & Horton, R. (2007). An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71(1), 8–14. https://doi.org/10.2136/sssaj2006.0041

    Article  CAS  Google Scholar 

  259. Simmler, M., Bommer, J., Frischknecht, S., Christl, I., Kotsev, T., & Kretzschmar, R. (2017). Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature. Environmental Pollution, 231(1), 722–731. https://doi.org/10.1016/j.envpol.2017.08.054

    Article  CAS  PubMed  Google Scholar 

  260. Odum, H. T. (Ed.). (2000). Heavy Metals in the Environment: Using Wetlands for Their Removal (1st ed.). CRC Press LLC. https://doi.org/10.1201/9781420032840

  261. Masson, M., Blanc, G., & Schäfer, J. (2006). Geochemical signals and source contributions to heavy metal (Cd, Zn, Pb, Cu) fluxes into the Gironde Estuary. Science of the Total Environment, 370(1), 133–146. https://doi.org/10.1016/j.scitotenv.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  262. Mitsch, W. J., & Gosselink, G. J. (2007). Wetlands (4th ed.). Wiley

    Google Scholar 

  263. Shukurov, N., Pen-Mouratov, S., & Steinberger, Y. (2005). The impact of the Almalyk Industrial Complex on soil chemical and biological properties. Environmental pollution, 136(2), 331–340. https://doi.org/10.1016/j.envpol.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  264. Ekschmitt, K., & Korthals, G. W. (2006). Nematodes as sentinels of heavy metals and organic toxicants in the soil. Journal of Nematology, 38(1), 13–19

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Navas, A., Flores-Romero, P., Sanchez-Moreno, S., Camargo, J. A., & McGawley, E. C. (2010). Effects of heavy metal soil pollution on nematode communities after the Aznalcollar mining spill. Nematropica, 40(1), 13–29

    Google Scholar 

  266. Bendoy, C. P., Tumang, V. M. C., Albutra, Q. B., Moneva, C. S. O., & Ganzon, M. A. M. (2014). Effects of Cadmium on the Interactions between Bacterivorous Nematode Species, Acrobeloides nanus and Bursilla monhystera Journal of Multidisciplinary Studies, 3(1), 48–59. https://doi.org/10.7828/jmds.v3i1.625

    Article  Google Scholar 

  267. Neher, D. A., Peck, S. L., Rawlings, J. O., & Campbell, C. L. (1995). Measures of nematode community structure and sources of variability among and within agricultural fields. Plant and Soil, 170, 167–181. https://doi.org/10.1007/BF02183065

    Article  CAS  Google Scholar 

  268. Korthals, G. W., Bongers, T., Kammenga, J. E., Alexiev, A. D., & Lexmond, T. M. (1996). Long-term effects of copper and ph on the nematode community in an agroecosystem. Environmental Toxicology and Chemistry, 15(6), 979–985. https://doi.org/10.1002/etc.5620150621

    Article  CAS  Google Scholar 

  269. Georgieva, S. S., McGrath, S. P., Hooper, D. J., & Chambers, B. S. (2002). Nematode communities under stress: The long-term effects of heavy metals in soil treated with sewage sludge. Applied Soil Ecology, 20, 27–42

    Article  Google Scholar 

  270. Qi, L., Jiang, Y., & Liang, W. J. (2006). Effect of heavy metals on soil nematode communities in the vicinity of a metallurgical factory. Journal of Environmental Sciences, 18(2), 323–328

    Google Scholar 

  271. Zhang, W. D., Wang, X. F., Li, Q., Jiang, Y., & Liang, W. J. (2007). Soil nematode responses to heavy metal stress. Helminthologia, 44(2), 87–91. https://doi.org/10.2478/s11687-007-0009-5

    Article  CAS  Google Scholar 

  272. Clarke, A. J., & Shepherd, A. M. (1966). Inorganic ions and the hatching of Heterodera spp. Annals of Applied Biology, 58(3), 497–508. https://doi.org/10.1111/j.1744-7348.1966.tb04409.x

    Article  CAS  Google Scholar 

  273. Korthals, G. W., Popovici, I., Iliev, I., & Lexmond, T. M. (1998). Influence of perennial ryegrass on a copper and zinc affected terrestrial nematode community. Applied Soil Ecology, 10(1–2), 73–85. https://doi.org/10.1016/S0929-1393(98)00039-0

    Article  Google Scholar 

  274. Li, Q., Zhong, S., Li, F. P., Lou, Y. L., & Liang, W. J. (2011). Nematode community structure as bioindicator of soil heavy metal pollution along an urban-rural gradient in Southern Shenyang, China. International Journal of Environment and Pollution, 45, 297–309

    Article  Google Scholar 

  275. Chauvin, C., Trambolho, M., Hedde, M., Makowski, D., Cérémonie, H., Jimenez, A., & Villenave, C. (2020). Soil nematodes as indicators of heavy metal pollution: A meta-analysis. Open Journal of Soil Science, 10, 579–601. https://doi.org/10.4236/ojss.2020.1012028

    Article  CAS  Google Scholar 

  276. Postma-Blaauw, M. B., de Vries, F. T., De Goede, R. G. M., Bloem, J., Faber, J. H., & Brussaard, L. (2005). Within-trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia, 142, 428–439. https://doi.org/10.1007/s00442-004-1741-x

    Article  CAS  PubMed  Google Scholar 

  277. Fleeger, J. W., Carman, K. R., & Nisbet, R. M. (2003). Indirect effects of contaminants in aquatic ecosystems. The Science of the Total Environment, 317(1–3), 207–233. https://doi.org/10.1016/S0048-9697(03)00141-4

    Article  CAS  PubMed  Google Scholar 

  278. Han, D., Zhang, X., Tomar, V. V. S., Li, Q., Wen, D., & Liang, W. (2009). Effects of heavy metal pollution of highway origin on soil nematode guilds in North Shenyang, China. Journal of Environmental Sciences, 21(2), 193–198. https://doi.org/10.1016/S1001-0742(08)62250-0

    Article  CAS  Google Scholar 

  279. Martinez, J. G., dos Santos, G., Derycke, S., & Moens, T. (2012). Effects of cadmium on the fitness of, and interactions between, two bacterivorous nematode species. Applied Soil Ecology, 56, 10–18. https://doi.org/10.1016/j.apsoil.2012.02.001

    Article  Google Scholar 

  280. Bakonyi, G., Nagy, P., & Kádár, I. (2003). Long-term effects of heavy metals and microelements on nematode assemblage. Toxicology Letters, 140–141, 391–401. https://doi.org/10.1016/s0378-4274(03)00035-3

  281. Park, B. Y., Lee, J. K., Ro, H. M., & Kim, Y. H. (2011). Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Applied Soil Ecology, 51, 17–24. https://doi.org/10.1016/j.apsoil.2011.08.006

    Article  Google Scholar 

  282. Millward, R. N., & Grant, A. (2000). Pollution-induced tolerance to copper of nematode communities in the severely contaminated restronguet creek and adjacent estuaries, Cornwall, United Kingdom. Environmental Toxicology and Chemistry, 19(2), 454–461. https://doi.org/10.1002/etc.5620190227

    Article  CAS  Google Scholar 

  283. Bongers, T., & Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14(6), 224–228. https://doi.org/10.1016/s0169-5347(98)01583-3

    Article  CAS  Google Scholar 

  284. Nzeako, S. O., Yessoufou, K., van der Bank, M., & Imafidor, H. O. (2013). Testing impacts of endoparasitic nematode Meloidogyne javanica on crop productivity, using tomato cultivar “Gboko” as a case study in Nigeria. International Journal of Plant Breeding and Crop Science Research, 1(1), 1–09

    Google Scholar 

  285. Nzeako, S. O., Uche, A. O., Imafidor, H. O., & Bilabou, T. B. (2015). Flooding induced occurrence of terrestrial nematode species and genera in the Benthos of River Nun, Niger Delta. Journal of Agriculture and Ecology Research International, 2(1), 1–9

    Article  Google Scholar 

  286. Nzeako, S. O., Imafidor, H. O., & Iheanacho, P. C. (2011). Effect of crude oil spillage on soil nematodes community composition in a polluted site in Gokana Local Government Area of Rivers State, Nigeria. Bioscience Research Journal, 23(3), 141–145

    Google Scholar 

  287. Fiscus, D. A., & Neher, D. A. (2002). Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecological Applications, 12(2), 565–575. https://doi.org/10.2307/3060963

    Article  Google Scholar 

  288. Chen, C., Shabdin, M. L., & Norliana, R. (2012). Study of free living Nematodes. Borneo Journal of Resource Science and Technology, 2, 1–10

    Article  Google Scholar 

  289. Carrasco, L., Barata, C., García-Berthou, E., Tobias, A., Bayona, J. M., & Díez, S. (2011). Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain). Chemosphere, 84(11), 1642–1649. https://doi.org/10.1016/j.chemosphere.2011.05.022

    Article  CAS  PubMed  Google Scholar 

  290. Sochova, I., Hofman, J., & Holoubek, I. (2006). Using nematodes in soil ecotoxicology. Environment International, 32(3), 374–383. https://doi.org/10.1016/j.envint.2005.08.031

    Article  CAS  PubMed  Google Scholar 

  291. Jones, D., & Candido, E. P. (1999). Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematode Caenorhabditis elegans: Relationship to the cellular stress response. The Journal of Experimental Zoology, 284(2), 147–157. https://doi.org/10.1002/(sici)1097-010x(19990701)284:2<147::aid-jez4>3.3.co;2-q

    Article  CAS  PubMed  Google Scholar 

  292. Sambongi, Y., Nagae, T., Liu, Y., Yoshimizu, T., Takeda, K., Wada, Y., & Futai, M. (1999). Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. NeuroReport, 10(4), 753–757. https://doi.org/10.1097/00001756-199903170-00017

    Article  CAS  PubMed  Google Scholar 

  293. Haitzer, M., Löhmannsröben, H. G., Steinberg, C. E., & Zimmermann, U. (2000). In vivo laser-induced fluorescence detection of pyrene in nematodes and determination of pyrene binding constants for humic substances by fluorescence quenching and bioconcentration experiments. Journal of Environmental Monitoring, 2(2), 145–149. https://doi.org/10.1039/a907341h

    Article  CAS  PubMed  Google Scholar 

  294. Menzel, R., Bogaert, T., & Achazi, R. (2001). A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Archives of Biochemistry and Biophysics, 395(2), 158–168. https://doi.org/10.1006/abbi.2001.2568

    Article  CAS  PubMed  Google Scholar 

  295. Downs, C. A., Dillon, R. T., Fauth, J. E., & Woodley, C. M. (2001). A molecular biomarker system for assessing the health of gastropods (Ilyanassa obsoleta) exposed to natural and anthropogenic stressors. Journal of Experimental Marine Biology and Ecology, 259(2), 189–214. https://doi.org/10.1016/s0022-0981(01)00233-7

    Article  CAS  PubMed  Google Scholar 

  296. Klaassen, C. D., Liu, J., & Choudhuri, S. (1999). Metallothionein: an intracellular protein to protect against cadmium toxicity. Annual Review of Pharmacology and Toxicology, 39, 267–294. https://doi.org/10.1146/annurev.pharmtox.39.1.267

    Article  CAS  PubMed  Google Scholar 

  297. Vatamaniuk, O. K., Bucher, E. A., Ward, J. T., & Rea, P. A. (2001). Worms take the ’phyto’ out of “phytochelatins. Trends in Biotechnology, 20(2), 61–64. https://doi.org/10.1016/S0167-7799(01)01873-X

    Article  Google Scholar 

  298. Shaheen, S. M., Rinklebe, J., Frohne, T., White, J. R., & DeLaune, R. D. (2016). Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils. Chemosphere, 150, 740–748. https://doi.org/10.1016/j.chemosphere.2015.12.043

    Article  CAS  PubMed  Google Scholar 

  299. Gall, J. E., Boyd, R. S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187(4), 201. https://doi.org/10.1007/s10661-015-4436-3

    Article  CAS  PubMed  Google Scholar 

  300. Xu, J., Zheng, L., Xu, L., & Wang, X. (2020). Uptake and allocation of selected metals by dominant vegetation in Poyang Lake wetland: From rhizosphere to plant tissues. Catena, 189, 104477. https://doi.org/10.1016/j.catena.2020.104477

    Article  CAS  Google Scholar 

  301. Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158

    Book  Google Scholar 

  302. Rüdel, H., Wenzel, A., & Terytze, K. (2001). Quantification of soluble chromium (VI) in soils and evaluation of toxicological effects. Environmental Geochemistry and Health, 23, 219–224. https://doi.org/10.1023/A:1012253504440

    Article  Google Scholar 

  303. Huang, S., Peng, B., Yang, Z., Chai, L., & Zhou, L. (2009). Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Transactions of Nonferrous Metals Society of China, 19(1), 241–248. https://doi.org/10.1016/S1003-6326(08)60259-9

    Article  CAS  Google Scholar 

  304. Nagy, P., Bakónyi, G., Bongers, T., Kádár, I., Fábián, M., & Kiss, I. (2004). Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field. Science of The Total Environment, 320(2–3), 131–143. https://doi.org/10.1016/j.scitotenv.2003.08.006

    Article  CAS  PubMed  Google Scholar 

  305. Šalamún, P., Hanzelová, V., Miklisová, D., & Brázová, T. (2015). Effect of heavy metals on soil nematode communities in the vicinity of a metallurgical plant in North Slovakia. Helminthologia, 52(3), 252–260. https://doi.org/10.1515/helmin-2015-0040

    Article  CAS  Google Scholar 

  306. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238–1249. https://doi.org/10.1111/j.1461-0248.2009.01360.x

    Article  PubMed  Google Scholar 

  307. Robertson, G. P., & Freckman, D. W. (1995). The spatial distribution of nematode trophic groups across a cultivated ecosystem. Ecology, 76(5), 1425–1432. https://doi.org/10.2307/1938145

    Article  Google Scholar 

  308. Görres, J. H., Dichiaro, M. J., Lyons, J. B., & Amador, J. A. (1998). Spatial and temporal patterns of soil biological activity in a forest and an old field. Soil Biology and Biochemistry, 30(2), 219–230. https://doi.org/10.1016/S0038-0717(97)00107-7

    Article  Google Scholar 

  309. Bruckner, A., Kandeler, E., & Kampichler, C. (1999). Plot-scale spatial patterns of soil water content, pH, substrate-induced respiration and N mineralization in a temperate coniferous forest. Geoderma, 93(3–4), 207–223. https://doi.org/10.1016/S0016-7061(99)00059-2

    Article  CAS  Google Scholar 

  310. Saetre, P., & Bååth, E. (2000). Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biology and Biochemistry, 32(7), 909–917. https://doi.org/10.1016/S0038-0717(99)00215-1

    Article  CAS  Google Scholar 

  311. Saetre, P. (1999). Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce–birch stand. Ecography, 22(2), 183–192

    Article  Google Scholar 

  312. Delaville, L., Rossi, J. P., & Quénéhervé, P. (1996). Plant row and soil factors influencing the microspatial patterns of plant-parasitic nematodes on sugarcane in Martinique. Fundamental and Applied Nematology, 19(4), 321–328

    Google Scholar 

  313. Spain, A. V., & McIvor, J. G. (1988). The nature of herbaceous vegetation associated with termitaria in North-Eastern Australia. Journal of Ecology, 76(1), 181–191. https://doi.org/10.2307/2260462

    Article  Google Scholar 

  314. Blomqvist, M. M., Olff, H., Blaauw, M. B., Bongers, T., & van der Putten, W. H. (2000). Interactions between above- and Belowground Biota: Importance for Small-Scale Vegetation Mosaics in a Grassland Ecosystem. Oikos, 90(3), 582–598

    Article  Google Scholar 

  315. Hobbs, R. J., & Mooney, H. A. (1985). Community and population dynamics of serpentine grassland annuals in relation to gopher disturbance. Oecologia, 67, 342–351. https://doi.org/10.1007/BF00384939

    Article  CAS  PubMed  Google Scholar 

  316. Olff, H., Hoorens, B., de Goede, R., van der Putten, W. H., & Gleichman, J. M. (2000). Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia, 125(1), 45–54. https://doi.org/10.1007/PL00008890

    Article  CAS  PubMed  Google Scholar 

  317. Ronn, R., Griffiths, B. S., Ekelund, F., & Christensen, S. (1996). Spatial distribution and successional pattern of microbial activity and micro-faunal populations on decomposing barley roots. Journal of Applied Ecology, 33(4), 662–672. https://doi.org/10.2307/2404938

    Article  Google Scholar 

  318. Campbell, B. D., Grime, J. P., & Mackey, J. M. (1991). A trade-off between scale and precision in resource foraging. Oecologia, 87(4), 532–538. https://doi.org/10.1007/BF00320417

    Article  CAS  PubMed  Google Scholar 

  319. Hutchings, M. J., & de Kroon, H. (1994). The role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159–238. https://doi.org/10.1016/S0065-2504(08)60215-9

    Article  Google Scholar 

  320. Korsaeth, A., Molstad, L., & Bakken, L. R. (2001). Modelling the competition for nitrogen between plants and microflora as a function of soil heterogeneity. Soil Biology and Biochemistry, 33(2), 215–226. https://doi.org/10.1016/S0038-0717(00)00132-2

    Article  CAS  Google Scholar 

  321. Huston, M. A., & DeAngelis, D. L. (1994). Competition and coexistence: The effects of resource transport and supply rates. The American Naturalist, 144(6), 954–977

    Article  Google Scholar 

  322. Stoyan, H., De-Polli, H., Böhm, S., Robertson, G. P., & Paul, E. A. (2000). Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil, 222, 203–214. https://doi.org/10.1023/A:1004757405147

    Article  CAS  Google Scholar 

  323. Ettema, C. H., Rathbun, S. L., & Coleman, D. C. (2000). On spatiotemporal patchiness and the coexistence of five species of Chronogaster (Nematoda: Chronogasteridae) in a riparian wetland. Oecologia, 125(3), 444–452. https://doi.org/10.1007/s004420000468

    Article  PubMed  Google Scholar 

  324. Levin, S. A., & Paine, R. T. (1974). Disturbance, patch formation, and community structure. Proceedings of the National Academy of Sciences of the United States of America, 71(7), 2744–2747. https://doi.org/10.1073/pnas.71.7.2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Tilman, D., & Kareiva, P. (Eds.). (1997). Spatial ecology: The role of space in population dynamics and interspecific interactions. Princeton University Press

  326. Gunderson, C. A., O’Hara, K. H., Campion, C. M., Walker, A. V., & Edwards, N. T. (2010). Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biology, 16(8), 2272–2286. https://doi.org/10.1111/j.1365-2486.2009.02090.x

    Article  Google Scholar 

  327. Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., & Hungate, B. A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17(2), 927–942. https://doi.org/10.1111/j.1365-2486.2010.02302.x

    Article  Google Scholar 

  328. Fierer, N., & Schimel, J. P. (2002). Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34(6), 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X

    Article  CAS  Google Scholar 

  329. Morgan, J. A., Pataki, D. E., Körner, C., Clark, H., Grosso, D., Grünzweig, S. J., & Shaw, M. R. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2 Oecologia, 140(1), 11–25. https://doi.org/10.1007/s00442-004-1550-2

    Article  CAS  PubMed  Google Scholar 

  330. Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 The New phytologist, 165(2), 351–371. https://doi.org/10.1111/j.1469-8137.2004.01224.x

    Article  PubMed  Google Scholar 

  331. Neher, D. A. (2010). Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology, 48, 371–394. https://doi.org/10.1146/annurev-phyto-073009-114439

    Article  CAS  PubMed  Google Scholar 

  332. Lauenroth, W., & Burke, I. (2008). Ecology of the shortgrass steppe: A long-term perspective. Oxford University Press. https://doi.org/10.1093/oso/9780195135824.001.0001

  333. De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., de Ruiter, P. C., Verhoef, H. A., & van der Putten, W. H. (2003). Soil invertebrate fauna enhances grassland succession and diversity. Nature, 422(6933), 711–713. https://doi.org/10.1038/nature01548

    Article  CAS  PubMed  Google Scholar 

  334. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629–1633. https://doi.org/10.1126/science.1094875

    Article  CAS  PubMed  Google Scholar 

  335. Sowerby, A., Emmett, B., Beier, C., Tietema, A., Peñuelas, J., Estiarte, M., & Freeman, С. (2005). Microbial community changes in heathland soil communities along a geographical gradient: Interaction with climate change manipulations. Soil Biology and Biochemistry, 37(10), 1805–1813. https://doi.org/10.1016/j.soilbio.2005.02.023

    Article  CAS  Google Scholar 

  336. Bokhorst, S., Huikes, A., Convey, P., van Bodegom, P. M., & Aerts, R. (2008). Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biology and Biochemistry, 40(7), 1547–1556

    Article  CAS  Google Scholar 

  337. Scheu, S. (2002). The soil food web: structure and perspectives. European Journal of Soil Biology, 38(1), 11–20. https://doi.org/10.1016/S1164-5563(01)01117-7

    Article  Google Scholar 

  338. Odhiambo, H. O., Ong, C. K., Deans, J. D., Wilson, J., Khan, A. A. H., & Sprent, J. I. (2001). Roots, soil water and crop yield: tree crop interactions in a semi-arid agroforestry system in Kenya. Plant and Soil, 235, 221–233. https://doi.org/10.1023/A:1011959805622

    Article  CAS  Google Scholar 

  339. Lensing, J. R., & Wise, D. H. (2007). Impact of changes in rainfall amounts predicted by climate-change models on decomposition in a deciduous forest. Applied Soil Ecology, 35(3), 523–534. https://doi.org/10.1016/j.apsoil.2006.09.015

    Article  Google Scholar 

  340. Keith, D. M., Johnson, E. A., & Valeo, C. (2010). Moisture cycles of the forest floor organic layer (F and H layers) during drying. Water Resources, 46(7), W07529. https://doi.org/10.1029/2009WR007984

    Article  Google Scholar 

  341. Scott, J. A., French, N. R., & Leetham, J. W. (1979). In N. R. French (Ed.), Perspectives in grassland ecology. Ecological studies (Analysis and Synthesis), vol. 32: Patterns of consumption in grasslands (pp. 89–105). Springer. https://doi.org/10.1007/978-1-4612-6182-7_6

  342. Hui, D., & Jackson, R. B. (2006). Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. The New Phytologist, 169(1), 85–93. https://doi.org/10.1111/j.1469-8137.2005.01569.x

    Article  CAS  PubMed  Google Scholar 

  343. Xu, X., Sherry, R. A., Niu, S., Li, D., & Luo, Y. (2013). Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biology, 19(9), 2753–2764. https://doi.org/10.1111/gcb.12248

    Article  PubMed  Google Scholar 

  344. Wang, Q., Zeng, J., Leng, S., Fan, B., Tang, J., Jiang, C., & Shui, W. (2018). The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century. Frontiers of Earth Science, 12, 818–833. https://doi.org/10.1007/s11707-018-0697-9

    Article  Google Scholar 

  345. Tait, L. W., & Schiel, D. R. (2013). Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages. PLoS One1, 8(9), e74413. https://doi.org/10.1371/journal.pone.0074413

    Article  CAS  Google Scholar 

  346. Mariotte, P., Buttler, A., Johnson, D., Thébault, A., & Vandenberghe, C. (2012). Exclusion of root competition increases competitive abilities of subordinate plant species through root–shoot interactions. Journal of Vegetation Science, 23(6), 1148–1158. https://doi.org/10.1111/j.1654-1103.2012.01432.x

    Article  Google Scholar 

  347. Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., & Field, C. B. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54(8), 731–739. https://doi.org/10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2

    Article  Google Scholar 

  348. Cole, L., Bardgett, R. D., Ineson, P., & Adamson, J. K. (2002). Relationships between enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic carbon from blanket peat in northern England. Soil Biology & Biochemistry, 34(5), 599–607. https://doi.org/10.1016/S0038-0717(01)00216-4

    Article  CAS  Google Scholar 

  349. Aerts, R. (2006). The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713–724. https://doi.org/10.1111/j.1365-2745.2006.01142.x

    Article  Google Scholar 

  350. Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336–340. https://doi.org/10.1038/ngeo846

    Article  CAS  Google Scholar 

  351. Kirschbaum, M. U. F. (2004). Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology, 10(11), 1870–1877. https://doi.org/10.1111/j.1365-2486.2004.00852.x

    Article  Google Scholar 

  352. Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C., & Jentsch, A. (2014). Extreme weather events and plant–plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecological Research, 29(5), 991–1001. https://doi.org/10.1007/s11284-014-1187-5

    Article  Google Scholar 

  353. Gellesch, E., Wellstein, C., Beierkuhnlein, C., Kreyling, J., Walter, J., & Jentsch, A. (2015). Plant community composition is a crucial factor for heath performance under precipitation extremes. Journal of Vegetation Science, 26(5), 975–984

    Article  Google Scholar 

  354. Liancourt, P., Spence, L. A., Song, D. S., Lkhagva, A., Sharkhuu, A., Boldgiv, B., & Casper, B. B. (2013). Plant response to climate change varies with topography, interactions with neighbors, and ecotype. Ecology, 94(2), 444–453. https://doi.org/10.1890/12-0780.1

    Article  PubMed  Google Scholar 

  355. Eskelinen, A., & Harrison, S. (2015). Biotic context and soil properties modulate native plant responses to enhanced rainfall. Annals of Botany, 116(6), 963–973. https://doi.org/10.1093/aob/mcv109

    Article  PubMed  PubMed Central  Google Scholar 

  356. Rivest, D., Lorente, M., Olivier, A., & Messier, C. (2013). Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions. The Science of the Total Environment, 463–464, 51–60. https://doi.org/10.1016/j.scitotenv.2013.05.071

    Article  CAS  PubMed  Google Scholar 

  357. Khan, M. A. S. A., Grant, K., Beierkuhnlein, C., Kreyling, J., & Jentsch, A. (2014). Climatic extremes lead to species-specific legume facilitation in an experimental temperate grassland. Plant and Soil, 379(1/2), 161–175

    Article  Google Scholar 

  358. Viketoft, M., Bengtsson, J., Sohlenius, B., Berg, M. P., Petchey, O., Palmborg, C., & Huss-Danell, K. (2009). Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology, 90(1), 90–99

    Article  PubMed  Google Scholar 

  359. Cesarz, S., Ruess, L., Jacob, M., Jacob, A., Schaefer, M., & Scheu, S. (2013). Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology and Biochemistry, 62, 36–45. https://doi.org/10.1016/j.soilbio.2013.02.020

    Article  CAS  Google Scholar 

  360. Kardol, P., Campany, C. E., Souza, L., Norby, R. J., Weltzin, J. F., & Classen, A. T. (2010). Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Global Change Biology, 16, 2676–2687. https://doi.org/10.1111/j.1365-2486.2010.02162.x

    Article  Google Scholar 

  361. Jentsch, A., Kreyling, J., Elmer, M., Gellesch, E., Glaser, B., Grant, K., & Beierkuhnlein, C. (2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity. Journal of Ecology, 99, 689–702. https://doi.org/10.1111/j.1365-2745.2011.01817.x

    Article  Google Scholar 

  362. Mariotte, P., Vandenberghe, C., Meugnier, C., Rossi, P., Bardgett, R. D., & Buttler, A. (2013). Subordinate plant species impact on soil microbial communities and ecosystem functioning in grasslands: Findings from a removal experiment. Perspectives in Plant Ecology Evolution and Systematics, 15(2), 77–85. https://doi.org/10.1016/j.ppees.2012.12.003

    Article  Google Scholar 

  363. Hawkes, C. V., Kivlin, S. N., Rocca, J. D., Huguet, V., Thomsen, M. A., & Suttle, K. B. (2011). Fungal community responses to precipitation. Global Change Biology, 17, 1637–1645. https://doi.org/10.1111/j.1365-2486.2010.02327.x

    Article  Google Scholar 

  364. Grime, J. P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x

    Article  Google Scholar 

  365. van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72. https://doi.org/10.1038/23932

    Article  CAS  Google Scholar 

  366. Mariotte, P., Le Bayon, R. C., Eisenhauer, N., Guenat, C., & Buttler, A. (2016). Subordinate plant species moderate drought effects on earthworm communities in grasslands. Soil Biology and Biochemistry, 96, 119–127. https://doi.org/10.1016/j.soilbio.2016.01.020

    Article  CAS  Google Scholar 

  367. Orwin, K. H., & Wardle, D. A. (2004). New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology and Biochemistry, 36(11), 1907–1912. https://doi.org/10.1016/j.soilbio.2004.04.036

    Article  CAS  Google Scholar 

  368. Brinkman, E. P., Duyts, H., & van der Putten, W. H. (2008). Interactions between root-feeding nematodes depend on plant species identity. Soil Biology and Biochemistry, 40(9), 2186–2193. https://doi.org/10.1016/J.SOILBIO.2008.01.023

    Article  CAS  Google Scholar 

  369. Zhao, J., Wan, S., Li, Z., Shao, Y., Xu, G., Liu, Z., & Fu, S. (2012). Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region. Soil Biology and Biochemistry, 49, 78–87. https://doi.org/10.1016/j.soilbio.2012.02.020

    Article  CAS  Google Scholar 

  370. Pirhofer-Walzl, K., Rasmussen, J., Høgh-Jensen, H., Eriksen, J., Søegaard, K., & Rasmussen, J. (2012). Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant and Soil, 350, 71–84 (2012). https://doi.org/10.1007/s11104-011-0882-z

  371. van Ruijven, J., & Berendse, F. (2010). Diversity enhances community recovery, but not resistance, after drought. Journal of Ecology, 98(1), 81–86. https://doi.org/10.1111/j.1365-2745.2009.01603.x

    Article  Google Scholar 

  372. Schoeneberger, M., Bentrup, G., de Gooijer, H., Soolanayakanahally, R., Sauer, T., Brandle, J., & Current, D. (2012). Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture. Journal of Soil and Water Conservation, 67(5), 128A – 136. https://doi.org/10.2489/jswc.67.5.128A

    Article  Google Scholar 

  373. Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., & Roberts, N. M. (2014). Projected increase in summer and winter UK sub-daily precipitation extremes from high-resolution regional climate models. Environmental Research Letters, 9(8), 1–8

    Article  CAS  Google Scholar 

  374. Young, E. O., & Ross, D. S. (2018). Phosphorus mobilization in flooded riparian soils from the Lake Champlain Basin, VT, USA. Frontiers in Environmental Science, 6, 120. https://doi.org/10.3389/fenvs.2018.00120

    Article  Google Scholar 

  375. Karanja, N., Mutua, G. K., Ayuke, F., Njenga, M., Prain, G., & Kimenju, J. (2010). Dynamics of soil nematodes and earthworms in urban vegetable irrigated with wastewater in the Nairobi River basin, Kenya. Tropical and Subtropical Agroecosystems, 12, 521–530

    Google Scholar 

  376. Birkás, M., Dexter, A., & Szemők, A. (2009). Tillage-induced soil compaction, as a climate threat increasing stressor. Cereal Research Communications, 37, 379–382

    Google Scholar 

  377. Guo, Y. J., Ni, Y., Raman, H., Wilson, B. A. L., Ash, G. J., Wang, A. S., & Li, G. D. (2012). Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application. Plant and Soil, 351, 389–403. https://doi.org/10.1007/s11104-011-0976-7

    Article  CAS  Google Scholar 

  378. Alasmary, Z., Todd, T., Hettiarachchi, G. M., Stefanovska, T., Pidlisnyuk, V., Roozeboom, K., & Zhukov, O. (2020). Effect of soil treatments and amendments on the nematode community under Miscanthus growing in a lead contaminated military site. Agronomy, 10, 1727. https://doi.org/10.3390/agronomy10111727

    Article  CAS  Google Scholar 

  379. Ugarte, C. M., & Taylor, J. R. (2020). Chemical and biological indicators of soil health in Chicago urban gardens and farms. Urban Agriculture and Regional Food Systems, 5, e20004. https://doi.org/10.1002/uar2.20004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The sole author, Debraj Biswal, conceptualized, designed, analysed, interpreted and prepared the manuscript.

Corresponding author

Correspondence to Debraj Biswal.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, D. Soil Nematodes as the Silent Sufferers of Climate-Induced Toxicity: Analysing the Outcomes of Their Interactions with Climatic Stress Factors on Land Cover and Agricultural Production. Appl Biochem Biotechnol 195, 2519–2586 (2023). https://doi.org/10.1007/s12010-022-03965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03965-x

Keywords

Navigation