Skip to main content
Log in

Update and Revalidation of Ghose’s Cellulase Assay Methodology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

New studies on cellulolytic enzymes aiming to improve biofuels production lead to a concern over the assaying methods commonly applied to measure their activity. One of the most used methods is Ghose’s cellulase and endoglucanase assay, developed by the International Union of Pure and Applied Chemistry in 1987. Carrying out this method demands high volumes of reagents and generation of high amounts of chemical residues. This work aimed to adapt Ghose’s methodology to reduce its application cost and residue generation and validate the adjustments. To do so, International and Brazilian laws were applied to validate methodologies. Method’s modifications were successfully validated according to all institutions and were considered linear, accurate, precise, and reproducible. It was possible to reduce the volume of reagents and residues in 12 times. Considering the routine work of most laboratories, it is a great reduction on material costs and residue treatment, which reflects in sustainability and environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siqueira, J. G. W., Rodrigues, C., Vandenberghe, L. P. d. S., Woiciechowski, A. L., & Soccol, C. R. (2020). Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass and Bioenergy, 132, 105419. https://doi.org/10.1016/j.biombioe.2019.105419.

    Article  CAS  Google Scholar 

  2. Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203.

    Article  CAS  Google Scholar 

  3. Zhang, X., & Zhang, Y. P. (2013). In S. Yang, H. A. El-Enshasy, & N. Thongchul (Eds.), Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers (pp. 131–146). John Wiley & Sons.

  4. Mosier, N. S., Hall, P., Ladisch, C. M., & Ladisch, M. R. (1999). Advances in biochemical engineering/biotechnology. In G. T. Tsao (Ed.), Recent progress in bioconversion of lignocellulosics (pp. 23–40). Springer.

  5. Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824.

    Article  CAS  Google Scholar 

  6. Maeda, R. N., Barcelos, C. A., Santa Anna, L. M., & Pereira, N. (2013). Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Journal of Biotechnology, 163(1), 38–44.

    Article  CAS  Google Scholar 

  7. Chu, D., Deng, H., Zhang, X., Zhang, J., & Bao, J. (2012). A simplified filter paper assay method of cellulase enzymes based on HPLC analysis. Applied Biochemistry and Biotechnology, 167(1), 190–196.

    Article  CAS  Google Scholar 

  8. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  9. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  10. Sumner, J. B., & Somers, G. F. (1994). Laboratory experiments in biological chemistry. New York: Academic Press.

    Google Scholar 

  11. Santa Cruz Biotechnology. 3,5-Dinitrosalicylic acid – Material Safety Data Sheet. Available from: http://datasheets.scbt.com/sc-214181.pdf. Accessed February 17, 2018.

  12. Negrulescu, A., Patrulea, V., Mincea, M. M., Ionascu, C., Vlad-Oros, B. A., & Ostafe, V. (2012). Adapting the reducing sugars method with dinitrosalicylic acid to microtiter plates and microwave heating. Journal of the Brazilian Chemical Society, 23, 2176–2182.

    Article  CAS  Google Scholar 

  13. dos Santos, A. A., Deoti, J. R., Müller, G., Dário, M. G., Stambuk, B. U., & Alves Jr., S. L. (2017). Dosagem de açúcares redutores com o reativo DNS em microplaca. Brazilian Journal of Food Technology, 20, e201511.

    Article  Google Scholar 

  14. Camassola, M., Dillon, A. P. J. (2012) Cellulase determination: Modifications to make the filter paper assay easy, fast, practical and efficient. Open Acc. Scientific Rep. 1. https://doi.org/10.4172/scientificreports.125.

  15. Rambla-Alegre, M., Esteve-Romero, J., & Carda-Broch, S. (2012). Is it really necessary to validate an analytical method or not? That is the question. Journal of Chromatography. A, 1232, 101–109.

    Article  CAS  Google Scholar 

  16. Brasil – ANVISA. (2017). Resolução RDC n° 166. de 27 de Julho de 2017, Diário Oficial da República Federativa do Brasil, Brasília, BR.

  17. Brasil – INMETRO. (2018). Revisão 07 – Julho de 2018. Documento de Caráter Orientativo. DOQ-CGCRE-008 2018, Brasília, BR.

  18. Durbin, J., & Watson, G. S. (1951). Testing for serial correlation in least squares regression II. Biometrika, 38, 159–177.

    Article  CAS  Google Scholar 

  19. Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11, 1.

    Article  Google Scholar 

  20. Dixon, W. J., & Mood, A. M. (1946). The statistical sign test. Journal of the American Statistical Association, 41, 557.

    Article  CAS  Google Scholar 

  21. Araújo, P. (2009). Key aspects of analytical method validation and linearity evaluation. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877, 2224–2234.

    Article  Google Scholar 

  22. Horwitz, W. (1982). Evaluation of analytical methods used for regulation of foods and drugs. Analytical Chemistry, 54, 67.

    Article  Google Scholar 

  23. Gonçalves, C., Rodriguez-Jasso, R. M., Gomes, N., Teixeira, J. A., & Belo, I. (2010). Adaptation of dinitrosalicylic acid method to microtiter plates. Analytical Methods, 2, 2046.

    Article  Google Scholar 

  24. Mandels, M., Andreotti, R., & Roche, C. (1976). Measurement of saccharifying cellulase. Biotechnology and Bioengineering Symposium, 6, 21.

    CAS  Google Scholar 

  25. Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2(1), 21.

    Article  Google Scholar 

Download references

Funding

The authors would like to thank CAPES and CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristine Rodrigues.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, J.G.W., Teixeira, N.A., Vandenberghe, L.P.S. et al. Update and Revalidation of Ghose’s Cellulase Assay Methodology. Appl Biochem Biotechnol 191, 1271–1279 (2020). https://doi.org/10.1007/s12010-020-03291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03291-0

Keywords

Navigation