Skip to main content

Advertisement

Log in

A Novel Approach to Septal Perforation Repair: Septal Cartilage Cells Induce Chondrogenesis of hASCs In Vitro

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of medium harvested from septal cartilage cells on chondrogenic differentiation of adipose stem cells (hASCs) and to compare/contrast its properties to those of a commonly used standard medium formulation in terms of induction and maintenance of chondrogenic hASCs. Differentiation was carried out under three different conditions: septal cartilage medium-SCM, chondrogenic differentiation medium-CM, and 50:50 mixture of CM/SCM. Mesenchymal stem cells (MSCs) markers were determined by flow cytometry. The cytotoxic and apoptotic effects were determined by MTS and Annexin V assay, respectively. The differentiation status of the cells was confirmed by Alcian blue staining, and quantitative real-time flow cytometry showed that hASCs were positive for MSCs, negative for hematopoietic stem cells and endothelial cell surface markers. According to MTS analysis, the first condition was not toxic at any concentration tested. Annexin V assay revealed that the application of different concentrations of SCM did not result in any cell death. The Alcian blue and gene expression analyses showed that the cells in the SCM group underwent the highest cartilage cell formation. The observed increase in chondrogenesis may offer better treatment options for the cartilage defects seen in nasal septum perforation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akan, K., Tihan, D., Duman, U., Ozgun, Y., Erol, F., & Polat, M. (2013). Comparison of surgical Limberg flap technique and crystallized phenol application in the treatment of pilonidal sinus disease: a retrospective study. Ulusal Cerrahi Dergisi, 29, 162–166.

    PubMed  PubMed Central  Google Scholar 

  2. Aydoğdu, N., Taşli, P. N., Şişli, H. B., Yalvac, M. E., & Şahin, F. (2016). Role of melatonin on differentiation of mesenchymal stem cells derived from third molar germ tissue. Turkish Journal of Biology, 40, 430–442.

    Article  CAS  Google Scholar 

  3. Baer, P. C., & Geiger, H. (2012). Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells International, 2012, 812693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakopoulou, A., Kritis, A., Andreadis, D., Papachristou, E., Leyhausen, G., Koidis, P., Geurtsen, W., & Tsiftsoglou, A. (2015). Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells and Development, 24(21), 2496–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakopoulou, A., Apatzidou, D., Aggelidou, E., Gousopoulou, E., Leyhausen, G., Volk, J., Kritis, A., Koidis, P., & Geurtsen, W. (2017). Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties. Stem Cell Research & Therapy, 8(1), 247.

    Article  CAS  Google Scholar 

  6. Baptista, L. S., Silva, K. R., Pedrosa, C. S., Amaral, R. J., Belizario, J. V., Borojevic, R., & Granjeiro, J. M. (2013). Bioengineered cartilage in a scaffold-free method by human cartilage-derived progenitor cells: a comparison with human adipose-derived mesenchymal stromal cells. Artificial Organs, 37(12), 1068–1075.

    Article  CAS  PubMed  Google Scholar 

  7. Bauge, C., & Boumediene, K. (2015). Use of adult stem cells for cartilage tissue engineering: current status and future developments. Stem Cells International, 2015, 438026.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chiang, M. Y., & Shah, P. (2005). Nasal septal perforation enlargement related to topical ocular steroids. British Journal of Clinical Pharmacology, 60(6), 664–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ciuffi, S., Zonefrati, R., & Brandi, M. L. (2017). Adipose stem cells for bone tissue repair. Clinical Cases in Mineral and Bone Metabolism, 14(2), 217–226.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cognetti, D. M., Nussenbaum, B., Brenner, M. J., Chi, D. H., McCormick, M. E., Venkatraman, G., Zhan, T., & McKinlay, A. J. (2017). Current state of overlapping, concurrent, and multiple-room surgery in otolaryngology: a national survey. Otolaryngology and Head and Neck Surgery, 157(6), 998–1004.

    Article  Google Scholar 

  11. De Girolamo, L., Sartori, M., Arrigoni, E., Rimondini, L., Albisetti, W., Weinstein, R., & Brini, A. (2008). Human adipose-derived stem cells as future tools in tissue regeneration: osteogenic differentiation and cell-scaffold interaction. The International Journal of Artificial Organs, 31(6), 467–479.

    Article  PubMed  Google Scholar 

  12. do Amaral, R. J., Pedrosa C da, S. G., Kochem, M. C., da Silva, K. R., Aniceto, M., Claudio-da-Silva, C., Borojevic, R., & Baptista, L. S. (2012). Isolation of human nasoseptal chondrogenic cells: a promise for cartilage engineering. Stem Cell Research, 8(2), 292–299.

    Article  CAS  PubMed  Google Scholar 

  13. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  14. El-Gamal, Y. M., & El-Sayed, S. S. (2011). Wheezing in infancy. World Allergy Organization Journal, 4(5), 85–90.

    Article  PubMed  Google Scholar 

  15. Estes, B. T., Diekman, B. O., Gimble, J. M., & Guilak, F. (2010). Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 5(7), 1294–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gargareta, V.-I., Karagiannaki, S. M., Chnaraki, M., Theodoridis, K., Katsioudi, G., Aggelidou, E., Vavilis, T., Koidis, P., Manthou, M.-E., & Chatzinikolaidou, M. (2016). Translational research for nasal septum cartilage regeneration with chondrocytes derived from differentiated human adipose mesenchymal stem cells. Aristotle University Medical Journal, 43, 1–9.

    Google Scholar 

  17. Grogan, S. P., Barbero, A., Diaz-Romero, J., Cleton-Jansen, A. M., Soeder, S., Whiteside, R., Hogendoorn, P. C., Farhadi, J., Aigner, T., & Martin, I. (2007). Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis & Rheumatology, 56(2), 586–595.

    Article  Google Scholar 

  18. Guasti, L., Prasongchean, W., Kleftouris, G., Mukherjee, S., Thrasher, A. J., Bulstrode, N. W., & Ferretti, P. (2012). High plasticity of pediatric adipose tissue-derived stem cells: Too much for selective Skeletogenic differentiation? Stem Cells Translational Medicine, 1(5), 384–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hegde, V., Meredith, D. S., Kepler, C. K., & Huang, R. C. (2012). Management of postoperative spinal infections. World Journal of Orthopedics, 3(11), 182–189.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hughes, D., & Song, B. (2016). Dental and nondental stem cell based regeneration of the craniofacial region: a tissue based approach. Stem Cells International, 2016, 8307195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hyldig, K., Riis, S., Pennisi, C., Zachar, V., & Fink, T. (2017). Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies. International Journal of Molecular Sciences, 18(6), 1167.

    Article  CAS  PubMed Central  Google Scholar 

  22. Khatami-Moghadam, M., Khorsandi-Ashtiani, M. T., Mohagheghi, M. A., Hasibi, M., & Kouhi, A. (2012). Prophylactic antibiotics in otolaryngologic surgeries: from knowledge to practice. Iranian Journal of Otorhinolaryngology, 24(67), 79–84.

    PubMed  PubMed Central  Google Scholar 

  23. Marycz, K., Lewandowski, D., Tomaszewski, K. A., Henry, B. M., Golec, E. B., & Marędziak, M. (2016). Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs). PeerJ, 4, e1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCullen, S., Zhu, Y., Bernacki, S., Narayan, R., Pourdeyhimi, B., Gorga, R., & Loboa, E. (2009). Electrospun composite poly (L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomedical Materials, 4(3), 035002.

    Article  CAS  PubMed  Google Scholar 

  25. Merceron, C., Vinatier, C., Portron, S., Masson, M., Amiaud, J., Guigand, L., Cherel, Y., Weiss, P., & Guicheux, J. (2010). Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. American Journal of Physiology. Cell Physiology, 298(2), C355–C364.

    Article  CAS  PubMed  Google Scholar 

  26. Mollon, B., Kandel, R., Chahal, J., & Theodoropoulos, J. (2013). The clinical status of cartilage tissue regeneration in humans. Osteoarthritis and Cartilage, 21(12), 1824–1833.

    Article  CAS  PubMed  Google Scholar 

  27. Okolicsanyi, R. K., Camilleri, E. T., Oikari, L. E., Yu, C., Cool, S. M., van Wijnen, A. J., Griffiths, L. R., & Haupt, L. M. (2015). Human mesenchymal stem cells retain multilineage differentiation capacity including neural marker expression after extended in vitro expansion. PLoS One, 10(9), e0137255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozdek, A., Bayir, O., Dundar, Y., Tatar, E. C., Saylam, G., & Korkmaz, M. H. (2014). Closure of nasal septal perforations using bilateral intranasal advancement/rotation flaps. Kulak Burun Boğaz Ihtisas Dergisi, 24(3), 123–128.

    Article  PubMed  Google Scholar 

  29. Park, J., Suhk, J., & Nguyen, A. H. (2015). Nasal analysis and anatomy: anthropometric proportional assessment in Asians-aesthetic balance from forehead to Chin, part II. Seminars in Plastic Surgery, 29(4), 226–231.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Prieto, P., Fernandez-Velasco, M., Fernandez-Santos, M. E., Sanchez, P. L., Terron, V., Martin-Sanz, P., Fernandez-Aviles, F., & Bosca, L. (2016). Cell expansion-dependent inflammatory and metabolic profile of human bone marrow mesenchymal stem cells. Frontiers in Physiology, 7, 548.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Re, M., Paolucci, L., Romeo, R., & Mallardi, V. (2006). Surgical treatment of nasal septal perforations. Our experience. Acta Otorhinolaryngologica Italica, 26(2), 102–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stromps, J. P., Paul, N. E., Rath, B., Nourbakhsh, M., Bernhagen, J., & Pallua, N. (2014). Chondrogenic differentiation of human adipose-derived stem cells: a new path in articular cartilage defect management? BioMed Research International, 2014, 740926.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tajudeen, B. A., Brooks, S. G., Yan, C. H., Kuan, E. C., Schwartz, J. S., Suh, J. D., Palmer, J. N., & Adappa, N. D. (2017). Quality-of-life improvement after endoscopic sinus surgery in patients with obstructive sleep apnea. Allergy and Rhinology (Providence, R.I.), 8(1), 25–31.

    Google Scholar 

  34. Tang, Q. O., Carasco, C. F., Gamie, Z., Korres, N., Mantalaris, A., & Tsiridis, E. (2012). Preclinical and clinical data for the use of mesenchymal stem cells in articular cartilage tissue engineering. Expert Opinion on Biological Therapy, 12(10), 1361–1382.

    Article  CAS  PubMed  Google Scholar 

  35. Togo, T., Utani, A., Naitoh, M., Ohta, M., Tsuji, Y., Morikawa, N., Nakamura, M., & Suzuki, S. (2006). Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Laboratory Investigation, 86(5), 445–457.

    Article  CAS  PubMed  Google Scholar 

  36. van Egmond, M. M., Rovers, M. M., Hendriks, C. T., & van Heerbeek, N. (2015). Effectiveness of septoplasty versus non-surgical management for nasal obstruction due to a deviated nasal septum in adults: study protocol for a randomized controlled trial. Trials, 16(1), 500.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van Osch, G. J., Van Der Veen, S. W., Burger, E. H., & Verwoerd-Verhoef, H. L. (2000). Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Engineering, 6(4), 321–330.

    Article  PubMed  Google Scholar 

  38. Virkkula, P., Makitie, A. A., & Vento, S. I. (2015). Surgical outcome and complications of nasal septal perforation repair with temporal fascia and periosteal grafts. Clinical Medical Insights. Ear, Nose and Throat, 8, 7–11.

    Article  Google Scholar 

  39. Yildiz, K., Tasli, P. N., Sahin, F., & Guneren, E. (2016). Comparison of cellular alterations in fat cells harvested with laser-assisted liposuction and suction-assisted liposuction. The Journal of Craniofacial Surgery, 27(3), 631–635.

    Article  PubMed  Google Scholar 

  40. Zhang, X., Wu, M., Zhang, W., Shen, J., & Liu, H. (2010). Differentiation of human adipose-derived stem cells induced by recombinantly expressed fibroblast growth factor 10 in vitro and in vivo. In Vitro Cellular & Developmental Biology. Animal, 46(1), 60–71.

    Article  CAS  Google Scholar 

  41. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Burcin Keskin for her help in flow cytometry analysis and Ayşen Aslı Hızlı Deniz for help in grammar correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikrettin Şahin.

Ethics declarations

This manuscript complies with the Ethical Rules applicable for this journal.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şafak, A.S., Avşar Abdik, E., Abdik, H. et al. A Novel Approach to Septal Perforation Repair: Septal Cartilage Cells Induce Chondrogenesis of hASCs In Vitro. Appl Biochem Biotechnol 188, 942–951 (2019). https://doi.org/10.1007/s12010-019-02964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02964-9

Keywords

Navigation