Skip to main content

Advertisement

Log in

Differentiation of human adipose-derived stem cells induced by recombinantly expressed fibroblast growth factor 10 in vitro and in vivo

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The adipogenesis effect of fibroblast growth factor 10 (FGF10) has been demonstrated in many studies. The aim of this study is to render a novel method which can continuously induce hypodermal adipose-derived stem cell (ADSC) differentiation and maturation in vivo and in vitro using FGF10. We constructed a recombinant pcDNA3.0-FGF10-MSC which can continuously express FGF10 by transfected FGF10 into a human mesenchymal stem cell (MSC) clone, and we cultured ADSCs from human subcutaneous resected adipose tissue. An in vitro and in vivo co-culture system of pcDNA3.0-FGF10-MSC and ADSCs was then established. We observed the characteristics of ADSCs, monitored the adipogenesis-related transcription factor CAAT/enhancer binding protein-β, peroxisome proliferator-activated receptor-γ, and measured the adipose tissue layer of carrier animals. The results showed that FGF10 secreted from pcDNA3.0-FGF10-MSC could induce ADSC differentiation into mature adipocytes consistently. The study demonstrated that FGF10 can promote the adipogenesis effect in situ, and the autotransplantation of a carrier continuously secreting FGF10 may be utilized for increasing local subcutaneous adipose tissue in cosmetology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Asaki T.; Konishi M.; Miyake A.; Kato S.; Tomizawa M.; Itoh N. Roles of fibroblast growth factor 10(FGF10) in adipogenesis in vivo. Mol Cell Endocrinol 218(1–2): 119–128; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Bhushan A.; Itoh N.; Kato S.; Thiery J. P.; Czernichow P.; Bellusci S.; Scharfmann R. FGF10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128(24): 5109–5117; 2001.

    CAS  PubMed  Google Scholar 

  • Constance C. M.; Morgan 4th J. I.; Umek R. M. C/EBP alpha regulation of the growth-arrest-associated gene gadd45. Mol Cell Biol 16(7): 3878–3883; 1996.

    CAS  PubMed  Google Scholar 

  • Desvergene B.; Wahli W. Peroxisome proliferator-activated recepor: nuclear control of metabolism. Endocr Rev 20(5): 649–688; 1999.

    Article  Google Scholar 

  • Durcova-Hills G.; Adams I. R.; Barton S. C.; Surani M. A.; McLaren A. The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells 24(6): 1441–1449; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Erickson G. R.; Gimble J. M.; Franklin D. M.; Rice H. E.; Awad H.; Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 18(2): 763–769; 2002.

    Article  Google Scholar 

  • Guan Y.; Breyer M. D. Targeting peroxisome proliferator-activated receptors(PPARs) in kidney and urologic disease. Minerva Urol Nefrol 54(2): 65–79; 2002.

    CAS  PubMed  Google Scholar 

  • Gregoire F. M. Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med 226(11): 997–1002; 2001.

    CAS  Google Scholar 

  • Itoh N. FGFs as multifunctional signaling molecules: diversity of structure and function. Seikagaku 73(7): 525–535; 2001.

    CAS  PubMed  Google Scholar 

  • Iverson R. E.; Pao V. S. MOC-PS(SM) CME article: liposuction. Plast Reconstr Surg 121(4 Suppl): 1–11; 2008.

    Article  PubMed  Google Scholar 

  • Jiang Y.; Jahagirdar B. N.; Reinhardt R. L.; Schwartz R. E.; Keene C. D.; Ortiz-Gonzalez X. R.; Reyes M.; Lenvik T.; Lund T.; Blackstad M.; Du J.; Aldrich S.; Lisberg A.; Low W. C.; Largaespada D. A.; Verfaillie C. M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893): 41–49; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Joannides A.; Gaughwin P.; Scott M.; Watt S.; Compston A.; Chandran S. Postnatal astrocytes promote neural induction from adult human bone marrow-derived stem cells. J Hematother Stem Cell Res 12(6): 681–688; 2003.

    Article  PubMed  Google Scholar 

  • Kawaguchi N.; Toriyama K.; Nicodemou-Lena E.; Inou K.; Torii S.; Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci USA 95(3): 1062–1066; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Koh E. H.; Kim M. S.; Park J. Y.; Kim H. S.; Youn J. Y.; Park H. S.; Youn J. H.; Lee K. U. Peroxisome proliferator-activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats: comparison with PPAR-gamma activation. Diabetes 52(9): 2331–2337; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Konishi M.; Asaki T.; Koike N.; Miwa H.; Miyake A.; Itoh N. Role of FGF10 in cell proliferation in white adipose tissue. Mol Cell Endocrinol 249(1–2): 71–77; 2006.

    CAS  PubMed  Google Scholar 

  • Matsusue K.; Peters J. M.; Gonzalez F. J. PPARβ/δ potentiates PPARγ-stimulates adipocyte differentiation. FASEB J 18(12): 1477–1479; 2004.

    CAS  PubMed  Google Scholar 

  • Nakagami H.; Morishita R.; Maeda K.; Kikuchi Y.; Ogihara T.; Kaneda Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 13(2): 77–81; 2006.

    PubMed  Google Scholar 

  • Pittenger M. F.; Mosca J. D.; McIntosh K. R. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251: 3–11; 2000.

    CAS  PubMed  Google Scholar 

  • Rangappa S.; Fen C.; Lee E. H.; Bongso A.; Sim E. K. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75(3): 775–779; 2003.

    Article  PubMed  Google Scholar 

  • Reilly J. F.; Maher P. A. Importin β-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152(6): 1307–1312; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Rider D. A.; Dombrowski C.; Sawyer A. A.; Ng G. H.; Leong D.; Hutmacher D. W.; Nurcombe V.; Cool S. M. Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells 26(6): 1598–1608; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Rim J. S.; Mynatt R. L.; Gawronska-Kozak B. Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis. FASEB J 19(9): 1205–1207; 2005.

    CAS  PubMed  Google Scholar 

  • Rosen E. D.; Walkey C. J.; Puigserver P.; Spiegelman B. M. Transcriptional regulation of adipogenesis. Genes Dev 14(11): 1293–1307; 2000.

    CAS  PubMed  Google Scholar 

  • Safford K. M.; Hicok K. C.; Safford S. D.; Halvorsen Y. D.; Wilkison W. O.; Gimble J. M.; Rice H. E. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294(2): 371–379; 2000.

    Article  Google Scholar 

  • Sakaue H.; Konishi M.; Ogawa W.; Asaki T.; Mori T.; Yamasaki M.; Takata M.; Ueno H.; Kato S.; Kasuga M.; Itoh N. Requirement of fibroblast growth factor 10 in development of white adipose tissue. Genes Dev 16(8): 908–912; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Shea C. M.; Edgar C. M.; Einhorn T. A.; Gerstenfeld L. C. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem 90(6): 1112–1127; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Steck E.; Bertram H.; Abel R.; Chen B.; Winter A.; Richter W. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 23(3): 403–411; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Tao H.; Yoshimoto Y.; Yoshioka H.; Nohno T.; Noji S.; Ohuchi H. FGF10 is mesenchymally derived stimulator for epidermal development in the chick embryonic skin. Mech Dev 116(1–2): 39–49; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Williams S. C.; Baer M.; Dillner A. J.; Johnson P. F. CRP2(C/EBPβ) contains a DNA binding and cell specificity bipartite regulatory domain that controls transcriptional activation. EMBO J 5(4): 241–258; 1995.

    Google Scholar 

  • Wu M. J.; Yang L.; Liu H. Q. Differentiation potential of human embryonic mesenchymal stem cells for skin-related tissue. Br J Dermatol 155(2): 282–291; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka T.; Yoshino K.; Yamada T.; Yano M.; Matsui T.; Yamaguchi T.; Moritani M.; Hata J.; Noji S.; Itakura M. Transgenic expression of FGF8 and FGF10 induces transdifferentiation of pancreatic islet cells into hepatocytes and exocrine cells. Biochem Biophys Res Commun 292(1): 138–143; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki M.; Emoto H.; Konishi M.; Mikami T.; Ohuchi H.; Nakao K.; Itoh N. FGF-10 is a growth factor for preadipocytes in white adipose tissue. Biochem Biophys Res Commun 258(1): 109–112; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Yao C. C.; Yao P.; Wu H.; Zha Z. G. Absorbable collagen sponge combined with recombinant human basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve. J Mater Sci Mater Med 18(10): 1969–1972; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K.; Shigeura T.; Matsumoto D.; Sato T.; Takaki Y.; Aiba-Kojima E.; Sato K.; Inoue K.; Nagase T.; Koshima I.; Gonda K. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208(1): 64–76; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zaragosi L. E.; Ailhaud G.; Dani C. Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24(11): 2412–2419; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zuk P. A.; Zhu M.; Ashjian P.; De Ugarte D. A.; Huang J. I.; Mizuno H.; Alfonso Z. C.; Fraser J. K.; Benhaim P.; Hedrick M. H. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12): 4279–4295; 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China (No. 30428001) and the Major Program of The Eleventh Five-Year Plan of PLA Medicine (No. 06G62). I would like to express my sincere gratitude to Dr. Liu for providing guidance, support, and expertise throughout the course of this work. I would also like to thank Min-juan Wu, Ph.D for her helpful suggestions and the critical evaluation of my work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunyi Zhang.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wu, M., Zhang, W. et al. Differentiation of human adipose-derived stem cells induced by recombinantly expressed fibroblast growth factor 10 in vitro and in vivo. In Vitro Cell.Dev.Biol.-Animal 46, 60–71 (2010). https://doi.org/10.1007/s11626-009-9240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9240-3

Keywords

Navigation