Skip to main content

Advertisement

Log in

Viability of Using Glycerin as a Co-substrate in Anaerobic Digestion of Sugarcane Stillage (Vinasse): Effect of Diversified Operational Strategies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vinasse, from sugar and ethanol production, stands out as one of the most problematic agroindustry wastes due to its high chemical oxygen demand, large production volume, and recalcitrant compounds. Therefore, the viability of using glycerin as a co-substrate in vinasse anaerobic digestion was tested, to increase process efficiency and biogas productivity. The effect of feeding strategy, influent concentration, cycle length, and temperature were assessed to optimize methane production. Glycerin (1.53% v/v) proved to be a good co-substrate since it increased the overall methane production in co-digestion assays. CH4 productivity enhanced exponentially as influent concentration increased, but when temperature was increased to 35 °C, biogas production was impaired. The highest methane productivity and yield were achieved using fed-batch mode, at 30 °C and at an organic loading rate of 10.1 kg COD m−3 day−1: 139.32 mol CH4 m−3 day−1, 13.86 mol CH4 kg CODapplied, and 15.30 mol CH4 kg CODremoved. Methane was predominantly produced through the hydrogenotrophic route. In order to treat all the vinasse produced by a mid-size sugar and ethanol plant, nine reactors with 7263.4 m3 each would be needed. The energy generated by burning the biogas in boilers would reach approximately 92,000 MW h per season and could save up to US$ 240,000.00 per month in diesel oil demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kopsahelis, A., Stavropoulos, K., Zafiri, C., & Kornaros, M. (2018). Anaerobic co-digestion of end-of-life dairy products with agroindustrial wastes in a mesophilic pilot-scale two-stage system: assessment of system’s performance. Energy Conversion and Management, 165, 851–860. https://doi.org/10.1016/J.ENCONMAN.2018.04.017.

    Article  CAS  Google Scholar 

  2. Pant, D., & Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology., 98(12), 2321–2334. https://doi.org/10.1016/j.biortech.2006.09.027.

    Article  CAS  PubMed  Google Scholar 

  3. Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials., 163(1), 12–25. https://doi.org/10.1016/j.jhazmat.2008.06.079.

    Article  CAS  PubMed  Google Scholar 

  4. Fuess, L. T., & Garcia, M. L. (2015). Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. Journal of Environmental Management, 162, 102–114. https://doi.org/10.1016/j.jenvman.2015.07.046.

    Article  CAS  PubMed  Google Scholar 

  5. Siles, J. A., García-García, I., Martín, A., & Martín, M. A. (2011). Integrated ozonation and biomethanization treatments of vinasse derived from ethanol manufacturing. Journal of Hazardous Materials, 188(1–3), 247–253. https://doi.org/10.1016/j.jhazmat.2011.01.096.

    Article  CAS  PubMed  Google Scholar 

  6. Rivero, M., Solera, R., & Perez, M. (2014). Anaerobic mesophilic co-digestion of sewage sludge with glycerol: enhanced biohydrogen production. International Journal of Hydrogen Energy, 39(6), 2481–2488. https://doi.org/10.1016/j.ijhydene.2013.12.006.

    Article  CAS  Google Scholar 

  7. Viana, M. B., Freitas, A. V., Leitão, R. C., Pinto, G. A. S., & Santaella, S. T. (2012). Anaerobic digestion of crude glycerol: a review. Environmental Technology Reviews, 1(1), 81–92. https://doi.org/10.1080/09593330.2012.692723.

    Article  CAS  Google Scholar 

  8. Janke, L., Leite, A. F., Batista, K., Silva, W., Nikolausz, M., Nelles, M., & Stinner, W. (2016). Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresource Technology., 217, 10–20. https://doi.org/10.1016/j.biortech.2016.01.110.

    Article  CAS  PubMed  Google Scholar 

  9. Santa Cruz, L. F. L. (2011). Technical/economical/environmental feasibility of current forms of reclamation of vinasse to the sugarcane industry of Sao Paulo. University of São Paulo.

  10. Lovato, G., Albanez, R., Triveloni, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2018). Methane production by co-digesting vinasse and whey in an AnSBBR: effect of mixture ratio and feed strategy. Applied Biochemistry and Biotechnology, 187(1), 28–19. https://doi.org/10.1007/s12010-018-2802-7.

    Article  CAS  PubMed  Google Scholar 

  11. Lovato, G., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2016). Co-digestion of whey with glycerin in an AnSBBR for biomethane production. Applied Biochemistry and Biotechnology, 178(1), 126–143. https://doi.org/10.1007/s12010-015-1863-0.

    Article  CAS  PubMed  Google Scholar 

  12. APHA/AWWA/WEF. (2012). Standard methods for the examination of water and wastewater. Standard methods, 541. doi:ISBN 9780875532356.

  13. Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Water, 58(370), 406–411. https://doi.org/10.1016/S0262-1762(99)80122-9.

    Article  CAS  Google Scholar 

  14. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  15. Bondioli, P., & Della Bella, L. (2005). An alternative spectrophotometric method for the determination of free glycerol in biodiesel. European Journal of Lipid Science and Technology, 107(3), 153–157. https://doi.org/10.1002/ejlt.200401054.

    Article  CAS  Google Scholar 

  16. Rodrigues, J. A. D., Pinto, A. G., Ratusznei, S. M., Zaiat, M., & Gedraite, R. (2004). Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program. Brazilian Journal of Chemical Engineering, 21(3), 423–434. https://doi.org/10.1590/S0104-66322004000300007.

    Article  CAS  Google Scholar 

  17. Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor: model development and experimental validation. Water Environment Research, 71(7), 1320–1332.

    Article  CAS  Google Scholar 

  18. Albanez, R., Chiaranda, B. C., Ferreira, R. G., França, A. L. P., Honório, C. D., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2016). Anaerobic biological treatment of vinasse for environmental compliance and methane production. Applied Biochemistry and Biotechnology, 178(1), 21–43. https://doi.org/10.1007/s12010-015-1856-z.

    Article  CAS  Google Scholar 

  19. Albanez, R., Lovato, G., Zaiat, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2016). Optimization, metabolic pathways modeling and scale-up estimative of an AnSBBR applied to biohydrogen production by co-digestion of vinasse and molasses. International Journal of Hydrogen Energy, 41(45), 20473–20484. https://doi.org/10.1016/j.ijhydene.2016.08.145.

    Article  CAS  Google Scholar 

  20. Harada, H., Uemura, S., Chen, A.-C., & Jayadevan, J. (1996). Anaerobic treatment of a recalcitrant distillery wastewater by a thermophilic UASB reactor. Bioresource Technology, 55(3), 215–221. https://doi.org/10.1016/0960-8524(96)00003-X.

    Article  CAS  Google Scholar 

  21. Wijekoon, K. C., Visvanathan, C., & Abeynayaka, A. (2011). Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353–5360. https://doi.org/10.1016/j.biortech.2010.12.081.

    Article  CAS  PubMed  Google Scholar 

  22. Chernicharo, C. A. de L. (2007). Biological wastewater treatment vol.5: anaerobic reactors. Biological wastewater treatment in warm climate regions. Belo Horizonte, Minas Gerais, Brazil: Federal University of Minas Gerais. https://doi.org/10.1017/CBO9781107415324.004

  23. Ahring, B. K., Sandberg, M., & Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology, 43(3), 559–565. https://doi.org/10.1007/BF00218466.

    Article  CAS  Google Scholar 

  24. Boe, K., Batstone, D. J., Steyer, J. P., & Angelidaki, I. (2010). State indicators for monitoring the anaerobic digestion process. Water Research, 44(20), 5973–5980. https://doi.org/10.1016/j.watres.2010.07.043.

    Article  CAS  PubMed  Google Scholar 

  25. Heidrich, E. S., Curtis, T. P., & Dolfing, J. (2011). Determination of the internal chemical energy of wastewater. Environmental Science and Technology, 45(2), 827–832. https://doi.org/10.1021/es103058w.

    Article  CAS  PubMed  Google Scholar 

  26. Souza, M. E., Fuzaro, G., & Polegato, A. R. (1992). Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Science and Technology., 25(7), 213–222. https://doi.org/10.2166/wst.1992.0153.

    Article  CAS  Google Scholar 

  27. Ferraz Júnior, A. D. N., Koyama, M. H., de Araújo Júnior, M. M., & Zaiat, M. (2016). Thermophilic anaerobic digestion of raw sugarcane vinasse. Renewable Energy, 89, 245–252. https://doi.org/10.1016/j.renene.2015.11.064.

    Article  CAS  Google Scholar 

  28. Rodrigues, J. A. D., Oliveira, R. P., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2011). AnSBBR applied to a personal care industry wastewater treatment: effects of fill time, volume treated per cycle, and organic load. Applied Biochemistry and Biotechnology, 163(1), 127–142. https://doi.org/10.1007/s12010-010-9022-0.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, H., & Fang, H. H. P. (2002). Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 95(3), 249–256. https://doi.org/10.1016/S0168-1656(02)00025-1.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen, M. T., Mohd Yasin, N. H., Miyazaki, T., & Maeda, T. (2014). Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge. Chemosphere, 117, 552–558. https://doi.org/10.1016/J.CHEMOSPHERE.2014.08.055.

    Article  CAS  PubMed  Google Scholar 

  31. Volpini, V., Lovato, G., Albanez, R., Ratusznei, S. M., & Rodrigues, J. A. D. (2018). Biomethane generation in an AnSBBR treating effluent from the biohydrogen production from vinasse: optimization, metabolic pathways modeling and scale-up estimation. Renewable Energy, 116(Pt A), 288–198. https://doi.org/10.1016/j.renene.2017.09.004.

    Article  CAS  Google Scholar 

  32. Lullio, T. G., Souza, L. P., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2014). Biomethane production in an AnSBBR treating wastewater from biohydrogen process. Applied Biochemistry and Biotechnology, 174(5), 1873–1896. https://doi.org/10.1007/s12010-014-1170-1.

    Article  CAS  PubMed  Google Scholar 

  33. Almeida, W. A., Ratusznei, S. M., Zaiat, M., & Rodrigues, J. A. D. (2017). AnSBBR applied to biomethane production for vinasse treatment: effects of organic loading, feed strategy and temperature. Brazilian Journal of Chemical Engineering, 34(3), 759–773. https://doi.org/10.1590/0104-6632.20170343s20150584.

    Article  CAS  Google Scholar 

  34. Moraes, B. S., Zaiat, M., & Bonomi, A. (2015). Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renewable and Sustainable Energy Reviews, 44, 888–903. https://doi.org/10.1016/j.rser.2015.01.023.

    Article  CAS  Google Scholar 

  35. USA Government. (2018). U.S. Energy Information Administration. Retrieved April 5, 2018, from https://www.eia.gov/

Download references

Funding

This study was supported by the São Paulo Research Foundation (FAPESP #14/07692-8; #15/06.246-7; #17/09.722-0), the National Council for Scientific and Technological Development (CNPq #443181/2016-0; #800060/2018-0), and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. D. Rodrigues.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovato, G., Batista, L.P.P., Preite, M.B. et al. Viability of Using Glycerin as a Co-substrate in Anaerobic Digestion of Sugarcane Stillage (Vinasse): Effect of Diversified Operational Strategies. Appl Biochem Biotechnol 188, 720–740 (2019). https://doi.org/10.1007/s12010-019-02950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02950-1

Keywords

Navigation