Skip to main content
Log in

Improvement of the Stabilization and Activity of Protocatechuate 3,4-Dioxygenase Isolated from Rhizobium sp. LMB-1 and Immobilized on Fe3O4 Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Protocatechuate 3,4-dioxygenase (P34O), which is isolated from Rhizobium sp. LMB-1, catalyzes the ring cleavage step in the metabolism of aromatic compounds, and has great potential for environmental bioremediation. However, its structure is very sensitive to different environmental factors, which weaken its activity. Immobilization of the enzyme can improve its stability, allow reusability, and reduce operation costs. In this work, the relative molecular mass of the native P34O enzyme was determined to be 500 kDa by gel filtration chromatography on Sephadex G-200, and the enzyme was immobilized onto (3-aminopropyl) triethoxysilane-modified Fe3O4 nanoparticles (NPs) by the glutaraldehyde method. The optimum pH of immobilized and free P34O was unaffected, but the optimum temperature of immobilized P34O increased from 60 to 70 °C, and the thermal stability of immobilized P34O was better than that of the free enzyme and showed higher enzymatic activity at 60 and 70 °C. In addition, with the exception of Fe3+, most metal ions and organic chemicals could not improve the activity of free and immobilized P34O. The kinetic parameters of the immobilized P34O were higher than those of the free enzyme, and immobilized P34O on Fe3O4 NPs could be reused ten times without a remarkable decrease in enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

P34O:

Protocatechuate 3,4-dioxygenase

Fe3O4 NPs:

Fe3O4 nanoparticles

PAEs:

Phthalate esters

3-APTES:

(3-Aminopropyl) triethoxysilane

Ms:

Magnetization

VSM:

Vibrating sample magnetometer

XRD:

X-ray diffraction

TGA:

Thermogravimetric analysis

TSB:

Tryptone soya broth

MSM:

Minimum salt medium

PBS:

Phosphate-buffered saline

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

PCA:

Protocatechuic acid

JCPDS:

Joint Committee on Powder Diffraction Standards

bp:

Base pair

References

  1. Tang, W. J., Zhang, L. S., Fang, Y., Zhou, Y., & Ye, B. C. (2016). Biodegradation of phthalate esters by newly isolated Rhizobium sp LMB-1 and its biochemical pathway of di-n-butyl phthalate. Journal of Applied Microbiology, 121, 177–186.

    Article  CAS  Google Scholar 

  2. Fujisawa, H., & Hayaishi, O. (1968). Protocatechuate 3,4-dioxygenase. I. Crystallization and characterization. Journal of Biological Chemistry, 243, 2673–2681.

    CAS  Google Scholar 

  3. Durham, D., & Ornston, L. N. (1980). Homologous structural genes and similar induction patterns in Azotobacter spp. and Pseudomonas spp. Journal of Bacteriology, 143, 834–840.

    CAS  Google Scholar 

  4. Whittaker, J. W., Lipscomb, J. D., Kent, T. A., & Münck, E. (1984). Brevibacterium fuscum protocatechuate 3,4-dioxygenase. Purification, crystallization, and characterization. Journal of Biological Chemistry, 259, 4466–4475.

    CAS  Google Scholar 

  5. Pujar, B. G., & Ribbons, D. W. (1983). Purification of protocatechuate 3,4-dioxygenase from Pseudomonas fluorescens PHK by affinity chromatography. Indian Journal of Biochemistry & Biophysics, 20, 112–114.

    CAS  Google Scholar 

  6. Das, R., Abd Hamid, S. B., & Annuar, M. S. M. (2016). Highly efficient and stable novel nanobiohybrid catalyst to avert 3,4-dihydroxybenzoic acid pollutant in water. Scientific Reports, 6, 33572–33582.

    Article  CAS  Google Scholar 

  7. Suma, Y., Kim, D., Lee, J., Park, K., Kim, H. (2012) Degradation of catechol by immobilized hydroxyquinol 1, 2-dioxygenase (1, 2-HQD) onto single-walled carbon nanotubes. Proceedings of the International Conference on Chemical, Environmental Science and Engineering (ICEEBS’12).

  8. Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilisation. Biotechnology Letters, 31, 1639–1650.

    Article  CAS  Google Scholar 

  9. Fang, G., Chen, H. G., Zhang, Y. P., & Chen, A. Q. (2016). Immobilization of pectinase onto Fe3O4@SiO2-NH2 and its activity and stability. International Journal of Biological Macromolecules, 88, 189–195.

    Article  CAS  Google Scholar 

  10. White, L. D., & Tripp, C. P. (2000). Reaction of (3-aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces. Journal of Colloid & Interface Science, 232, 400–407.

    Article  CAS  Google Scholar 

  11. Shen, X. C., Fang, X. Z., Zhou, Y. H., & Liang, H. (2004). Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superparamagnetic magnetite nanoparticles. Chemistry Letters, 33, 1468–1469.

    Article  CAS  Google Scholar 

  12. Bruce, I. J., & Sen, T. (2005). Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir, 21, 7029–7035.

    Article  CAS  Google Scholar 

  13. Yang, Y., Bai, Y., Li, Y., Lei, L., Cui, Y., & Xia, C. (2008). Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. Journal of Magnetism & Magnetic Materials, 320, 2350–2355.

    Article  Google Scholar 

  14. Moritake, S., Taira, S., Ichiyanagi, Y., Morone, N., Song, S. Y., Hatanaka, T., Yuasa, S., & Setou, M. (2007). Functionalized nano-magnetic particles for an in vivo delivery system. Journal of Nanoscience & Nanotechnology, 7, 937–944.

    Article  CAS  Google Scholar 

  15. Won, K., Kim, S., Kima, K. J., Park, H. W., & Moon, S. J. (2005). Optimization of lipase entrapment in Ca-alginate gel heads. Process Biochemistry, 40, 2149–2154.

    Article  CAS  Google Scholar 

  16. Girigowda, K., & Mulimani, V. H. (2006). Hydrolysis of galacto-oligosaccharides in soymilk by kappa-carrageenan-entrapped alpha-galactosidase from Aspergillus oryzae. World Journal of Microbiology & Biotechnology, 22, 437–442.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Zylstra, G. J., Olsen, R. H., & Ballou, D. P. (1989). Genetic organization and sequence of the Pseudomonas cepacia genes for the alpha and beta subunits of protocatechuate 3,4-dioxygenase. Journal of Bacteriology, 171, 5915–5921.

    Article  CAS  Google Scholar 

  19. Petersen, E., Zuegg, J., Ribbons, D. W., & Schwab, H. (1996). Molecular cloning and homology modeling of protocatechuate 3,4-dioxygenase from Pseudomonas marginata. Microbiological Research, 151, 359–370.

    Article  CAS  Google Scholar 

  20. Zhang, Q. K., Kang, J. Q., Yang, B., Zhao, L. Z., Hou, Z. S., & Tang, B. (2016). Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob. Chinese Journal of Catalysis, 37, 389–397.

    Article  Google Scholar 

  21. Guzik, U., Hupert-Kocurek, K., Krysiak, M., & Wojcieszyńska, D. (2014). Degradation potential of protocatechuate 3,4-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels and on glyoxyl agarose. BioMed Research International, 2014, 138768–138775.

    Article  Google Scholar 

  22. Chen, Y. P., Dilworth, M. J., & Glenn, A. R. (1984). Aromatic metabolism in Rhizobium trifolii—protocatechuate 3,4-dioxygenase. Archives of Microbiology, 138, 187–190.

    Article  CAS  Google Scholar 

  23. Iwagami, S. G., Yang, K., & Davies, J. (2000). Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065. Applied and Environmental Microbiology, 66, 1499–1508.

    Article  CAS  Google Scholar 

  24. Sim, H. W., Jung, M. J., & Yong, K. C. (2013). Purification and characterization of protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Applied Biological Chemistry, 56, 401–408.

    CAS  Google Scholar 

  25. Song, C. F., Sheng, L. Q., & Zhang, X. B. (2012). Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Applied Microbiology and Biotechnology, 96, 123–132.

    Article  CAS  Google Scholar 

  26. Rafiee-Pour, H. A., Noorbakhsh, A., Salimi, A., & Ghourchian, H. (2010). Sensitive superoxide biosensor based on silicon carbide nanoparticles. Electroanalysis, 22, 1599–1606.

    Article  CAS  Google Scholar 

  27. Salimi, A., Noorbakhsh, A., Rafiee-Pour, H. A., Ghourchian, H. (2011). Direct voltammetry of copper, zinc-superoxide dismutase immobilized onto electrodeposited nickel oxide nanoparticles: fabrication of amperometric superoxide biosensor. Electroanalysis, 23(3), 683–691.

  28. Falahati, M., Ma’mani, L., Saboury, A. A., Shafiee, A., Foroumadi, A., & Badiei, A. R. (2011). Aminopropyl-functionalized cubic Ia3d mesoporous silica nanoparticle as an efficient support for immobilization of superoxide dismutase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1814, 1195–1202.

    Article  CAS  Google Scholar 

  29. Berger, J. L., Lee, B. H., & Lacroix, C. (1995). Identification of new enzyme activities of several strains of Thermus species. Applied Microbiology and Biotechnology, 44, 81–87.

    Article  CAS  Google Scholar 

  30. Durham, D. R., Stirling, L. A., Ornston, L. N., & Perry, J. J. (1980). Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Biochemistry, 19, 149–155.

    Article  CAS  Google Scholar 

  31. Wang, F., Guo, C., Liu, H. Z., & Liu, C. Z. (2008). Immobilization of Pycnoporus sanguineus laccase by metal affinity adsorption on magnetic chelator particles. Journal of Chemical Technology and Biotechnology, 83, 97–104.

    Article  CAS  Google Scholar 

  32. Atacan, K., Cakiroglu, B., & Ozacar, M. (2016). Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chemistry, 212, 460–468.

    Article  CAS  Google Scholar 

  33. Farrell, J. R., Niconchuk, J. A., Renehan, P. R., Higham, C. S., Yoon, E., Andrews, M. V., Shaw, J. L., Cetin, A., Engle, J., & Ziegler, C. J. (2014). New diamino-diheterophenol ligands coordinate iron(III) to make structural and functional models of protocatechuate 3,4-dioxygenase. Dalton Transactions, 43, 6610–6613.

    Article  CAS  Google Scholar 

  34. Ohlendorf, D. H., Lipscomb, J. D., & Weber, P. C. (1988). Structure and assembly of protocatechuate 3,4-dioxygenase. Nature, 336, 403–405.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (31401592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LS., Fang, Y., Zhou, Y. et al. Improvement of the Stabilization and Activity of Protocatechuate 3,4-Dioxygenase Isolated from Rhizobium sp. LMB-1 and Immobilized on Fe3O4 Nanoparticles. Appl Biochem Biotechnol 183, 1035–1048 (2017). https://doi.org/10.1007/s12010-017-2481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2481-9

Keywords

Navigation