Skip to main content
Log in

Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Superoxide dismutase (SOD) has been widely applied in medical treatments, cosmetic, food, agriculture, and chemical industries. In industry, the immobilization of enzymes can offer better stability, feasible continuous operations, easy separation and reusing, and significant decrease of the operation costs. However, little attention has focused on the immobilization of the SOD, as well as the immobilization of thermostable enzymes. In this study, the recombinant thermostable manganese superoxide dismutase (Mn-SOD) of Thermus thermophilus wl was purified and covalently immobilized onto supermagnetic 3-APTES-modified Fe3O4@SiO2 nanoparticles using glutaraldehyde method to prepare the Mn-SOD bound magnetic nanoparticles. The Mn-SOD nanoparticles were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analysis. The results indicated that the diameter of Mn-SOD nanoparticles was 40 (± 5) nm, and its saturation magnetization value was 27.9 emu/g without remanence or coercivity. By comparison with the free Mn-SOD, it was found that the immobilized Mn-SOD on nanoparticles exhibited better resistance to temperature, pH, metal ions, enzyme inhibitors, and detergents. The results showed that the immobilized Mn-SOD on nanoparticles could be reused ten times without significant decrease of enzymatic activity. Therefore, our study presented a novel strategy for the immobilization of thermostable Mn-SOD and for the application of thermostable enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade Â, Ferreira R, Fabris J, Domingues R (2011) Coating nanomagnetic particles for biomedical applications. Biomedical engineering-frontiers and challenges, Reza Fazel-Rezai (Ed.), InTech, Available from: http://www.intechopen.com/ articles/show/title/coating-nanomagnetic-particles-for-biomedical-applications

  • Bai YX, Li YF, Yang Y, Yi LX (2006) Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process Biochem 41:770–777

    Article  CAS  Google Scholar 

  • Bai YX, Li YF, Lei L (2009) Synthesis of a mesoporous functional copolymer bead carrier and its properties for glucoamylase immobilization. Appl Microbiol Biotechnol 83:457–464

    Article  CAS  Google Scholar 

  • Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Nickel superoxide dismutase structure and mechanism. Biochem 43:8038–8047

    Article  CAS  Google Scholar 

  • Cui YJ, Li YF, Yang Y, Liu X, Lei L, Zhou LC, Pan F (2010) Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization. J Biotech 150:171–174

    Article  CAS  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20(22):4225–4241

    Article  CAS  Google Scholar 

  • Deng YH, Yang WL, Wang CC, Fu SK (2003) A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure. Adv Mater 15(20):1729–1732

    Article  CAS  Google Scholar 

  • Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloid Surface A 262:87–93

    Article  CAS  Google Scholar 

  • Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    Article  CAS  Google Scholar 

  • Endo K, Miyasaka T, Mochizuki S, Aoyagi S, Him N, Asahara H, Tsujioka K, Sakai K (2002) Development of a superoxide sensor by immobilization of superoxide dismutase. Sensor Actuat B 83:30–34

    Article  Google Scholar 

  • Falahati M, Ma’mani L, Saboury AA, Shafiee A, Foroumadi A, Badiei AR (2011) Aminopropyl-functionalized cubic Ia3d mesoporous silica nanoparticle as an efficient support for immobilization of superoxide dismutase. Biochim Biophys Acta 1814:1195–1202

    Article  CAS  Google Scholar 

  • Fang QL, Xuan SH, Jiang WQ, Gong XL (2011) Yolk-like micro/nanoparticles with superparamagnetic iron oxide cores and hierarchical nickel silicate shells. Adv Funct Mater 21:1902–1909

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomater 26(18):3995–4021

    Article  CAS  Google Scholar 

  • He YZ, Fan KQ, Jia CJ, Wang ZJ, Pan WB, Huang L, Yang KQ, Dong ZY (2007) Characterization of a hyperthermostable Fe-superoxide dismutase from hot spring. Appl Microbiol Biotechnol 75:367–376

    Article  CAS  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11

    Article  CAS  Google Scholar 

  • Jackson TA, Brunold TC (2004) Combined spectroscopic/computational studies on Fe- and Mn-dependent superoxide dismutases: insights into second-sphere tuning of active site properties. Acc Chem Res 37:461–470

    Article  CAS  Google Scholar 

  • Kim KD, Kim SS, Choa YH, Kim HT (2007) Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol-gel method. J Ind Eng Chem 13(7):1137–1141

    CAS  Google Scholar 

  • Kumar S, Sahoo R, Ahuja PS (2006) Isozyme of autoclavable superoxide dismutase (SOD), a process for the identification and extraction of the SOD and use of the said SOD in cosmetic, food, and pharmaceutical compositions. US Patent 7037697 B2

  • Lancaster VL, LoBrutto R, Selvaraj FM, Blankenship RE (2004) A cambialistic superoxide dismutase in the thermophilic photosynthetic bacterium Chloroflexus aurantiacus. J Bacteriol 186:3408–3414

    Article  CAS  Google Scholar 

  • Lei L, Bai YX, Li YF, Yi LX, Yang Y, Xia CG (2009) Study on immobilization of lipase onto magnetic microspheres with epoxy groups. J Magn Magn Mater 321:252–258

    Article  CAS  Google Scholar 

  • Li HB, Ji XL, Zhou ZD, Wang YQ, Zhang XB (2010) Thermus thermophilus proteins that are differentially expressed in response to growth temperature and their implication in thermoadaptation. J Proteome Res 9:855–864

    Article  CAS  Google Scholar 

  • Lim JH, Yu YG, Chio IG, Ryu JR, Ahn BY, Kim SH, Han YS (1997) Cloning and expression of superoxide dismutase from Aquifex pyrophilus, a hyperthermophilic bacterium. FEBS Lett 406:142–146

    Article  CAS  Google Scholar 

  • Liu JG, Yin MM, Zhu H, Lu JR, Cui ZF (2011) Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27. Extremophiles 15:221–226

    Article  CAS  Google Scholar 

  • Lucena R, Simonet BM, Cardenas S, Valcarcel M (2011) Potential of nanoparticles in sample preparation. J Chromatogr A 1218(4):620–637

    Article  CAS  Google Scholar 

  • McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2(2):153–167

    Article  CAS  Google Scholar 

  • Michalski WP (1996) Chromatographic and electrophoretic methods for analysis of superoxide dismutases. J Chromatogr B 684:59–75

    Article  CAS  Google Scholar 

  • Miller AF, Sorkin DL (1997) Superoxide dismutases: a molecular perspective. Comments Mol Cell Biophys 9:1–48

    CAS  Google Scholar 

  • Mooney KE, Nelson JA, Wagner MJ (2004) Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction. Chem Mater 16:3155–3161

    Article  CAS  Google Scholar 

  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–49

    Article  CAS  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  Google Scholar 

  • Palani A, Lee JS, Huh J, Kim M, Lee YJ, Chang JH, Lee K, Lee SW (2008) Selective enrichment of cysteine-containing peptides using SPDP-functionalized superparamagnetic Fe3O4@SiO2 nanoparticles: application to comprehensive proteomic profiling. J Proteom Res 7:3591–3596

    Article  CAS  Google Scholar 

  • Pugliese PT, Pugliese SMT (2002) Cosmetic and skin protective compositions. US patent 2002/0044916 A1

  • Rafiee-Pour HA, Noorbakhsh A, Salimi A, Ghourchiana H (2010) Sensitive superoxide biosensor based on silicon carbide nanoparticles. Electroanal 22(14):1599–1606

    Article  CAS  Google Scholar 

  • Rusmini F, Zhong ZY, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789

    Article  CAS  Google Scholar 

  • Saiyed ZM, Sharma S, Godawat R, Telang SD, Ramchand CN (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J Biotechnol 131:240–244

    Article  CAS  Google Scholar 

  • Salimi A, Noorbakhsh A, Rafiee-Pour HA, Ghourchian H (2011) Direct voltammetry of copper, zinc-superoxide dismutase immobilized onto electrodeposited nickel oxide nanoparticles: fabrication of amperometric superoxide biosensor. Electroanal 23(3):683–691

    CAS  Google Scholar 

  • Sato S, Harris JI (1977) Superoxide dismutase from Thermus aquaticus. Isolation and characterisation of manganese and apo enzymes. Eur J Biochem 73:373–381

    Article  CAS  Google Scholar 

  • Synowiecki J, Grzybowska B, Zdziebło A (2006) Sources, properties and suitability of new thermostable enzymes in food processing. Crit Rev Food Sci Nutrit 46:197–205

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus CJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Molec Biology Rev 65:1–43

    Article  CAS  Google Scholar 

  • Villalonga R, Cao R, Fragoso A, Damiao AE, Ortiz PD, Caballero J (2005) Supramolecular assembly of β-cyclodextrin-modified gold nanoparticles and Cu, Zn-superoxide dismutase on catalase. J Mol Catal B-Enzym 35:79–85

    Article  CAS  Google Scholar 

  • Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of cyclodextrins in enzyme technology. Chem Rev 107:3088–3116

    Article  CAS  Google Scholar 

  • Whittaker JW (2003) The irony of manganese superoxide dismutase. Biochem Soc Trans 31:1318–1321

    Article  CAS  Google Scholar 

  • Whittaker MM, Whittaker JW (2000) Recombinant superoxide dismutase from a hyperthermophilic archaeon, Pyrobaculum aerophilum. J Bio Inorg Chem 5:402–408

    CAS  Google Scholar 

  • Xuan SH, Wang F, Gong XL, Kong SK, Yu JC, Leung KCF (2011) Hierarchical core/shell Fe3O4@SiO2@γ-AlOOH@Au micro/nanoflowers for protein immobilization. Chem Commun 47:2514–2516

    Article  CAS  Google Scholar 

  • Yamano S, Maruyama T (1999) An azide-insensitive superoxide dismutase from a hyperthermophilic archaeon, Sulfolobus solfataricus. J Biochem 125:186–193

    Article  CAS  Google Scholar 

  • Yamano S, Sako Y, Nomura N, Maruyama T (1999) A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J Biochem 126:218–225

    Article  CAS  Google Scholar 

  • Yang Y, Bai YX, Li YF, Lin L, Cui YJ, Xia CG (2008a) Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization. J Magn Magn Mater 320:2350–2355

    Article  Google Scholar 

  • Yang Y, Bai YX, Li YF, Lin L, Cui YJ, Xia CG (2008b) Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity. Process Biochem 43:1179–1185

    Article  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomater 23(7):1553–1561

    Article  CAS  Google Scholar 

  • Zhang GH, Ge HB, Li QY, Zhang XY (2004) Role of SOD in protection strawberry leaves from photo-inhibition damage. Chin J Fruit Sci 21:328–330

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Project of State Oceanic Administration, China (201205020-03), the National Natural Science Foundation of China (20971024), and the University Natural Science Research Project of Anhui Province of China (No. KJ2010B161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Sheng, L. & Zhang, X. Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl Microbiol Biotechnol 96, 123–132 (2012). https://doi.org/10.1007/s00253-011-3835-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3835-9

Keywords

Navigation