Skip to main content
Log in

Microwave-Assisted Extraction of Phycobiliproteins from Porphyridium purpureum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, microwave-assisted extraction was first employed to extract the phycobiliproteins of Porphyridium purpureum (Pp). Freeze-dried Pp cells were subjected to microwave-assisted extraction (MAE) to extract phycoerythin (PE), phycocyanin (PC), and allophycocyanin (APC). MAE combined reproducibility and high extraction yields and allowed a 180- to 1,080-fold reduction of the extraction time compared to a conventional soaking process. The maximal PE extraction yield was obtained after 10-s MAE at 40 °C, and PE was thermally damaged at temperatures higher than 40 °C. In contrast, a flash irradiation for 10 s at 100 °C was the best process to efficiently extract PC and APC, as it combined a high temperature necessary to extract them from the thylakoid membrane to a short exposure to thermal denaturation. The extraction order of the three phycobiliproteins was coherent with the structure of Pp phycobilisomes. Moreover, the absorption and fluorescence properties of MAE extracted phycobiliproteins were stable for several months after the microwave treatment. Scanning electron microscopy indicated that MAE at 100 °C induced major changes in the Pp cell morphology, including fusion of the exopolysaccharidic cell walls and cytoplasmic membranes of adjacent cells. As a conclusion, MAE is a fast and high yield process efficient to extract and pre-purify phycobiliproteins, even from microalgae containing a thick exopolysaccharidic cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roy, S., Llewellyn, C., Skartstad Egeland, E., & Johnsen, G. (Eds.) (2011). Phytoplankton pigments: Characterization, chemotaxonomy and applications in oceanography. Cambridge, Cambridge University Press.

  2. Redlinger, T., & Gantt, E. (1981). Phycobilisome structure of Porphyridium cruentum: polypeptide composition. Plant Physiology, 68(6), 1375–9.

  3. Sidler, W. (1994). Phycobilisome and phycobiliprotein structures. In D. Bryant (Ed.), The molecular biology of cyanobacteria (pp. 139–216). Netherlands: Springer.

    Chapter  Google Scholar 

  4. Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Chidambara Murthy, K. N., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science & Technology, 16(9), 389–406. doi:10.1016/j.tifs.2005.02.006.

    Article  Google Scholar 

  5. Kuddus, M., Singh, P., Thomas, G., & Al-Hazimi, A. (2013). Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Research International, 2013, 742859. doi:10.1155/2013/742859.

    Article  CAS  Google Scholar 

  6. Benedetti, S., Benvenuti, F., Scoglio, S., & Canestrari, F. (2010). Oxygen radical absorbance capacity of phycocyanin and phycocyanobilin from the food supplement Aphanizomenon flos-aquae. Journal of Medicinal Food, 13(1), 223–227. doi:10.1089/jmf.2008.0257.

    Article  CAS  Google Scholar 

  7. S. Jeffrey, R. Mantoura, & S. Wright (Eds.) (1997). Phytoplankton pigments in oceanography: guidelines to modern methods. Paris, UNESCO.

  8. Eriksen, N. T. (2008). Production of phycocyanin–a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1–14. doi:10.1007/s00253-008-1542-y.

    Article  CAS  Google Scholar 

  9. Thangam, R., Suresh, V., Asenath Princy, W., Rajkumar, M., SenthilKumar, N., Gunasekaran, P., Kannan, S. (2013). C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0/G1 cell cycle arrest. Food Chemistry, 140(1), 262–272.

  10. Gantar, M., Dhandayuthapani, S., & Rathinavelu, A. (2012). Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. Journal of Medicinal Food, 15(12), 1091–1095. doi:10.1089/jmf.2012.0123.

    Article  CAS  Google Scholar 

  11. Wu, L.-C., Lin, Y.-Y., Yang, S.-Y., Weng, Y.-T., & Tsai, Y.-T. (2011). Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways. Journal of Biomedical Science, 18, 74. doi:10.1186/1423-0127-18-74.

    Article  CAS  Google Scholar 

  12. Nishanth, R. P., Ramakrishna, B. S., Jyotsna, R. G., Roy, K. R., Reddy, G. V., Reddy, P. K., & Reddanna, P. (2010). C-Phycocyanin inhibits MDR1 through reactive oxygen species and cyclooxygenase-2 mediated pathways in human hepatocellular carcinoma cell line. European Journal of Pharmacology, 649(1–3), 74–83. doi:10.1016/j.ejphar.2010.09.011.

    Article  CAS  Google Scholar 

  13. Pardhasaradhi, B. V. V, Ali, A. M., Kumari, A. L., Reddanna, P., & Khar, A. (2003). Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS. Molecular Cancer Therapeutics, 2(11), 1165–70.

  14. Dumay, J., Clément, N., Morançais, M., & Fleurence, J. (2013). Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresource Technology, 131, 21–27.

  15. Sørensen, L., Hantke, A., & Eriksen, N. T. (2013). Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. Journal of the Science of Food and Agriculture, 93(12), 2933–2938. doi:10.1002/jsfa.6116.

    Article  Google Scholar 

  16. Patil, G., & Raghavarao, K. S. M. S. (2007). Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), 156–164.

  17. Ramos, A., Acién, F. G., Fernández-Sevilla, J. M., González, C. V., & Bermejo, R. (2011). Development of a process for large-scale purification of C-phycocyanin from Synechocystis aquatilis using expanded bed adsorption chromatography. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 879(7–8), 511–519. doi:10.1016/j.jchromb.2011.01.013.

    Article  CAS  Google Scholar 

  18. Bermejo, R., Acién, F. G., Ibáñez, M. J., Fernández, J. M., Molina, E., & Alvarez-Pez, J. M. (2003). Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 790(1–2), 317–25.

  19. Soni, B., Trivedi, U., & Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology, 99(1), 188–194. doi:10.1016/j.biortech.2006.11.010.

    Article  CAS  Google Scholar 

  20. Moraes, C. C., & Kalil, S. J. (2009). Strategy for a protein purification design using C-phycocyanin extract. Bioresource Technology, 100(21), 5312–5317. doi:10.1016/j.biortech.2009.05.026.

    Article  CAS  Google Scholar 

  21. Pasquet, V., Chérouvrier, J.-R., Farhat, F., Thiéry, V., Piot, J.-M., Bérard, J.-B., & Picot, L. (2011). Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochemistry, 46(1), 59–67. doi:10.1016/j.procbio.2010.07.009.

    Article  CAS  Google Scholar 

  22. Choi, S.-K., Kim, J.-H., Park, Y.-S., Kim, Y.-J., & Chang, H.-I. (2007). An efficient method for the extraction of astaxanthin from the red yeast Xanthophyllomyces dendrorhous. Journal of Microbiology and Biotechnology, 17(5), 847–52.

  23. Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry, 61(20), 4667–4675. doi:10.1021/jf400819p.

    Article  CAS  Google Scholar 

  24. Destandau, E., Michel, T., & Elfakir, C. (2013). Microwave-assisted extraction. In: M. A. Rostagno & J. M. Prado (Eds.) Natural product extraction: principles and applications (pp. 157–195). London, RSC Publishing.

  25. Mandal (2007). Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews 7–18

  26. Shin, S., Lee, A., Lee, S., Lee, K., Kwon, J., Yoon, M. Y., & Kim, J. (2010). Microwave-assisted extraction of human hair proteins. Analytical Biochemistry, 407(2), 281–283. doi:10.1016/j.ab.2010.08.021.

    Article  CAS  Google Scholar 

  27. Moreira, M. M., Morais, S., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2012). A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 403(4), 1019–1029. doi:10.1007/s00216-011-5703-y.

    Article  CAS  Google Scholar 

  28. Wang, J.-X., Xiao, X.-H., & Li, G.-K. (2008). Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. Journal of Chromatography. A, 1198–1199, 45–53. doi:10.1016/j.chroma.2008.05.045.

    Article  Google Scholar 

  29. Li, D.-C., & Jiang, J.-G. (2010). Optimization of the microwave-assisted extraction conditions of tea polyphenols from green tea. International Journal of Food Sciences and Nutrition, 61(8), 837–845. doi:10.3109/09637486.2010.489508.

    Article  CAS  Google Scholar 

  30. Delazar, A., Nahar, L., Hamedeyazdan, S., & Sarker, S. D. (2012). Microwave-assisted extraction in natural products isolation. Methods in Molecular Biology (Clifton, N.J.), 864, 89–115. doi:10.1007/978-1-61779-624-1_5.

    Article  CAS  Google Scholar 

  31. Orio, L., Cravotto, G., Binello, A., Pignata, G., Nicola, S., & Chemat, F. (2012). Hydrodistillation and in situ microwave-generated hydrodistillation of fresh and dried mint leaves: a comparison study. Journal of the Science of Food and Agriculture, 92(15), 3085–3090. doi:10.1002/jsfa.5730.

    Article  CAS  Google Scholar 

  32. Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2009). Validation of green-solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni. Journal of Separation Science, 32(4), 613–622. doi:10.1002/jssc.200800552.

    Article  CAS  Google Scholar 

  33. Jahn, W., Steinbiss, J., & Zetsche, K. (1984). Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium. Planta, 161(6), 536–539. doi:10.1007/BF00407086.

    Article  CAS  Google Scholar 

  34. Patel, A. K., Laroche, C., Marcati, A., Ursu, A. V., Jubeau, S., Marchal, L., & Michaud, P. (2013). Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresource Technology, 145, 345–350. doi:10.1016/j.biortech.2012.12.038.

    Article  CAS  Google Scholar 

  35. Serive, B., Kaas, R., Bérard, J.-B., Pasquet, V., Picot, L., & Cadoret, J.-P. (2012). Selection and optimisation of a method for efficient metabolites extraction from microalgae. Bioresource Technology, 124, 311–320. doi:10.1016/j.biortech.2012.07.105.

    Article  CAS  Google Scholar 

  36. Walne, P. (1966). Experiments in the large-scale culture of the larvae of Ostrea edulis (L.). In: Fisheries investigations series II (pp. 53). London: Her Majesty’s stationery office.

  37. Munier, M., Jubeau, S., Wijaya, A., Morançais, M., Dumay, J., Marchal, L., Fleurence, J. (2013). Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chemistry, 400–407.

  38. Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), 419–35.

  39. Bryant, D. A., Guglielmi, G., Marsac, N. T., Castets, A.-M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. doi:10.1007/BF00446810.

    Article  CAS  Google Scholar 

  40. Bermejo Román, R., Alvárez-Pez, J. M., Acién Fernández, F. G., & Molina Grima, E. (2002). Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology, 93(1), 73–85.

  41. Ruiz-Ruiz, F., Benavides, J., & Rito-Palomares, M. (2013). Scaling-up of a B-phycoerythrin production and purification bioprocess involving aqueous two-phase systems: practical experiences. Process Biochemistry, 48(4), 738–745. doi:10.1016/j.procbio.2013.02.010.

    Article  CAS  Google Scholar 

  42. Benavides, J., & Rito-Palomares, M. (2005). Potential aqueous two-phase processes for the primary recovery of colored protein from microbial origin. Engineering in Life Sciences, 5(3), 259–266. doi:10.1002/elsc.200420073.

    Article  CAS  Google Scholar 

  43. Filly, A., Fernandez, X., Minuti, M., Visinoni, F., Cravotto, G., & Chemat, F. (2014). Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chemistry, 150, 193–198. doi:10.1016/j.foodchem.2013.10.139.

    Article  CAS  Google Scholar 

  44. Bermejo, R., Felipe, M. A., Talavera, E. M., & Alvarez-Pez, J. M. (2006). Expanded bed adsorption chromatography for recovery of phycocyanins from the microalga spirulina platensis. Chromatographia, 63(1–2), 59–66. doi:10.1365/s10337-005-0702-9.

    Article  CAS  Google Scholar 

  45. González-Ramírez, E., Andújar-Sánchez, M., Ortiz-Salmerón, E., Bacarizo, J., Cuadri, C., Mazzuca-Sobczuk, T., & Martínez-Rodríguez, S. (2014). Thermal and pH stability of the B-phycoerythrin from the red algae Porphyridium cruentum. Food Biophysics, 9(2), 184–192. doi:10.1007/s11483-014-9331-x.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the French cancer league (Comité 17 de la Ligue Nationale contre le Cancer), European FEDER fund no. 34755-2011 (ALG post-doctoral fellowship), and CPER “Contrats de Projet Etat-Région: Poitou-Charentes” funds (project “Extraction of anticancer pigments from marine microalgae”). We are grateful to the Poitou-Charentes region for CJ’s PhD grant. We also thank the “Cancéropôle Grand Ouest, axe Valorisation des produits de la mer en cancérologie” and Dr. Hélène Montanié, Dr. Isabelle Lanneluc, and Dr. Matthieu Garnier for scientific assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Picot.

Additional information

Highlights

1. Phycobiliproteins are high value fluorescent microalgae pigments.

2. Most phycobiliprotein extraction processes imply the use of ionic buffers or enzymes.

3. Porphyridium purpureum phycobiliproteins can be efficiently extracted using MAE.

4. MAE gives high extraction yields and reduces extraction time.

5. Absorption and fluorescence properties of extracted pigments are not altered by MAE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juin, C., Chérouvrier, JR., Thiéry, V. et al. Microwave-Assisted Extraction of Phycobiliproteins from Porphyridium purpureum . Appl Biochem Biotechnol 175, 1–15 (2015). https://doi.org/10.1007/s12010-014-1250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1250-2

Keywords

Navigation