Skip to main content
Log in

Decolorization Potential of Some Reactive Dyes with Crude Laccase and Laccase-Mediated System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, decolorization of dyestuffs, such as Reactive Red 198, Rem Blue RR, Dylon Navy 17, Rem Red RR, and Rem Yellow RR was studied using laccase and laccase-mediated system. The laccases are known to have an important potential for remediation of pollutants. Among these dyestuffs, decolorization of Rem Blue RR and Dylon Navy 17 was performed with crude laccase under optimized conditions. Vanillin was selected as laccase mediator after screening six different compounds with Rem Yellow RR, Reactive Red 198, and Rem Red RR as substrates. However, Rem Yellow RR was not decolorized by either laccase or laccase-mediated system. It is observed that the culture supernatant contained high laccase activity after treatment with catalase that was responsible for the decolorization. Besides, culture supernatant with high laccase activity as enzyme source was treated with catalase; in this way, the hypothesis that laccase was the enzyme responsible for decolorization was supported. The Rem Blue RR was decolorized with 64.84% under the optimum conditions and Dylon Navy 17 with 75.43% with crude laccase. However, using the laccase and vanillin, the decolorization of Reactive Red 198 and Rem Red RR was found to be 62% and 68%, respectively. Our study demonstrated that the decolorization abilities of laccase and/or laccase mediator systems were based on the types of mediator, the dye structure, and the standard experimental conditions. Also, the electrochemical behaviors of some samples were studied. The redox potentials of these samples were determined using cyclic voltammetry on glassy carbon electrode in phosphate buffer (pH 6) solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  2. Chung, K. T., Stevens, S. E., Jr., & Cerniglia, C. E. (1992). Critical Reviews in Microbiology, 18, 175–190.

    Article  CAS  Google Scholar 

  3. Michaels, G. B., & Lewis, D. L. (1985). Environmental Toxicology and Chemistry, 4, 45–50.

    Article  CAS  Google Scholar 

  4. Rodriguez Couto, S., & Sanroman, M. A. (2007). Dyes and Pigments, 74, 123–126.

    Article  Google Scholar 

  5. Stolz, A. (2001). Applied Microbiology and Biotechnology, 56, 69–80.

    Article  CAS  Google Scholar 

  6. Pointing, S. B. (2001). Applied Microbiology and Biotechnology, 57, 20–33.

    Article  CAS  Google Scholar 

  7. Gianfreda, L., Xu, F., & Bollag, J. (1999). The Biochemical Journal, 3, 1–25.

    CAS  Google Scholar 

  8. Crestini, C., & Argyropoulos, D. S. (1998). Bioorganic & Medicinal Chemistry, 6, 2161–2169.

    Article  CAS  Google Scholar 

  9. Pickard, M. A., Roman, A. R., Tinoco, R., & Vazquez-Duhalt, R. (1999). Applied and Environmental Microbiology, 65, 3805–3809.

    CAS  Google Scholar 

  10. Li, K., Xu, F., & Eriksson, K. E. (1999). Applied and Environmental Microbiology, 65, 2654–2660.

    CAS  Google Scholar 

  11. Tinoco, R., Verdin, J., & Vasquez-Duhalt, R. (2007). Journal of Molecular Catalysis. B, Enzymatic, 46, 1–7.

    Article  CAS  Google Scholar 

  12. Tavares, A. P. M., Gamelas, J. A. F., Gaspar, A. R., Evtuguin, D. V., & Xavier, A. M. R. B. (2004). Catalysis Communications, 5, 485–489.

    Article  CAS  Google Scholar 

  13. Gamelas, J. A. F., Tavares, A. P. M., Evtuguin, D. V., & Xavier, A. M. B. (2005). Journal of Molecular Catalysis. B, Enzymatic, 33, 57–64.

    Article  CAS  Google Scholar 

  14. Barriere, F., Ferry, Y., Rochefort, D., & Leech, D. (2004). Electrochemistry Communications, 6, 237–241.

    Article  CAS  Google Scholar 

  15. Camarero, S., Ibarra, D., Martinez, M. J., & Martinez, A. T. (2005). Applied and Environmental Microbiology, 71, 1775–1784.

    Article  CAS  Google Scholar 

  16. Johannes, C., & Majcherczyk, A. (2000). Applied and Environmental Microbiology, 66, 524–528.

    Article  CAS  Google Scholar 

  17. Kang, K. H., Dec, J., Park, H., & Bollag, J. M. (2002). Water Research, 36, 4907–4915.

    Article  CAS  Google Scholar 

  18. Bourbonnais, R., & Paice, M. G. (1990). FEBS Letters, 267, 99–102.

    Article  CAS  Google Scholar 

  19. Morozova, O. V., Shumakovich, G. P., Shleev, S. V., & Yaropolov, Y. I. (2007). Applied Biochemistry and Microbiology, 43, 523–535.

    Article  CAS  Google Scholar 

  20. Hu, M. R., Chao, Y. P., Zhang, G. Q., Xue, Z. Q., & Qian, S. (2009). Journal of Industrial Microbiology & Biotechnology, 36, 45–51.

    Article  CAS  Google Scholar 

  21. Sadhasivam, S., Savitha, S., & Swaminathan, K. (2009). World Journal of Microbiology and Biotechnology, 25, 1733–1741.

    Article  CAS  Google Scholar 

  22. Murugesan, K., Kim, Y., Jeon, J., & Chang, Y. (2009). Journal of Hazardous Materials, 168, 523–529.

    Article  CAS  Google Scholar 

  23. Tavares, A. P. M., Cristovao, R. O., & Gamales, J. A. F. (2009). Journal of Chemical Technology and Biotechnology, 84, 442–446.

    Article  CAS  Google Scholar 

  24. Murugesan, K., Yang, I., Kim, Y., Jeon, J., & Chang, Y. (2009). Applied Microbiology and Biotechnology, 82, 341–350.

    Article  CAS  Google Scholar 

  25. Tavares, A. P. M., Cristovao, R. O., Loureiro, J. M., Boaventura, R. A. R., & Macedo, E. A. (2008). Journal of Chemical Technology and Biotechnology, 83, 1609–1615.

    Article  CAS  Google Scholar 

  26. Chhabra, M., Mishra, S., & Sreekrishnan, T. R. (2008). Applied Biochemistry and Biotechnology, 151, 587–598.

    Article  CAS  Google Scholar 

  27. Cho, H., Cho, N., Jarosa-Wilkolazka, A., Rogalski, J., Leonowicz, A., Shin, Y., et al. (2007). Journal of the Faculty of Agriculture, 52, 275–280.

    CAS  Google Scholar 

  28. Gutierrez, A., Del Rio, J. C., Rencoret, J., Ibarra, D., & Martinez, A. T. (2006). Applied Microbiology and Biotechnology, 72, 845–851.

    Article  CAS  Google Scholar 

  29. Gedikli, S. (2008). Msc Thesis, Eskişehir Osmangazi Üniversitesi.

  30. Taspinar, A., & Kolankaya, N. (1998). Bulletin of Environmental Contamination and Toxicology, 61, 15–21.

    Article  CAS  Google Scholar 

  31. Couto, S. R., Sanromán, M., & Gubitz, G. M. (2005). Chemosphere, 58, 417–422.

    Article  Google Scholar 

  32. d’Acunzo, F., & Galli, C. (2003). European Journal of Biochemistry, 270, 3634–3640.

    Article  Google Scholar 

  33. Li, K. C., Helm, R. F., & Eriksson, K. E. L. (1998). Biotechnology and Applied Biochemistry, 27, 239–243.

    CAS  Google Scholar 

  34. Fernández-Sánchez, C., Tzanov, T., Gübitz, G. M., & Cavaco-Paul, A. (2002). Bioelectrochemistry, 58, 149–156.

    Article  Google Scholar 

  35. Borchert, M., & Libra, J. A. (2001). Biotechnology and Bioengineering, 75, 313–321.

    Article  CAS  Google Scholar 

  36. Munari, F. M., Tamara, A. G., Calloni, R., & Dillon, A. J. P. (2008). World Journal of Microbiology and Biotechnology, 24, 1383–1392.

    Article  CAS  Google Scholar 

  37. Wong, Y., & Yu, J. (1999). Water Research, 33, 3512–3520.

    Article  CAS  Google Scholar 

  38. Kapdan, I. K., Kargı, F., McMullan, G., & Marchant, R. (2000). Bioprocess Engineering, 22, 347–351.

    Article  CAS  Google Scholar 

  39. Jolivalt, C., Neuville, L., Boyer, F. D., Kerhoas, L., & Mougin, C. (2006). Journal of Agriculture and Food Chemistry, 54, 5046–5054.

    Article  CAS  Google Scholar 

  40. Mechichi, T., Mhiri, N., & Sayadi, S. (2006). Chemosphere, 64, 998–1005.

    Article  CAS  Google Scholar 

  41. Kariminiaae-Hamedaani, H. R., Sakurai, A., & Sakakibara, M. (2007). Dyes and Pigments, 72, 157–162.

    Article  CAS  Google Scholar 

  42. Zhang, M., Wu, F., Wei, Z., Xiao, Y., & Gonga, W. (2006). Enzyme and Microbial Technology, 39, 92–97.

    Article  CAS  Google Scholar 

  43. Revankar, M. S., & Lele, S. S. (2007). Bioresource Technology, 98, 775–780.

    Article  CAS  Google Scholar 

  44. Ciullini, I., Tilli, S., Scozzafava, A., & Briganti, F. (2008). Bioresource Technology, 99, 7003–7010.

    Article  CAS  Google Scholar 

  45. Pfaller, R., Aman, M., Freudenreich, J. (1998). Analysis of laccase mediator interactions in the LMS®, In: Proc. 7th Intl Conf Biotech Pulp Paper Industry, Vancouver, Canada, pp. A99-A102.

  46. Moldes, D., & Sanroman, M. A. (2006). World Journal of Microbiology and Biotechnology, 22, 1197–1204.

    Article  CAS  Google Scholar 

  47. Xu, F., Kulys, J. J., Duke, K., Li, K., Krikstopaitis, K., Deussen, H. J. W., et al. (2000). Applied and Environmental Microbiology, 66, 2052–2056.

    Article  CAS  Google Scholar 

  48. Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., & Borneman, S. (1997). Applied and Environmental Microbiology, 63, 4627–4632.

    CAS  Google Scholar 

Download references

Acknowledgements

This study is based partly on the MSc thesis of S.Şaşmaz, who is one of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Çabuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şaşmaz, S., Gedikli, S., Aytar, P. et al. Decolorization Potential of Some Reactive Dyes with Crude Laccase and Laccase-Mediated System. Appl Biochem Biotechnol 163, 346–361 (2011). https://doi.org/10.1007/s12010-010-9043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9043-8

Keywords

Navigation