Skip to main content
Log in

Vertebral Bodies or Discs: Which Contributes More to Human-like Lumbar Lordosis?

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

The attainment of upright posture, with its requisite lumbar lordosis, was a major turning point in human evolution. Nonhuman primates have small lordosis angles, whereas the human spine exhibits distinct lumbar lordosis (30°–80°). We assume the lumbar spine of the pronograde ancestors of modern humans was like those of extant nonhuman primates, but which spinal components changed in the transition from small lordosis angles to large ones is not fully understood.

Questions/Purposes

We wished to determine the relative contribution of vertebral bodies and intervertebral discs to lordosis angles in extant primates and humans.

Methods

We measured the lordosis, intervertebral disc, and vertebral body angles of 100 modern humans (orthograde primates) and 56 macaques (pronograde primates) on lateral radiographs of the lumbar spine (humans–standing, macaques–side-lying).

Results

The humans exhibited larger lordosis angles (51°) and vertebral body wedging (5°) than did the macaques (15° and −25°, respectively). The differences in wedging of the intervertebral discs, however, were much less pronounced (46° versus 40°).

Conclusions

These observations suggest the transition from pronograde to orthograde posture (ie, the lordosis angle) resulted mainly from an increase in vertebral body wedging and only in small part from the increase in wedging of the intervertebral discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abitbol MM. Lateral view of Australopithecus afarensis: primitive aspects of bipedal positional behavior in the earliest hominids. J Hum Evol. 1995;28:211–229.

    Article  Google Scholar 

  2. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 2008;17:2–19.

    Article  PubMed  Google Scholar 

  3. Alexander LA, Hancock E, Agouris I, Smith FW, MacSween A. The response of the nucleous pulposus of the lumbar intervertebral discs to functionally loaded positions. Spine (Phila PA 1976). 2007;32:1508–1512.

    Google Scholar 

  4. Andreasen ML, Langhoff L, Jensen TS, Albert HB. Reproduction of the lumbar lordosis: a comparison of standing radiographs versus supine magnetic resonance imaging obtained with straightened lower extremities. J Manipulative Physiol Ther. 2007;30:26–30.

    Article  PubMed  Google Scholar 

  5. Been E, Pessah H, Been L, Tawil A, Peleg S. New method for predicting the lumbar lordosis angle in skeletal material. Anat Rec (Hoboken). 2007;290:1568–1573.

    Google Scholar 

  6. Campana S, de Guise JA, Rillardon L, Mitton D, Skalli W. Lumbar intervertebral disc mobility: effect of disc degradation and of geometry. Eur J Orthop Surg Traumatol. 2007;17:533–541.

    Article  Google Scholar 

  7. Cant JG. Positional behavior of long-tailed macaques (Macaca fascicularis) in northern Sumatra. Am J Phys Anthropol. 1988;76:29–37.

    Article  CAS  PubMed  Google Scholar 

  8. Chen YL. Geometric measurements of the lumbar spine in Chinese men during trunk flexion. Spine (Phila PA 1976). 1999;24:666–669.

    CAS  Google Scholar 

  9. Chernukha KV, Daffner RH, Reigel DH. Lumbar lordosis measurement: a new method versus Cobb technique. Spine (Phila PA 1976). 1998;23:74–79; discussion 79–80.

    CAS  Google Scholar 

  10. Colman RJ, Kemnitz JW, Lane MA, Abbott DH, Binkley N. Skeletal effects of aging and menopausal status in female rhesus macaques. J Clin Endocrinol Metab. 1999;84:4144–4148.

    Article  CAS  PubMed  Google Scholar 

  11. Colman RJ, Lane MA, Binkley N, Wegner FH, Kemnitz JW. Skeletal effects of aging in male rhesus monkeys. Bone. 1999;24:17–23.

    Article  CAS  PubMed  Google Scholar 

  12. Colombini A, Lombardi G, Corsi MM, Banfi G. Pathophysiology of the human intervertebral disc. Int J Biochem Cell Biol. 2008;40:837–842.

    Article  CAS  PubMed  Google Scholar 

  13. Cunningham DJ. The lumbar curve in man and apes. Nature. 1886;33:378–379.

    Article  Google Scholar 

  14. DeRousseau CJ. Osteoarthritis in rhesus monkeys and gibbons: a locomotor model of joint degeneration. Contrib Primatol. 1988;25:1–145.

    Google Scholar 

  15. Edmondston SJ, Song S, Bricknell RV, Davies PA, Fersum K, Humphries P, Wickenden D, Singer KP. MRI evaluation of lumbar spine flexion and extension in asymptomatic individuals. Man Ther. 2000;5:158–164.

    Article  CAS  PubMed  Google Scholar 

  16. Farfan HF. Form and function of the musculoskeletal system as revealed by mathematical analysis of the lumbar spine: an essay. Spine (Phila PA 1976). 1995;20:1462–1474.

    CAS  Google Scholar 

  17. Fennel AJ, Jones AP, Hukins DW. Migration of the nucleous pulposus within the intervertebral disc during flexion and extension of the spine. Spine (Phila PA 1976). 1996;21:2753–2757.

    Google Scholar 

  18. Gal J. Mammalian spinal biomechanics: postural support in seated macaques. J Exp Biol. 2002;205:1703–1707.

    PubMed  Google Scholar 

  19. Gal JM. Mammalian spinal biomechanics: I. Static and dynamic mechanical properties of intact intervertebral joints. J Exp Biol. 1993;174:247–280.

    CAS  PubMed  Google Scholar 

  20. Garges KJ, Nourbakhsh A, Morris R, Yang J, Mody M, Patterson R. A comparison of the torsional stiffness of the lumbar spine in flexion and extension. J Manipulative Physiol Ther. 2008;31:563–569.

    Article  PubMed  Google Scholar 

  21. Gebo DL. Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol. 1996;101:55–92.

    Article  CAS  PubMed  Google Scholar 

  22. Gracovetsky SA, Iacono S. Energy transfers in the spinal engine. J Biomed Eng. 1987;9:99–114.

    Article  CAS  PubMed  Google Scholar 

  23. Haeusler M, Martelli SA, Boeni T. Vertebrae numbers of the early hominid lumbar spine. J Hum Evol. 2002;43:621–643.

    Article  PubMed  Google Scholar 

  24. Harrison DE, Harrison DD, Cailliet R, Janik TJ, Holland B. Radiographic analysis of lumbar lordosis: centroid, Cobb, TRALL, and Harrison posterior tangent methods. Spine (Phila PA 1976). 2001;26:E235–E242.

    CAS  Google Scholar 

  25. Hayama S. [Spinal compensatory curvature found in Japanese macaques trained for the acquisition of bipedalism] [in Japanese]. Growth. 1986;25:161–178.

    Google Scholar 

  26. Hayama S, Nakatsukasa M, Kunimatsu Y. Monkey performance: the development of bipedalism in trained Japanese monkeys. Kaibogaku Zasshi. 1992;67:169–185.

    CAS  PubMed  Google Scholar 

  27. Hirasaki E, Ogihara N, Hamada Y, Kumakura H, Nakatsukasa M. Do highly trained monkeys walk like humans? A kinematic study of bipedal locomotion in bipedally trained Japanese macaques. J Hum Evol. 2004;46:739–750.

    Article  PubMed  Google Scholar 

  28. Iwamoto M. Bipedalism of Japanese monkeys and carrying models of hominization. In: Kondo S, ed. Primate Morphophysiology Locomotor Analyses and Human Bipedalism. Tokyo, Japan: University of Tokyo Press; 1985:59–79.

    Google Scholar 

  29. Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR. Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine (Phila PA 1976). 2001;26:2596–2600.

    CAS  Google Scholar 

  30. Korovessis P, Dimas A, Iliopoulos P, Lambiris E. Correlative analysis of lateral vertebral radiographic variables and medical outcomes study short-form healthy survey: a comparative study in asymptomatic volunteers versus patients with low back pain. J Spinal Disord Tech. 2002;15:384–390.

    PubMed  Google Scholar 

  31. Kramer PA, Newell-Morris LL, Simkin PA. Spinal degenerative disk disease (DDD) in female macaque monkeys: epidemiology and comparison with women. J Orthop Res. 2002;20:399–408.

    Article  PubMed  Google Scholar 

  32. Latimer B, Ward CV. The thoracic and lumbar vertebrae. In: Leakey RE, Walker A, eds. The Nariokotome Homo Erectus Skeleton. Cambridge, MA: Harvard University; 1993:266–293.

    Google Scholar 

  33. Li Y, Crompton RH, Gunther M, Wang W, Savage R. Reconstructing the mechanics of quadrupedalism in an extinct hominoid. Z Morphol Anthropol. 2002;83:265–274.

    CAS  PubMed  Google Scholar 

  34. Murrie VL, Wilson H, Hollingworth W, Antoun NM, Dixon AK. Supportive cushions produce no practical reduction in lumbar lordosis. Br J Radiol. 2002;75:536–538.

    CAS  PubMed  Google Scholar 

  35. Nakatsukasa M. Acquisition of bipedalism: the Miocene hominoid record and modern analogues for bipedal protohominids. J Anat. 2004;204:385–402.

    Article  PubMed  Google Scholar 

  36. Nakatsukasa M. Comparative study of Moroto vertebral specimens. J Hum Evol. 2008;55:581–588.

    Article  PubMed  Google Scholar 

  37. Nakatsukasa M, Hayama S, Preuschoft H. Postcranial skeleton of a macaque trained for bipedal standing and walking and implications for functional adaptation. Folia Primatol (Basel). 1995;64:1–29.

    Article  CAS  Google Scholar 

  38. Natarajan RN, Andersson GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine (Phila PA 1976). 1999;24;1873–1881.

    CAS  Google Scholar 

  39. Ng JK, Kippers V, Richardson CA, Parnianpour M. Range of motion and lordosis of the lumbar spine: reliability of measurement and normative values. Spine (Phila PA 1976). 2001;26:53–60.

    CAS  Google Scholar 

  40. Nuckley DJ, Kramer PA, Del Rosario A, Fabro N, Baran S, Ching RP. Intervertebral disc degeneration in a naturally occurring primate model: radiographic and biomechanical evidence. J Orthop Res. 2008;26:1283–1288.

    Article  PubMed  Google Scholar 

  41. Pickford M, Senut B, Gommery D, Treil J. Bipedalism in Orrorin tugenenesis revealed by its femora. Comptes Rendus Palevol. 2002;1:191–203.

    Article  Google Scholar 

  42. Preuschoft H. Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? J Anat. 2004;204:363–384.

    Article  PubMed  Google Scholar 

  43. Preuschoft H, Hayama S, Gunther MM. Curvature of the lumbar spine as a consequence of mechanical necessities in Japanese macaques trained for bipedalism. Folia Primatol (Basel). 1988;50:42–58.

    Article  CAS  Google Scholar 

  44. Roussouly P, Gollogy S, Berthonnaud E, Dimnet J. Classification of normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila PA 1976). 2005;30:346–353.

    Google Scholar 

  45. Sanders WJ. Comparative morphometric study of the australopithecine vertebral series Stw-H8/H41. J Hum Evol. 1998;34:249–302.

    Article  CAS  PubMed  Google Scholar 

  46. Schultz AH. Vertebral column and thorax. In: Hofer H, Schultz AH, Stark D, eds. Primatologia 4. Basel, Switzerland: Karger; 1961:1–46.

  47. Setton LA, Chen J. Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am. 2006;88 (suppl 2):52–57.

    Article  PubMed  Google Scholar 

  48. Shapiro L. Functional morphology of the vertebral column in primates. In: Gebo D, ed. Postcranial Adaptation in Nonhuman Primates. DeKalb, IL: Northern Illinois University Press; 1993:121–149.

    Google Scholar 

  49. Shi C, Nakatsukasa M, Hayama S. Morphological comparison of the vertebral bodies in bipedally trained Japanese macaques. Anthropological Science. 2000;108:96.

    Google Scholar 

  50. Urban JP, Winlove CP. Pathophysiology of the intervertebral disc and the challenges for MRI. J Magn Reson Imaging. 2007;25:419–432.

    Article  PubMed  Google Scholar 

  51. Van Herp G, Rowe P, Salter P, Paul JP. Three dimensional lumbar spinal kinematics: a study of range of movement in 100 healthy subjects aged 20 to 60+ years. Rheumatology (Oxford). 2000;39:1337–1340.

    Article  Google Scholar 

  52. Vaz G, Roussouly P, Berthonnaud E, Dimnet J. Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J. 2002;11:80–87.

    Article  CAS  PubMed  Google Scholar 

  53. Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am. 2005;87:260–267.

    Article  PubMed  Google Scholar 

  54. Vrtovec T, Pernus F, Likar B. A review of methods for quantitative evaluation of spinal curvature. Eur Spine J. 2009;18:593–607.

    Article  PubMed  Google Scholar 

  55. Whitcome KK, Shapiro LJ, Lieberman DE. Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature. 2007;450:1075–1078.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Nili Avni-Magen, Biblical Zoo, Jerusalem; Dr Itzhak Aizenberg, Bet Dagan Veterinary Hospital; and Dr Yigal Horovits, Ramat-Gan Safari, for enabling us to study radiologic material in their care. Special thanks to Professor Yoel Rak, Hayuta Pessah, and Sharon Kessler for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ella Been PhD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

Each author certifies that his or her institution has approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

This work was performed at Tel Aviv University, Tel Aviv, Israel.

About this article

Cite this article

Been, E., Barash, A., Marom, A. et al. Vertebral Bodies or Discs: Which Contributes More to Human-like Lumbar Lordosis?. Clin Orthop Relat Res 468, 1822–1829 (2010). https://doi.org/10.1007/s11999-009-1153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-1153-7

Keywords

Navigation