Skip to main content
Log in

Essential Oil Vapors Assisted Plasma for Rapid, Enhanced Sanitization of Food-Associated Pathogenic Bacteria

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Antimicrobial treatment procedures are often applied during produce post-harvest processing and storage as a complementary measure to reduce the potential risk of foodborne illness. Herein, we investigate the feasibility and efficacy of utilizing essential oil vapor–assisted plasma treatments to sanitize lettuce, spinach, and tomatoes. These fresh produce items are often associated with foodborne illnesses. Additionally, potatoes were chosen to introduce topography diversity into the study. It was observed that the exposure times of bacteria-inoculated tomatoes, to essential oil vapor–assisted plasma, strongly affected bacterial inactivation of Salmonella enterica subsp. Enterica serovar typhimurium lilleengen type (LT) 2 (Salmonella typhimurium LT2), a gram-negative bacterium. Combining essential oil vapors with atmospheric plasma for 100 s resulted in a significant increase in logarithmic scale reductions compared to atmospheric plasma alone. For Salmonella, the logarithmic scale reduction in viable bacteria increased from 0.9 ± 0.38 to 1.7 ± 0.27 log10CFU/cm2 when the treatment atmosphere was changed from atmospheric plasma to essential oil vapor–assisted plasma. In Listeria innocua, a surrogate for L. monocytogenes, gram-positive bacteria, logarithmic scale reduction increased from 1.5 ± 0.22 to 2.5 ± 0.20 log10CFU/cm2. When an optimal treatment time of 100 s was used to treat the other vegetable substrates using essential oil vapor–assisted atmospheric plasma, there was no discernible effect of variations in the produce surface roughness and hydrophilicity on the bactericidal efficacy against Salmonella and Listeria. Overall, we conclude that the use of essential oil vapor–assisted plasma is a viable and rapid means of controlling contamination outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The corresponding author can provide the datasets produced and/or analyzed during the present study upon request.

References

  • Abdel-Rahman, M., Schulz-Von Der Gathen, V., & Gans, T. (2007). Transition phenomena in a radio-frequency inductively coupled plasma. Journal of Physics D: Applied Physics, 40(6), 1678–1683. https://doi.org/10.1088/0022-3727/40/6/017

    Article  CAS  Google Scholar 

  • Amrutha, B., Sundar, K., & Shetty, P. H. (2017). Study on E. coli and Salmonella biofilms from fresh fruits and vegetables. Journal of Food Science and Technology, 54(5), 1091–1097. https://doi.org/10.1007/s13197-017-2555-2

  • Arcot, Y., Liu, S., Ulugun, B., DeFlorio, W., Bae, M., Salazar, K. S., Taylor, T. M., Castillo, A., Cisneros-Zevallos, L., & Scholar, E. M. A. (2021). Fabrication of robust superhydrophobic coatings onto high-density polyethylene food contact surfaces for enhanced microbiological food safety. ACS Food Science and Technology, 1(7), 1180–1189. https://doi.org/10.1021/acsfoodscitech.1c00082

    Article  CAS  Google Scholar 

  • Arellano‐Ayala, K., Ascencio‐Valle, F. J., Gutiérrez‐González, P., Estrada‐Girón, Y., Torres‐Vitela, M. R., & Macías‐Rodríguez, M. E. (2020). Hydrophobic and adhesive patterns of lactic acid bacteria and their antagonism against foodborne pathogens on tomato surface ( Solanum lycopersicum L.). Journal of Applied Microbiology, 129(4), 876–891. https://doi.org/10.1111/jam.14672

  • Barel, G., & Ginzberg, I. (2008). Potato skin proteome is enriched with plant defence components. Journal of Experimental Botany, 59(12), 3347–3357. https://doi.org/10.1093/jxb/ern184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., & Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & Oil Science and Technology, 2(2), 49–55. https://doi.org/10.1016/j.gaost.2019.03.001

    Article  Google Scholar 

  • Birania, S., Attkan, A. K., Kumar, S., Kumar, N., & Singh, V. K. (2022). Cold plasma in food processing and preservation: A review. Journal of Food Process Engineering, 45(9), e14110. https://doi.org/10.1111/jfpe.14110

  • Bisht, A., Kamble, M. P., Choudhary, P., Chaturvedi, K., Kohli, G., Juneja, V. K., Sehgal, S., & Taneja, N. K. (2021). A surveillance of food borne disease outbreaks in India: 2009–2018. Food Control, 121, 107630. https://doi.org/10.1016/j.foodcont.2020.107630

  • Bourke, P., Ziuzina, D., Han, L., Cullen, P. J., & Gilmore, B. F. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123(2), 308–324. https://doi.org/10.1111/jam.13429

    Article  CAS  PubMed  Google Scholar 

  • Buendía-Moreno, L., Ros-Chumillas, M., Navarro-Segura, L., Sánchez-Martínez, M. J., Soto-Jover, S., Antolinos, V., Martínez-Hernández, G. B., & López-Gómez, A. (2019). Effects of an active cardboard box using encapsulated essential oils on the tomato shelf life. Food and Bioprocess Technology, 12(9), 1548–1558. https://doi.org/10.1007/s11947-019-02311-0

    Article  CAS  Google Scholar 

  • Busco, G., Robert, E., Chettouh-Hammas, N., Pouvesle, J. M., & Grillon, C. (2020). The emerging potential of cold atmospheric plasma in skin biology. Free Radical Biology and Medicine, 161, 290–304. https://doi.org/10.1016/j.freeradbiomed.2020.10.004

    Article  CAS  PubMed  Google Scholar 

  • Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems - A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040

    Article  CAS  Google Scholar 

  • Cantu, D., Blanco-Ulate, B., Yang, L., Labavitch, J. M., Bennett, A. B., & Powell, A. L. T. (2009). Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or Ethylene. Plant Physiology, 150(3), 1434–1449. https://doi.org/10.1104/pp.109.138701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CFR - Code of Federal Regulations Title 21. (2022). Retrieved February 01, 2023. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=182.20

  • Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicines, 4(3), 58. https://doi.org/10.3390/medicines4030058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, H., Zhang, X., Zhou, H., Zhao, C., & Lin, L. (2015). Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Botanical Studies, 56(1). https://doi.org/10.1186/s40529-015-0096-4

  • Das, S., Gajula, V. P., Mohapatra, S., Singh, G., & Kar, S. (2022). Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy. Health Sciences Review, 4, 100037. https://doi.org/10.1016/j.hsr.2022.100037

  • DeFlorio, W., Crawford, K., Liu, S., Hua, Y., Cisneros-Zevallos, L., & Akbulut, M. (2022). Facile, fluorine-free fabrication of bacterial antifouling titanium alloy Ti6Al4V surfaces for surgically implanted devices. Surface and Coatings Technology, 443, 128580. https://doi.org/10.1016/j.surfcoat.2022.128580

  • Doan, H. K., Antequera-Gómez, M. L., Parikh, A. N., & Leveau, J. H. J. (2020). Leaf surface topography contributes to the ability of Escherichia coli on leafy greens to resist removal by washing, escape disinfection with chlorine, and disperse through splash. Frontiers in Microbiology, 11, 1–14. https://doi.org/10.3389/fmicb.2020.01485

    Article  Google Scholar 

  • Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11(11), 115020. https://doi.org/10.1088/1367-2630/11/11/115020

  • Dong, X. Y., & Yang, Y. L. (2019). A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food and Bioprocess Technology, 12(8), 1409–1421. https://doi.org/10.1007/s11947-019-02305-y

    Article  CAS  Google Scholar 

  • dos Santos, J. S., Biduski, B., & dos Santos, L. R. (2021). Listeria monocytogenes: Health risk and a challenge for food processing establishments. Archives of Microbiology, 203(10), 5907–5919. https://doi.org/10.1007/s00203-021-02590-2

    Article  CAS  PubMed  Google Scholar 

  • Driscoll, S. P., Prins, A., Olmos, E., Kunert, K. J., & Foyer, C. H. (2006). Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. Journal of Experimental Botany, 57(2), 381–390. https://doi.org/10.1093/jxb/erj030

    Article  CAS  PubMed  Google Scholar 

  • Dubey, P., Singh, A., & Yousuf, O. (2022). Ozonation: An evolving disinfectant technology for the food industry. Food and Bioprocess Technology, 15(9), 2102–2113. https://doi.org/10.1007/s11947-022-02876-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., Von Dem Hagen, T., & Weltmann, K. D. (2011). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 013002. https://doi.org/10.1088/0022-3727/44/1/013002

  • Ehuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021). Salmonella, food safety and food handling practices. Foods, 10(5). https://doi.org/10.3390/foods10050907

  • El Atki, Y., Aouam, I., El Kamari, F., Taroq, A., Nayme, K., Timinouni, M., Lyoussi, B., & Abdellaoui, A. (2019). Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. Journal of Advanced Pharmaceutical Technology and Research, 10(2), 63–67. https://doi.org/10.4103/japtr.JAPTR_366_18

    Article  PubMed  PubMed Central  Google Scholar 

  • Elda B. Esguerra, R. R. (2018). Post-harvest management of tomato for quality and safety assurance Food and Agriculture Organization of the United Nations,. Save Food. http://www.fao.org/save-food/resources/keyfindings/en/

  • Ergönül, B. (2011). Survival characteristics of Salmonella typhimurium and Escherichia coli O157:H7 in minimally processed lettuce during storage at different temperatures. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 6(3), 339–342. https://doi.org/10.1007/s00003-010-0646-3

    Article  Google Scholar 

  • Estifaee, P., Su, X., Yannam, S. K., Rogers, S., & Thagard, S. M. (2019). Mechanism of E. coli inactivation by direct-in-liquid electrical discharge plasma in low conductivity solutions. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-38838-7

  • Ferrari, C. C., Sarantópoulos, C. I. G. L., Carmello-Guerreiro, S. M., & Hubinger, M. D. (2013). Effect of osmotic dehydration and pectin edible coatings on quality and shelf life of fresh-cut melon. Food and Bioprocess Technology, 6(1), 80–91. https://doi.org/10.1007/s11947-011-0704-6

    Article  CAS  Google Scholar 

  • Gao, S., Liu, G., Li, J., Chen, J., Li, L., Li, Z., Zhang, X., Zhang, S., Thorne, R. F., & Zhang, S. (2020). Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and Candida Species. Frontiers in Cellular and Infection Microbiology, 10, 810. https://doi.org/10.3389/fcimb.2020.603858

    Article  Google Scholar 

  • García-Salinas, S., Elizondo-Castillo, H., Arruebo, M., Mendoza, G., & Irusta, S. (2018). Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. Molecules, 23(6). https://doi.org/10.3390/molecules23061399

  • George, S. M., & Lund, B. M. (1992). The effect of culture medium and aeration on growth of Listeria monocytogenes at pH 4.5. Letters in Applied Microbiology, 15(2), 49–52. https://doi.org/10.1111/j.1472-765X.1992.tb00722.x

  • Ghate, V. S., Zhou, W., & Yuk, H. (2019). Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Comprehensive Reviews in Food Science and Food Safety, 18(2), 402–424. https://doi.org/10.1111/1541-4337.12418

  • Han, J. Y., Song, W. J., Eom, S., Kim, S. B., & Kang, D. H. (2020). Antimicrobial efficacy of cold plasma treatment against food-borne pathogens on various foods. Journal of Physics D: Applied Physics, 53(20), 204003. https://doi.org/10.1088/1361-6463/ab761f

  • Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. https://doi.org/10.1128/AEM.02660-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashemi, H., Hashemi, M., Talcott, S., Castillo, A., Taylor, T. M., & Akbulut, M. (2022). Nanoimbibition of essential oils in triblock copolymeric micelles as effective nanosanitizers against food pathogens Listeria monocytogenes and Escherichia coli O157: H7. ACS Food Science & Technology, 2(2), 290–301. https://doi.org/10.1021/acsfoodscitech.1c00396

  • Hensel, K., Kučerová, K., Tarabová, B., Janda, M., Machala, Z., Sano, K., Mihai, C. T., Ciorpac, M., Gorgan, L. D., Jijie, R., Pohoata, V., & Topala, I. (2015). Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases, 10(2), 029515. https://doi.org/10.1116/1.4919559

  • Hsu, H., Sheen, S., Sites, J., Huang, L., & Wu, J.S.-B. (2014). Effect of high pressure treatment on the survival of Shiga toxin-producing Escherichia coli in strawberry puree. Food Microbiology, 40, 25–30. https://doi.org/10.1016/j.fm.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  • Hunter, P. J., Shaw, R. K., Berger, C. N., Frankel, G., Pink, D., & Hand, P. (2015). Older leaves of lettuce (Lactuca spp.) support higher levels of Salmonella enterica ser. Senftenberg attachment and show greater variation between plant accessions than do younger leaves. FEMS Microbiology Letters, 362(11). https://doi.org/10.1093/femsle/fnv077

  • Inductively coupled plasma. (2011). Retrieved February 01, 2023 to July 31, 2023. http://hiq.linde-gas.com/en/analytical_methods/inductively_coupled_plasma.html

  • Ishaq, M., Kumar, S., Varinli, H., Han, Z. J., Rider, A. E., Evans, M. D. M., Murphy, A. B., & Ostrikov, K. (2014). Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Molecular Biology of the Cell, 25(9), 1523–1531. https://doi.org/10.1091/mbc.E13-10-0590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javed, A., Ahmad, A., Tahir, A., Shabbir, U., Nouman, M., & Hameed, A. (2019). Potato peel waste—Its nutraceutical, industrial and biotechnological applacations. AIMS Agriculture and Food, 4(3), 807–823. https://doi.org/10.3934/agrfood.2019.3.807

    Article  Google Scholar 

  • Jayeola, V., Jeong, S., Almenar, E., Marks, B. P., Vorst, K. L., Brown, J. W., & Ryser, E. T. (2019). Predicting the growth of Listeria monocytogenes and Salmonella typhimurium in diced celery, onions, and tomatoes during simulated commercial transport, retail storage, and display. Journal of Food Protection, 82(2), 287–300. https://doi.org/10.4315/0362-028X.JFP-18-277

    Article  PubMed  Google Scholar 

  • Jia, M., Liu, Z., Wu, C., Zhang, Z., Ma, L., Lu, X., Mao, Y., & Zhang, H. (2019). Detection of Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium based on cell elongation induced by beta-lactam antibiotics. The Analyst, 144(15), 4505–4512. https://doi.org/10.1039/c9an00569b

    Article  CAS  PubMed  Google Scholar 

  • Jin, L., Cai, Q., Huang, W., Dastmalchi, K., Rigau, J., Molinas, M., Figueras, M., Serra, O., & Stark, R. E. (2018). Potato native and wound periderms are differently affected by down-regulation of FHT, a suberin feruloyl transferase. Phytochemistry, 147, 30–48. https://doi.org/10.1016/j.phytochem.2017.12.011

    Article  CAS  PubMed  Google Scholar 

  • Jin, P., Wang, S. Y., Gao, H., Chen, H., Zheng, Y., & Wang, C. Y. (2012). Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chemistry, 132(1), 399–405. https://doi.org/10.1016/j.foodchem.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  • Ju, J., Xie, Y., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2019). Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition, 59(15), 2467–2480. https://doi.org/10.1080/10408398.2018.1456402

    Article  CAS  PubMed  Google Scholar 

  • Kozbial, A., Li, Z., Conaway, C., McGinley, R., Dhingra, S., Vahdat, V., Zhou, F., Durso, B., Liu, H., & Li, L. (2014). Study on the surface energy of graphene by contact angle measurements. Langmuir, 30(28), 8598–8606. https://doi.org/10.1021/la5018328

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Pipliya, S., & Srivastav, P. P. (2023). Effect of cold plasma on different polyphenol compounds: A review. Journal of Food Process Engineering, 46(1), e14203. https://doi.org/10.1111/jfpe.14203

  • Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. https://doi.org/10.1016/j.fm.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  • Lakehal, S., & A, M. (2016). Essential oil composition and antimicrobial activity of artemisia herba– alba asso grown in Algeria. Medicinal Chemistry, 6(6), 435–439. https://doi.org/10.4172/2161-0444.1000382

    Article  CAS  Google Scholar 

  • Langsrud, S., Veflen, N., Allison, R., Crawford, B., Izsó, T., Kasza, G., Lecky, D., Nicolau, A. I., Scholderer, J., & Skuland, S. E. (2023). A trans disciplinary and multi actor approach to develop high impact food safety messages to consumers: Time for a revision of the WHO-Five keys to safer food? Trends in Food Science & Technology, 133, 87–98.

    Article  CAS  Google Scholar 

  • Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B., & Carciofi, B. A. M. (2022). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312, 110748. https://doi.org/10.1016/j.jfoodeng.2021.110748

  • Lawal, O. A., Ogundajo, A. L., Avoseh, N. O., & Ogunwande, I. A. (2017). Medicinal spices and vegetables from Africa: Therapeutic potential against metabolic, inflammatory, infectious and systemic diseases. Cymbopogon Citratus, 397–423. https://doi.org/10.1016/B978-0-12-809286-6.00018-2

  • Liakos, I. L., Menager, C., Guigo, N., Holban, A. M., Iordache, F., Pignatelli, F., Grumezescu, A. M., Mazzolai, B., & Sbirrazzuoli, N. (2019). Suberin/ trans-cinnamaldehyde oil nanoparticles with antimicrobial activity and anticancer properties when loaded with paclitaxel. ACS Applied Bio Materials, 2(8), 3484–3497. https://doi.org/10.1021/acsabm.9b00408

    Article  CAS  PubMed  Google Scholar 

  • Lima, P. M., São José, J. F. B., Andrade, N. J., Pires, A. C. S., & Ferreira, S. O. (2013). Interaction between natural microbiota and physicochemical characteristics of lettuce surfaces can influence the attachment of Salmonella Enteritidis. Food Control, 30(1), 157–161. https://doi.org/10.1016/j.foodcont.2012.06.039

    Article  CAS  Google Scholar 

  • Liu, Shuhao, Ulugun, B., DeFlorio, W., Arcot, Y., Yegin, Y., Salazar, K. S., Castillo, A., Taylor, T. M., Cisneros-Zevallos, L., & Akbulut, M. (2021). Development of durable and superhydrophobic nanodiamond coating on aluminum surfaces for improved hygiene of food contact surfaces. Journal of Food Engineering, 298, 110487. https://doi.org/10.1016/j.jfoodeng.2021.110487

  • Liu, S., Shao, X., Wei, Y., Li, Y., Xu, F., & Wang, H. (2016). Solidago canadensis L. essential oil vapor effectively inhibits botrytis cinerea growth and preserves postharvest quality of strawberry as a food model system. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01179

  • Maćkiw, E., Korsak, D., Kowalska, J., Felix, B., Stasiak, M., Kucharek, K., & Postupolski, J. (2021). Incidence and genetic variability of Listeria monocytogenes isolated from vegetables in Poland. International Journal of Food Microbiology, 339, 109023. https://doi.org/10.1016/j.ijfoodmicro.2020.109023

  • Mai-Prochnow, A., Murphy, A. B., McLean, K. M., Kong, M. G., & Ostrikov, K. (2014). Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents, 43(6), 508–517. https://doi.org/10.1016/j.ijantimicag.2014.01.025

    Article  CAS  PubMed  Google Scholar 

  • Mallampati, R., & Valiyaveettil, S. (2012). Application of tomato peel as an efficient adsorbent for water purification - Alternative biotechnology? RSC Advances, 2(26), 9914–9920. https://doi.org/10.1039/c2ra21108d

    Article  CAS  Google Scholar 

  • Mao, L., Mhaske, P., Zing, X., Kasapis, S., Majzoobi, M., & Farahnaky, A. (2021). Cold plasma: Microbial inactivation and effects on quality attributes of fresh and minimally processed fruits and Ready-To-Eat vegetables. Trends in Food Science and Technology, 116, 146–175. https://doi.org/10.1016/j.tifs.2021.07.002

    Article  CAS  Google Scholar 

  • Maurya, A., Prasad, J., Das, S., & Dwivedy, A. K. (2021). Essential oils and their application in food safety. Frontiers in Sustainable Food Systems, 5, 133. https://doi.org/10.3389/fsufs.2021.653420

    Article  Google Scholar 

  • McCormic, Z. D., Patel, K., Higa, J., Bancroft, J., Donovan, D., Edwards, L., Cheng, J., Adcock, B., Bond, C., & Pereira, E. (2022). Bi-national outbreak of Salmonella Newport infections linked to onions: The United States experience. Epidemiology & Infection, 150, e199. https://doi.org/10.1017/s0950268822001571

  • Misra, N. N., Moiseev, T., Patil, S., Pankaj, S. K., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014). Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food and Bioprocess Technology, 7(10), 3045–3054. https://doi.org/10.1007/s11947-014-1356-0

    Article  CAS  Google Scholar 

  • Moncayo, D., Buitrago, G., & Algecira, N. (2013). The surface properties of biopolymer-coated fruit: A review. Scielo.Org.Co, 11(3), 11–16. https://doi.org/10.15446/ing.investig.v33n3.41034

  • Mu, M., Liu, S., DeFlorio, W., Hao, L., Wang, X., Salazar, K. S., Taylor, M., Castillo, A., Cisneros-Zevallos, L., Oh, J. K., Min, Y., & Akbulut, M. (2023). Influence of surface roughness, nanostructure, and wetting on bacterial adhesion. Langmuir. https://doi.org/10.1021/acs.langmuir.3c00091

    Article  PubMed  Google Scholar 

  • Muhammad, A. I., Xiang, Q., Liao, X., Liu, D., & Ding, T. (2018). Understanding the impact of nonthermal plasma on food constituents and microstructure—A review. Food and Bioprocess Technology, 11(3), 463–486. https://doi.org/10.1007/s11947-017-2042-9

    Article  CAS  Google Scholar 

  • Mukarram, M., Choudhary, S., Khan, M. A., Poltronieri, P., Khan, M. M. A., Ali, J., Kurjak, D., & Shahid, M. (2022). Lemongrass essential oil components with antimicrobial and anticancer activities. Antioxidants, 11(1). https://doi.org/10.3390/antiox11010020

  • Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20). https://doi.org/10.3390/molecules25204711

  • Naik, M. I., Fomda, B. A., Jaykumar, E., & Bhat, J. A. (2010). Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacterias. Asian Pacific Journal of Tropical Medicine, 3(7), 535–538. https://doi.org/10.1016/S1995-7645(10)60129-0

    Article  Google Scholar 

  • Nasiru, M. M., Frimpong, E. B., Muhammad, U., Qian, J., Mustapha, A. T., Yan, W., Zhuang, H., & Zhang, J. (2021). Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2626–2659. https://doi.org/10.1111/1541-4337.12740

  • Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, J. K., Yegin, Y., Yang, F., Zhang, M., Li, J., Huang, S., Verkhoturov, S. V., Schweikert, E. A., Perez-Lewis, K., Scholar, E. A., Taylor, T. M., Castillo, A., Cisneros-Zevallos, L., Min, Y., & Akbulut, M. (2018). The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Scientific Reports, 8(1), 17247. https://doi.org/10.1038/s41598-018-35343-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura, T. (2010). Inductively coupled plasma sources and applications. Physics Research International, 2010(1). https://doi.org/10.1155/2010/164249

  • Olatunde, O. O., Benjakul, S., & Vongkamjan, K. (2019). Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. Journal of Food Safety, 39(6), e12705. https://doi.org/10.1111/jfs.12705

  • Onyeaka, H., Nwaiwu, O., Obileke, K., Miri, T., & Al‐Sharify, Z. T. (2023). Global nutritional challenges of reformulated food: A review. Food Science & Nutrition. https://doi.org/10.1002/fsn3.3286

  • Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13(8), 1741–1747. https://doi.org/10.1002/app.1969.070130815

    Article  CAS  Google Scholar 

  • Ozen, E., & Singh, R. K. (2020). Atmospheric cold plasma treatment of fruit juices: A review. Trends in Food Science and Technology, 103, 144–151. https://doi.org/10.1016/j.tifs.2020.07.020

    Article  CAS  Google Scholar 

  • Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential oils: Sources of antimicrobials and food preservatives. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02161

  • Pankaj, S. K., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016–4021. https://doi.org/10.1002/jsfa.8268

    Article  CAS  PubMed  Google Scholar 

  • Patinglag, L., Melling, L. M., Whitehead, K. A., Sawtell, D., Iles, A., & Shaw, K. J. (2021). Non-thermal plasma-based inactivation of bacteria in water using a microfluidic reactor. Water Research, 201. https://doi.org/10.1016/j.watres.2021.117321

  • Perez-Lewis, K. L., Yegin, Y., Cisneros-Zevallos, L., Castillo, A., Kerth, C. R., Akbulut, M., & Taylor, T. M. (2018). Geraniol-loaded polymeric nanoparticles inhibit enteric pathogens on spinach during posttreatment refrigerated and temperature abuse storage. Frontiers in Sustainable Food Systems, 2, 4. https://doi.org/10.3389/fsufs.2018.00004

  • Perumal, A. B., Sellamuthu, P. S., Nambiar, R. B., & Sadiku, E. R. (2017). Effects of essential oil vapour treatment on the postharvest disease control and different defence responses in two mango (Mangifera indica L.) cultivars. Food and Bioprocess Technology, 10(6), 1131–1141. https://doi.org/10.1007/s11947-017-1891-6

  • Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2006). Antimicrobial activity of essential oils on Salmonella enteritidis, Escherichia coli, and Listeria innocua in fruit juices. Journal of Food Protection, 69(7), 1579–1586. https://doi.org/10.4315/0362-028X-69.7.1579

    Article  CAS  PubMed  Google Scholar 

  • Ruengvisesh, S., Oh, J. K., Kerth, C. R., Akbulut, M., & Matthew Taylor, T. (2019). Inhibition of bacterial human pathogens on tomato skin surfaces using eugenol-loaded surfactant micelles during refrigerated and abuse storage. Journal of Food Safety, 39(2), e12598. https://doi.org/10.1111/jfs.12598

  • Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44, 235–241. https://doi.org/10.1016/j.ifset.2017.02.012

    Article  CAS  Google Scholar 

  • Scaramuzza, N., Cigarini, M., Mutti, P., & Berni, E. (2020). Sanitization of packaging and machineries in the food industry: Effect of hydrogen peroxide on ascospores and conidia of filamentous fungi. International Journal of Food Microbiology, 316. https://doi.org/10.1016/j.ijfoodmicro.2019.108421

  • Sharma, K., Babaei, A., Oberoi, K., Aayush, K., Sharma, R., & Sharma, S. (2022a). Essential oil nanoemulsion edible coating in food industry: A review. Food and Bioprocess Technology, 15(11), 2375–2395. https://doi.org/10.1007/s11947-022-02811-6

    Article  CAS  Google Scholar 

  • Sharma, S., Mulrey, L., Byrne, M., Jaiswal, A. K., & Jaiswal, S. (2022b). Encapsulation of essential oils in nanocarriers for active food packaging. Foods, 11(15), 2337. https://doi.org/10.3390/foods11152337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skolik, P., McAinsh, M. R., & Martin, F. L. (2019). ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit. Planta, 249(3), 925–939. https://doi.org/10.1007/s00425-018-3060-1

    Article  CAS  PubMed  Google Scholar 

  • Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003

    Article  CAS  Google Scholar 

  • Thomas, L., Ducarroir, M., Hillel, R., & Berjoan, R. (2001). Ion bombardment and temperature effects on the microstructure of RF plasma chemical vapor-deposited SiC:H. Surface and Coatings Technology, 142–144, 829–834. https://doi.org/10.1016/S0257-8972(01)01118-5

    Article  Google Scholar 

  • Varilla, C., Marcone, M., & Annor, G. A. (2020). Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods, 9(10), 1435. https://doi.org/10.3390/foods9101435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogg, G., Fischer, S., Leide, J., Emmanuel, E., Jetter, R., Levy, A. A., & Riederer, M. (2004). Tomato fruit cuticular waxes and their effects on transpiration barrier properties: Functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. Journal of Experimental Botany, 55(401), 1401–1410. https://doi.org/10.1093/jxb/erh149

    Article  CAS  PubMed  Google Scholar 

  • Wende, K., Williams, P., Dalluge, J., Van Gaens, W., Aboubakr, H., Bischof, J., von Woedtke, T., Goyal, S. M., Weltmann, K.-D., Bogaerts, A., Masur, K., & Bruggeman, P. J. (2015). Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases, 10(2), 029518. https://doi.org/10.1116/1.4919710

  • Wiart, C. (2014). Terpenes. Lead compounds from medicinal plants for the treatment of neurodegenerative diseases, 189–284. https://doi.org/10.1016/b978-0-12-398373-2.00002-9

  • Willis, C., McLauchlin, J., Aird, H., Amar, C., Barker, C., Dallman, T., Elviss, N., Lai, S., & Sadler-Reeves, L. (2020). Occurrence of Listeria and Escherichia coli in frozen fruit and vegetables collected from retail and catering premises in England 2018–2019. International Journal of Food Microbiology, 334, 108849. https://doi.org/10.1016/j.ijfoodmicro.2020.108849

  • Yoo, J. H., Baek, K. H., Heo, Y. S., Yong, H. I., & Jo, C. (2021). Synergistic bactericidal effect of clove oil and encapsulated atmospheric pressure plasma against Escherichia coli O157:H7 and Staphylococcus aureus and its mechanism of action. Food Microbiology, 93, 103611. https://doi.org/10.1016/j.fm.2020.103611

  • Yousuf, B., Wu, S., & Siddiqui, M. W. (2021). Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends in Food Science and Technology, 108, 245–257. https://doi.org/10.1016/j.tifs.2021.01.016

    Article  CAS  Google Scholar 

  • Yu, X., Zheng, P., Zou, Y., Ye, Z., Wei, T., Lin, J., Guo, L., Yuk, H.-G., & Zheng, Q. (2022). A review on recent advances in LED-based non-thermal technique for food safety: Current applications and future trends. Critical Reviews in Food Science and Nutrition, 1–16. https://doi.org/10.1080/10408398.2022.2049201

  • Zhang, M., Oh, J. K., Cisneros-Zevallos, L., & Akbulut, M. (2013a). Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. Journal of Food Engineering, 119(3), 425–432. https://doi.org/10.1016/j.jfoodeng.2013.05.045

  • Zhang, X., Wang, L., & Levänen, E. (2013b). Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Advances, 3(30), 12003–12020. https://doi.org/10.1039/c3ra40497h

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by Food Manufacturing Technologies Program A1363 (grant number 2019-68015-29231, project number TEX09762) from the United States Department of Agriculture (USDA). In addition, this work was partly supported by the USDA National Institute of Food and Agriculture—Specialty Crop Research Initiative (SCRI) under C-REEMS grant proposal number of 2021-07786 and the tracking number of GRANT13369273. Additionally, we had used Texas A&M University Materials Characterization Facility (Research Resource ID: RRID: SCR_0221) to carry out our analyses.

Author information

Authors and Affiliations

Authors

Contributions

We would like to acknowledge the valuable contributions made by the following individuals to the development and improvement of this manuscript: Yashwanth Arcot: conceptualization, methodology, formal analysis, investigation, and writing—original draft; Minchen Mu: resources and investigation; Dr. Thomas Taylor and Dr. Alejandro Castillo: resources; Dr. Luis Cisneros-Zevallos: resources, investigation, and writing—original draft; and Dr. Mustafa E. S. Akbulut: conceptualization, resources, investigation, and writing—original draft. Their collective efforts significantly enhanced the quality of this manuscript.

Corresponding author

Correspondence to Mustafa E. S. Akbulut.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1777 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcot, Y., Mu, M., Taylor, T.M. et al. Essential Oil Vapors Assisted Plasma for Rapid, Enhanced Sanitization of Food-Associated Pathogenic Bacteria. Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03203-0

Keywords

Navigation