Skip to main content
Log in

High Antibacterial Activity of Spermine Functionalized Carbon Dots and Its Potential Application in Sausage Preservation

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Carbon-based antibacterial materials have attracted considerable attention to preserve food and prolong the shelf life. In this study, four types of carbon dots (CDs) based on glucose and biogenic amines including spermine (Spe), putrescine (Put), spermidine (Spd) and histamine (His) were synthesized by microwave synthesis. The nanosized, amorphous and nearly spherical CDs had excellent water solubility. The four positive charge CDs containing carbon, nitrogen and oxygen elements could emit blue fluorescent. Among these CDs, Spe-CDs displayed the best antibacterial activity for S. aureus, and the values of minimum inhibitory concentration and minimum bactericidal concentration were 0.04 and 0.08 mg/mL, respectively. The exposure of Spe-CDs was able to disrupt the cell wall and membrane of S. aureus, which resulted in the shrinkage and disintegration of S. aureus observed in cell morphology. The excellent antibacterial activity of Spe-CDs was attributed to its smaller size, higher surface positive charge and higher ROS production, compared to Put-CDs, Spd-CDs and His-CDs. The preservation effect of Spe-CDs on sausage was explored during 4 °C storage, which could effectively inhibit the spoilage of sausage and prolong their shelf-life. The Spe-CDs might have the potential to be a food antibacterial preservation agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data are available on request from the authors.

References

  • Ahmed, S., Sameen, D. E., Lu, R., Li, R., Dai, J., Qin, W., & Liu, Y. (2020). Research progress on antimicrobial materials for food packaging. Critical Reviews in Food Science and Nutrition, 62, 3088–3102. https://doi.org/10.1080/10408398.2020.1863327

  • Atulbhai, S. V., Swapna, B., & Kailasa, S. K. (2023). Microwave synthesis of blue emissive carbon dots from 5 sulpho anthranilic acid and 1,5-diphenyl carbazide for sensing of levocetirizine and niflumic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 287, 122098.  https://doi.org/10.1016/j.saa.2022.122098

  • Basavegowda, N., Mandal, T. K., & Baek, K.-H. (2019). Bimetallic and trimetallic nanoparticles for active food packaging applications: A review. Food and Bioprocess Technology, 13, 30–44. https://doi.org/10.1007/s11947-019-02370-3

    Article  CAS  Google Scholar 

  • Bing, W., Sun, H., Yan, Z., Ren, J., & Qu, X. (2016). Programmed bacteria death induced by carbon dots with different surface charge. Small, 12, 4713–4718. https://doi.org/10.1002/smll.201600294

    Article  CAS  PubMed  Google Scholar 

  • Cai, L., & Wang, Y. (2021). Physicochemical and antioxidant properties based on fish sarcoplasmic protein/chitosan composite films containing ginger essential oil nanoemulsion. Food and Bioprocess Technology, 14, 151–163. https://doi.org/10.1007/s11947-020-02564-0

    Article  CAS  Google Scholar 

  • Da Silva, W. M. F., Kringel, D. H., De Souza, E. J. D., Da Rosa Zavareze, E., & Dias, A. R. G. (2021). Basil essential oil: Methods of extraction, chemical composition, biological activities, and food applications. Food and Bioprocess Technology, 15, 1–27. https://doi.org/10.1007/s11947-021-02690-3

    Article  CAS  Google Scholar 

  • Ezati, P., Rhim, J. W., Molaei, R., Priyadarshi, R., & Han, S. (2022). Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biology and Technology, 186, 111845.  https://doi.org/10.1016/j.postharvbio.2022.111845

  • Fan, K., Zhang, M., & Chen, H. (2020). Effect of ultrasound treatment combined with carbon dots coating on the microbial and physicochemical quality of fresh-cut cucumber. Food and Bioprocess Technology, 13, 648–660. https://doi.org/10.1007/s11947-020-02424-x

    Article  CAS  Google Scholar 

  • Fan, K., Zhang, M., Fan, D., & Jiang, F. (2019). Effect of carbon dots with chitosan coating on microorganisms and storage quality of modified-atmosphere-packaged fresh-cut cucumber. Journal of the Science of Food and Agriculture, 99, 6032–6041. https://doi.org/10.1002/jsfa.9879

    Article  CAS  PubMed  Google Scholar 

  • Fan, K., Zhang, M., Guo, C., Dan, W., & Devahastin, S. (2021). Laser-induced microporous modified atmosphere packaging and chitosan carbon-dot coating as a novel ccombined preservation method for fresh-cut cucumber. Food and Bioprocess Technology, 14, 968–983. https://doi.org/10.1007/s11947-021-02617-y

    Article  CAS  Google Scholar 

  • Fan, Z., Po, H. L., Wong, K. K., Chen, S., & Lau, S. P. (2018). Polyethyleneimine-modified graphene oxide as novel antibacterial agent and its synergistic effect with daptomycin for methicillin-resistant staphylococcus aureus. ACS Applied Nano Materials, 1, 1811–1818. https://doi.org/10.1021/acsanm.8b00219

    Article  CAS  Google Scholar 

  • Gagic, M., Kociova, S., Smerkova, K., Michalkova, H., Setka, M., Svec, P., Pribyl, J., Masilko, J., Balkova, R., Heger, Z., Richtera, L., Adam, V., & Milosavljevic, V. (2020). One-pot synthesis of natural amine-modified biocompatible carbon quantum dots with antibacterial activity. Journal of Colloid and Interface Science, 580, 30–48. https://doi.org/10.1016/j.jcis.2020.06.125

    Article  CAS  PubMed  Google Scholar 

  • Ghirardello, M., Ramos-Soriano, J., & Galan, M. C. (2021). Carbon dots as an emergent class of antimicrobial agents. Nanomaterials, 11, 1877. https://doi.org/10.3390/nano11081877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, R., Chen, B., Li, F., Weng, S., Zheng, Z., Chen, M., Wu, W., Lin, X., & Yang, C. (2018). Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sensors and Actuators B, 264, 193–201. https://doi.org/10.1016/j.snb.2018.02.175

    Article  CAS  Google Scholar 

  • He, T., Wang, H., Chen, Z., Liu, S., Li, J., & Li, S. (2018). Natural quercetin AIEgen composite film with antibacterial and antioxidant properties for in situ sensing of Al3+ residues in food, detecting food spoilage, and extending food storage times. ACS Applied Bio Materials, 1, 636–642. https://doi.org/10.1021/acsabm.8b00128

    Article  CAS  PubMed  Google Scholar 

  • Jian, H. J., Wu, R. S., Lin, T. Y., Li, Y. J., Lin, H. J., Harroun, S. G., Lai, J. Y., & Huang, C. C. (2017). Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano, 11, 6703–6716. https://doi.org/10.1021/acsnano.7b01023

    Article  CAS  PubMed  Google Scholar 

  • Jian, H. J., Yu, J. T., Li, Y., Unnikrishnan, B., Huang, Y., Luo, L., Ma, H., Harroun, S. G., Chang, H., Lin, H., Lai, J., & Huang, C. (2020). Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chemical Engineering Journal, 386, 123913. . https://doi.org/10.1016/j.cej.2019.123913

  • Kailasa, S. K., Vajubhai, G. N., Koduru, J. R., & Park, T. J. (2023). Recent progress of nanomaterials for colorimetric and fluorescence sensing of reactive oxygen species in biological and environmental samples. Trends in Environmental Analytical Chemistry, 37, e00196. . https://doi.org/10.1016/j.teac.2023.e00196

  • Kateshiya, M. R., Malek, N. I., & Kailasa, S. K. (2022). Green fluorescent carbon dots functionalized MoO3 nanoparticles for sensing of hypochlorite. Journal of Molecular Liquids, 351. https://doi.org/10.1016/j.molliq.2022.118628

  • Li, Y. J., Harroun, S. G., Su, Y. C., Huang, C. F., Unnikrishnan, B., Lin, H. J., Lin, C. H., & Huang, C. C. (2016). Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Advanced Healthcare Materials, 5, 2545–2554. https://doi.org/10.1002/adhm.201600297

    Article  CAS  PubMed  Google Scholar 

  • Liang, J. R., Li, W., Chen, J. Y., Huang, X. M., Liu, Y. L., Zhang, X. J., Shu, W., Lei, B. F., & Zhang, H. R. (2021). Antibacterial activity and synergetic mechanism of carbon dots against gram-positive and -negative bacteria. ACS Applied Bio Materials, 4, 6937–6945. https://doi.org/10.1021/acsabm.1c00618

    Article  CAS  PubMed  Google Scholar 

  • Lin, R., Cheng, S. S., & Tan, M. Q. (2022). Green synthesis of fluorescent carbon dots with antibacterial activity and their application in Atlantic mackerel (Scomber scombrus) storage. Food & Function, 13, 2098–2108. https://doi.org/10.1039/D1FO03426

    Article  CAS  Google Scholar 

  • Malik, G. K., & Mitra, J. (2021). Zinc oxide nanoparticle synthesis, characterization, and their effect on mechanical, barrier, and optical properties of HPMC-based edible film. Food and Bioprocess Technology, 14, 441–456. https://doi.org/10.1007/s11947-020-02566-y

    Article  CAS  Google Scholar 

  • Plati, F., & Paraskevopoulou, A. (2022). Micro-and nano-encapsulation as tools for essential oils advantages’ exploitation in food applications: The case of oregano essential oil. Food and Bioprocess Technology, 15, 949–977. https://doi.org/10.1007/s11947-021-02746-4

    Article  CAS  Google Scholar 

  • Ribeiro-Santos, R., Andrade, M., Sanches-Silva, A., & de Melo, N. R. (2017). Essential oils for food application: Natural substances with established biological activities. Food and Bioprocess Technology, 11, 43–71. https://doi.org/10.1007/s11947-017-1948-6

    Article  CAS  Google Scholar 

  • Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L., & Souto, E. B. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials, 10, 292. https://doi.org/10.3390/nano10020292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocks, S. M. (2004). Mechanism and use of the commercially available viability stain, BacLight. Cytometry. Part A, 61, 189–195. https://doi.org/10.1002/cyto.a.20069

    Article  CAS  Google Scholar 

  • Sun, Y. N., Zhang, M., Bhandari, B., & Yang, C. H. (2020). Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods. Food Reviews International, 38, 1513–1532.  https://doi.org/10.1080/87559129.2020.1818255

  • Tong, G., Du, F., Wu, W., Wu, R., Liu, F., & Liang, Y. (2013). Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process. Journal of Materials Chemistry B, 1, 2647–2657. https://doi.org/10.1039/c3tb20229a

    Article  CAS  PubMed  Google Scholar 

  • Tong, J. R., Zhang, Z. H., Wu, Q., Huang, Z. H., Malakar, P. K., Chen, L. B., Liu, H. Q., Pan, Y. J., & Zhao, Y. (2021). Antibacterial peptides from seafood: A promising weapon to combat bacterial hazards in food. Food Control, 125.  https://doi.org/10.1016/j.foodcont.2021.108004

  • Verma, A., Arshad, F., Ahmad, K., Goswami, U., Samanta, S. K., Sahoo, A. K., & Sk, M. P. (2020). Role of surface charge in enhancing antibacterial activity of fluorescent carbon dots. Nanotechnology, 31, 095101.  https://doi.org/10.1088/1361-6528/ab55b8

  • Wang, H. J., Song, Z., Gu, J., Li, S., Wu, Y., & Han, H. (2019). Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection. ACS Biomaterials Science & Engineering, 5, 4739–4749. https://doi.org/10.1021/acsbiomaterials.9b00583

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, S., Pu, Q., Li, Y., Wang, X., Jiang, Y., Yang, D., Yang, Y., Yang, J., & Sun, C. (2018). Rapid identification of Staphylococcus aureus, Vibrio parahaemolyticus and Shigella sonnei in foods by solid phase microextraction coupled with gas chromatography-mass spectrometry. Food Chemistry, 262, 7–13. https://doi.org/10.1016/j.foodchem.2018.04.088

    Article  CAS  PubMed  Google Scholar 

  • Ye, Z. G., Li, G. X., Lei, J., Liu, M., Jin, Y., & Li, B. X. (2020). One-step and one-precursor hydrothermal synthesis of carbon dots with superior antibacterial activity. ACS Applied Bio Materials, 3, 7095–7102. https://doi.org/10.1021/acsabm.0c00923

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. L., Zhang, L. F., Hu, Q. P., Hao, D. L., & Xu, J. G. (2017). Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway. Food Control, 80, 290–296. https://doi.org/10.1016/j.foodcont.2017.05.016

    Article  CAS  Google Scholar 

  • Zhao, L., Zhang, M., Mujumdar, A. S., Adhikari, B., & Wang, H. (2022). Preparation of a novel carbon dot/polyvinyl alcohol composite film and its application in food preservation. ACS Applied Materials & Interfaces, 14, 37528–37539. https://doi.org/10.1021/acsami.2c10869

    Article  CAS  Google Scholar 

  • Zhou, J. G., Booker, C., Li, R. Y., Zhou, X. T., Sham, T. K., Sun, X. L., & Ding, Z. F. (2007). An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). Journal of the American Chemical Society, 129, 744–745. https://doi.org/10.1021/ja0669070

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Xu, C., Zhang, N., Ding, X., Yu, B., & Xu, F. (2018). Polycationic synergistic antibacterial agents with multiple functional components for efficient anti-infective therapy. Advanced Functional Materials, 28, 1706709. https://doi.org/10.1002/adfm.201706709

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31972105).

Author information

Authors and Affiliations

Authors

Contributions

Shasha Cheng provided the idea, supervised the experiments and wrote the main manuscript text. Xue Dong carried out the experiments. Haitao Wang and Yukun Song provided help for the characterization of carbon dots. Mingqian Tan revised the manuscript.

Corresponding author

Correspondence to Shasha Cheng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1016 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Dong, X., Wang, H. et al. High Antibacterial Activity of Spermine Functionalized Carbon Dots and Its Potential Application in Sausage Preservation. Food Bioprocess Technol 16, 3003–3018 (2023). https://doi.org/10.1007/s11947-023-03091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03091-4

Keywords

Navigation