Skip to main content
Log in

Synthesis and Characterization of Quercetin@Ca3(PO4)2 Hybrid Nanofibers with Antibiofilm Properties and Antioxidant Activity for the Deep-frying Procedure of Sunflower Oil

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Quercetin, the well-known abundant natural flavonoid, displays a wide range of biological and medicinal properties with antioxidant, anticancer, antimicrobial, and antibiofilm activities. However, poor aqueous solubility and low stability limit its potential prophylactic or therapeutic uses. In the present study, a novel type of quercetin-loaded Ca3(PO4)2·hybrid nanofibers (HNFs) was fabricated to overcome the mentioned restrictions. The nanostructures were instantly prepared by the incubation of a mixture containing quercetin (0.1 mg mL–1), calcium chloride (40 mM), and phosphate buffer (100 mM, pH 7.5) at 25 °C. The high-performance liquid chromatography (HPLC) results indicated a successful entrapment of quercetin into the prepared HNFs (98%). Compared to the free quercetin, the encapsulation showed 13- and fourfold increases in the prepared HNFs’ stability at 60 °C and pH 2 and 4, respectively. After a 240-min exposure to the UV light, 90% of the flavonoid loaded on the fabricated HNFs remained intact in the aqueous solution. Quercetin@Ca3(PO4)2·HNFs protected the fatty acids composition of sunflower oil from lipid peroxidation up to 55% after 70 frying cycles. The prepared HNFs (2.5 mg mL–1) disassembled biofilms formed by Staphylococcus aureus (82.5%), Bacillus subtilis (80%), Escherichia coli (66%), and Pseudomonas aeruginosa (30%). As a result, quercetin@Ca3(PO4)2·HNFs can be purposed as an antibiofilm and antioxidant to preserve sunflower oil. These promising results confirm that quercetin@Ca3(PO4)2·HNFs provide a good potential for eventual application in the food industry as an antibiofilm or antioxidant agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abdul Hamid, A., Pak Dek, M. S., Tan, C. P., Mohd Zainudin, M. A., & Wee Fang, E. K. (2014). Changes of major antioxidant compounds and radical scavenging activity of palm oil and rice bran oil during deep-frying. Antioxidants, 3(3), 502–515. https://doi.org/10.3390/antiox3030502

    Article  CAS  PubMed Central  Google Scholar 

  • Al-Ahmadi, K. J., Yazdi, M. T., Najafi, M. F., Shahverdi, A. R., Faramarzi, M. A., Zarrini, G., & Behravan, J. (2008). Optimization of medium and cultivation conditions for chitinase production by the newly isolated: Aeromonas sp. Biotechnology, 7(2), 266–272. https://doi.org/10.3923/biotech.2008.266.272

    Article  CAS  Google Scholar 

  • Arasoğlu, T., Derman, S., Mansuroğlu, B., Uzunoğlu, D., Koçyiğit, B. S., Gümüş, B., Acar, T., & Tuncer, B. (2017). Preparation, characterization, and enhanced antimicrobial activity: Quercetin-loaded PLGA nanoparticles against foodborne pathogens. Turkish Journal of Biology, 41(1), 127–140. https://doi.org/10.3906/biy-1604-80

    Article  CAS  Google Scholar 

  • Asgari, M. S., Mohammadi-Khanaposhtani, M., Kiani, M., Ranjbar, P. R., Zabihi, E., Pourbagher, R., Rahimi, R., Faramarzi, M. A., Biglar, M., Larijani, B., & Mahdavi, M. (2019). Biscoumarin-1, 2, 3-triazole hybrids as novel anti-diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorganic Chemistry, 92, 103206. https://doi.org/10.1016/j.bioorg.2019.103206

  • Barreto, A. C., Santiago, V. R., Mazzetto, S. E., Denardin, J. C., Lavín, R., Mele, G., Ribeiro, M. E., Vieira, I. G., Gonçalves, T., Ricardo, N. M., & Fechine, P. B. (2011). Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy. Journal of Nanoparticle Research, 12, 6545–6553. https://doi.org/10.1007/s11051-011-0559-9

    Article  CAS  Google Scholar 

  • Berzina-Cimdina, L., & Borodajenko, N. (2012). Research of calcium phosphates using Fourier transform infrared spectroscopy. Infrared Spectroscopy-Materials Science, Engineering and Technology, 12(7), 251–263.

    Google Scholar 

  • Bhutada, P., Mundhada, Y., Bansod, K., Bhutada, C., Tawari, S., Dixit, P., & Mundhada, D. (2010). Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiology of Learning and Memory, 94(3), 293–302. https://doi.org/10.1016/j.nlm.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  • Bose, S., Tarafder, S., Edgington, J., & Bandyopadhyay, A. (2011). Calcium phosphate ceramics in drug delivery. JOM Journal of the Minerals Metals and Materials Society, 63(4), 93–98. https://doi.org/10.1007/s11837-011-0065-7

    Article  CAS  Google Scholar 

  • Cuevas-Bernardino, J. C., Leyva-Gutierrez, F. M., Vernon-Carter, E. J., Lobato-Calleros, C., Román-Guerrero, A., & Davidov-Pardo, G. (2018). Formation of biopolymer complexes composed of pea protein and mesquite gum–Impact of quercetin addition on their physical and chemical stability. Food Hydrocolloids, 77, 736–745. https://doi.org/10.1016/j.foodhyd.2017.11.015

    Article  CAS  Google Scholar 

  • del Pilar Garcia-Mendoza, M., Espinosa-Pardo, F. A., Savoire, R., Harscoat-Schiavo, C., Cansell, M., & Subra-Paternault, P. (2021). Improvement of the oxidative stability of camelina oil by enrichment with phospholipid-quercetin formulations. Food Chemistry,  341, 128234. https://doi.org/10.1016/j.foodchem.2020.128234

  • Di Petrillo, A., Orrù, G., Fais, A., & Fantini, M. C. (2022). Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research, 36(1), 266–278. https://doi.org/10.1002/ptr.7309

    Article  CAS  PubMed  Google Scholar 

  • Dian, L., Yu, E., Chen, X., Wen, X., Zhang, Z., Qin, L., Wang, Q., Li, G., & Wu, C. (2014). Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Research Letters, 9(1), 1–1. https://doi.org/10.1186/1556-276X-9-684

    Article  CAS  Google Scholar 

  • dos Santos, G. D., de Sousa, V. R., de Sousa, B. V., de Araújo, N. G., de Lima Santana, L. N., & Menezes, R. R. (2022). Ceramic nanofiber materials for wound healing and bone regeneration: A brief review. Materials, 15(11), 3909. https://doi.org/10.3390/ma15113909

    Article  CAS  Google Scholar 

  • ElyasiGhahfarokhi, A., Hashemi, S., Saeedi, M., Khanavi, M., & Faramarzi, M. A. (2021). Phytocatalytic and cytotoxic activity of the purified laccase from bled resin of Pistacia atlantica Desf. International Journal of Biological Macromolecules, 176, 394–403. https://doi.org/10.1016/j.ijbiomac.2021.01.212

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6(3), 628–647. https://doi.org/10.1007/s11947-012-0944-0

    Article  CAS  Google Scholar 

  • Faghfuri, E., Faramarzi, M. A., Nikfar, S., & Abdollahi, M. (2015). Nivolumab and pembrolizumab as immune-modulating monoclonal antibodies targeting the PD-1 receptor to treat melanoma. Expert Review of Anticancer Therapy, 15(9), 981–993. https://doi.org/10.1586/14737140.2015.1074862

    Article  CAS  PubMed  Google Scholar 

  • Fan, X., Jiao, G., Gao, L., Jin, P., & Li, X. (2013). The preparation and drug delivery of a graphene–carbon nanotube–Fe3O4 nanoparticle hybrid. J. Mater. Chem. B, 1(20), 2658–2664. https://doi.org/10.1039/C3TB00493G

    Article  CAS  PubMed  Google Scholar 

  • Forootanfar, H., Movahednia, M. M., Yaghmaei, S., Tabatabaei-Sameni, M., Rastegar, H., Sadighi, A., & Faramarzi, M. A. (2012). Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase. Journal of Hazardous Materials, 209, 199–203. https://doi.org/10.1016/j.jhazmat.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  • Galmarini, M. V., Maury, C., Mehinagic, E., Sanchez, V., Baeza, R. I., Mignot, S., Zamora, M. C., & Chirife, J. (2013). Stability of individual phenolic compounds and antioxidant activity during storage of a red wine powder. Food and Bioprocess Technology, 6(12), 3585–3595. https://doi.org/10.1007/s11947-012-1035-y

    Article  CAS  Google Scholar 

  • Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241–272.

    Article  Google Scholar 

  • Guo, T., Wei, L., Sun, J., Hou, C. L., & Fan, L. (2011). Antioxidant activities of extract and fractions from Tuber indicum Cooke & Massee. Food Chemistry, 127(4), 1634–1640. https://doi.org/10.1016/j.foodchem.2011.02.030

    Article  CAS  Google Scholar 

  • Huang, T., Lin, J., Fang, Z., Yu, W., Li, Z., Xu, D., Yang, W., & Zhang, J. (2020). Preparation and characterization of irradiated kafirin-quercetin film for packaging cod (Gadus morhua) during cold storage at 4° C. Food and Bioprocess Technology, 13(3), 522–532. https://doi.org/10.1007/s11947-020-02409-w

    Article  CAS  Google Scholar 

  • Imanparast, S., Hamedi, J., & Faramarzi, M. A. (2017). Specific strategies for one-step and simultaneous immobilization-purification of lipases. Trends in Peptide and Protein Sciences, 2(1), 1–7. https://doi.org/10.22037/tpps.v2i1.19561

  • Jafari-Nodoushan, H., Mojtabavi, S., Faramarzi, M. A., & Samadi, N. (2022). Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Advances in Colloid and Interface Science, 309, 102780. https://doi.org/10.1016/j.cis.2022.102780

  • Jakubowska, E., Gierszewska, M., Szydłowska-Czerniak, A., Nowaczyk, J., & Olewnik-Kruszkowska, E. (2023). Development and characterization of active packaging films based on chitosan, plasticizer, and quercetin for repassed oil storage. Food Chemistry, 399, 133934. https://doi.org/10.1016/j.foodchem.2022.133934

  • Khan, M. A., Zhou, C., Zheng, P., Zhao, M., & Liang, L. (2021). Improving physicochemical stability of quercetin-loaded hollow zein particles with chitosan/pectin complex coating. Antioxidants, 10(9), 1476. https://doi.org/10.3390/antiox10091476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M. K., Lee, T. G., Jung, M., Park, K. H., & Chong, Y. (2018). In vitro synergism and antibiofilm activity of quercetin–pivaloxymethyl conjugate against Staphylococcus aureus and Enterococcus species. Chemical & Pharmaceutical Bulletin, 66(11), 1019–1022. https://doi.org/10.1248/cpb.c18-00380

    Article  CAS  Google Scholar 

  • Li, H., Wang, D., Liu, C., Zhu, J., Fan, M., Sun, X., Wang, T., Xu, Y., & Cao, Y. (2019). Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin. Food Hydrocolloids, 87, 342–351. https://doi.org/10.1016/j.foodhyd.2018.08.002

    Article  CAS  Google Scholar 

  • Liu, K., Zha, X. Q., Shen, W. D., Li, Q. M., Pan, L. H., & Luo, J. P. (2020). The hydrogel of whey protein isolate coated by lotus root amylopectin enhance the stability and bioavailability of quercetin. Carbohydrate Polymer, 236, 116009. https://doi.org/10.1016/j.carbpol.2020.116009

  • Liu, Y., Ji, X., & He, Z. (2019). Organic–inorganic nanoflowers: From design strategy to biomedical applications. Nanoscale, 11(37), 17179–17194. https://doi.org/10.1039/C9NR05446D

    Article  CAS  PubMed  Google Scholar 

  • Low, L. K., & NG, C. S. (1992). Analysis of oils: Determination of thiobarbituric acid (TBA) number. In laboratory manual on analytical methods and procedures for fish and fish products. Marine Fisheries Research Department, Southeast Asian Fisheries Development Center. C-8

  • Memariani, H., Memariani, M., & Ghasemian, A. (2019). An overview on antibiofilm properties of quercetin against bacterial pathogens. World Journal of Microbiology & Biotechnology, 35(9), 1–6. https://doi.org/10.1007/s11274-019-2719-5

    Article  Google Scholar 

  • Mojtabavi, S., Hervé, M., Forootanfar, H., Jafari-Nodoushan, H., Sharifian, G., Samadi, N., Ameri, A., & Faramarzi, M. A. (2022a). A survey on the stabilizing effect of osmolytes on the ultrasound-irradiated lipase for efficient enzymatic hydrolysis of coconut oil. Colloids and Surfaces B, 220, 112910. https://doi.org/10.1016/j.colsurfb.2022.112910

  • Mojtabavi, S., Khoshayand, M. R., Fazeli, M. R., Faramarzi, M. A., & Samadi, N. (2021). Development of an enzyme-enhancer system to improve laccase biological activities. International Journal of Biological Macromolecules, 173, 99–108. https://doi.org/10.1016/j.ijbiomac.2021.01.068

    Article  CAS  PubMed  Google Scholar 

  • Mojtabavi, S., Khoshayand, M. R., Torshabi, M., Gilani, K., Fazeli, M. R., Faramarzi, M. A., & Samadi, N. (2022b). Formulation, characterization, and bioactivity assessments of a laccase-based mouthwash. Journal of Drug Delivery Science and Technology, 69, 103128. https://doi.org/10.1016/j.jddst.2022.103128

  • Newase, S., & Bankar, A. V. (2017). Synthesis of bio-inspired Ag–Au nanocomposite and its antibiofilm efficacy. Bulletin of Materials Science 40, 157–162. https://doi.org/10.1007/s12034-017-1363-7

  • O’Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B., & Kolter, R. (1999). Genetic approaches to study of biofilms. Methods in Enzymology, 310, 91–109. https://doi.org/10.1016/S0076-6879(99)10008-9

    Article  CAS  PubMed  Google Scholar 

  • Pakade, V. E., Lesaoana, M., & Tavengwa, N. T. (2016). Effect of pH, time and temperature on forced Degradation studies of quercetin in presence of polymers. Asian Journal of Chemistry, 28(10), 2181–2187. https://doi.org/10.14233/ajchem.2016.19913

  • Raie, D. S., Mhatre, E., El-Desouki, D. S., Labena, A., El-Ghannam, G., Farahat, L. A., Youssef, T., Fritzsche, W., & Kovács, Á. T. (2018). Effect of novel quercetin titanium dioxide-decorated multi-walled carbon nanotubes nanocomposite on Bacillus subtilis biofilm development. Materials, 11(1), 157. https://doi.org/10.3390/ma11010157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezayaraghi, F., Jafari-Nodoushan, H., Mojtabavi, S., Golshani, S., Jahandar, H., & Faramarzi, M. A. (2022). Hybridization of laccase with dendrimer-grafted silica-coated hercynite-copper phosphate magnetic hybrid nanoflowers and its application in bioremoval of gemifloxacin. Environmental Science and Pollution Research, 18, 1–8. https://doi.org/10.1007/s11356-022-21959-4

    Article  Google Scholar 

  • Sahoo, B., Panda, P. K., & Ramakrishna, S. (2022). Electrospinning of functional ceramic nanofibers. Open Ceramics, 11, 100291. https://doi.org/10.1016/j.oceram.2022.100291

  • Scalia, S., & Mezzena, M. (2009). Incorporation of quercetin in lipid microparticles: Effect on photo-and chemical-stability. Journal of Pharmaceutical and Biomedical Analysis, 49(1), 90–94. https://doi.org/10.1016/j.jpba.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  • Singh, A. K., Yadav, S., Sharma, K., Firdaus, Z., Aditi, P., Neogi, K., Bansal, M., Gupta, M. K., Shanker, A., Singh, R. K., & Prakash, P. (2018). Quantum curcumin mediated inhibition of gingipains and mixed-biofilm of Porphyromonas gingivalis causing chronic periodontitis. RSC Advances, 8(70), 40426–40445. https://doi.org/10.1039/c8ra08435a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolova, R., Ramešová, Š, Degano, I., Hromadová, M., Gál, M., & Žabka, J. (2012). The oxidation of natural flavonoid quercetin. Chemical Communications, 48(28), 3433–3435. https://doi.org/10.1039/C2CC18018A

    Article  CAS  PubMed  Google Scholar 

  • Souza, M. P., Vaz, A. F., Correia, M. T., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2014). Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food and Bioprocess Technology, 7(4), 1149–1159. https://doi.org/10.1007/s11947-013-1160-2

    Article  CAS  Google Scholar 

  • Souza, M. P., Vaz, A. F., Costa, T. B., Cerqueira, M. A., De Castro, C. M., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2018). Construction of a biocompatible and antioxidant multilayer coating by layer-by-layer assembly of κ-carrageenan and quercetin nanoparticles. Food and Bioprocess Technology, 11(5), 1050–1060. https://doi.org/10.1007/s11947-018-2077-6

    Article  CAS  Google Scholar 

  • Souza, M. P., Vaz, A. F., Silva, H. D., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2015). Development and characterization of an active chitosan-based film containing quercetin. Food and Bioprocess Technology, 8(11), 2183–2191. https://doi.org/10.1007/s11947-015-1580-2

    Article  CAS  Google Scholar 

  • Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82–89. https://doi.org/10.1016/j.tibtech.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  • Squires, E. J., Valdes, E. V., Wu, J., & Leeson, S. (1991). Research note: utility of the thiobarbituric acid test in the determination of the quality of fats and oils in feeds. Poultry Science, 70(1), 180–183. https://doi.org/10.3382/ps.0700180

  • Sun, C., Dai, L., & Gao, Y. (2017). Interaction and formation mechanism of binary complex between zein and propylene glycol alginate. Carbohydrate Polymers, 157, 1638–1649. https://doi.org/10.1016/j.carbpol.2016.11.046

    Article  CAS  PubMed  Google Scholar 

  • Sun-Waterhouse, D., Wang, W., & Waterhouse, G. I. (2014). Canola oil encapsulated by alginate and its combinations with starches of low and high amylose content: Effect of quercetin on oil stability. Food and Bioprocess Technology, 7(8), 2159–2177. https://doi.org/10.1007/s11947-013-1163-z

    Article  CAS  Google Scholar 

  • Vashisth, P., Nikhil, K., Pemmaraju, S. C., Pruthi, P. A., Mallick, V., Singh, H., Patel, A., Mishra, N. C., Singh, R. P., & Pruthi, V. (2013). Antibiofilm activity of quercetin-encapsulated cytocompatible nanofibers against Candida albicans. Journal of Bioactive and Compatable Polymers, 28(6), 652–665. https://doi.org/10.1177/0883911513502279

    Article  CAS  Google Scholar 

  • Vojdanitalab, K., Jafari-Nodoushan, H., Mojtabavi, S., Shokri, M., Jahandar, H., & Faramarzi, M. A. (2022). Instantaneous synthesis and full characterization of organic-inorganic laccase-cobalt phosphate hybrid nanoflowers. Science and Reports, 12(1), 1–6. https://doi.org/10.1038/s41598-022-13490-w

    Article  CAS  Google Scholar 

  • Yetisgin, A. A., Cetinel, S., Zuvin, M., Kosar, A., & Kutlu, O. (2020). Therapeutic nanoparticles and their targeted delivery applications. Molecules, 25(9), 2193. https://doi.org/10.3390/molecules25092193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaborowska, M., Smok, W., & Tański, T. (2023) Electrospinning synthesis and characterization of zirconia nanofibers annealed at different temperatures. Applied Surface Science, 156342. https://doi.org/10.1016/j.apsusc.2023.156342

  • Zhang, L., Wei, Y., Wang, H., Wu, F., Zhao, Y., Liu, X., Wu, H., Wang, L., & Su, H. (2020a). Green synthesis of silver nanoparticles using mushroom Flammulina velutipes extract and their antibacterial activity against aquatic pathogens. Food and Bioprocess Technology, 13(11), 1908–1917. https://doi.org/10.1007/s11947-020-02533-7

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, X., Jiao, W., Liu, Y., Yu, J., & Ding, B. (2022). Evolution from microfibers to nanofibers toward next-generation ceramic matrix composites: A review. Journal of the European Ceramic Society, 43(4), 1255–1269. https://doi.org/10.1016/j.jeurceramsoc.2022.11.033

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, W., Elfeky, N. M., Wang, Y., Zhao, D., Zhou, H., Wang, J., & Bao, Y. (2020b). Self-assembly of lipase hybrid nanoflowers with bifunctional Ca2+ for improved activity and stability. Enzyme and Microbial Technology, 132, 109408. https://doi.org/10.1016/j.enzmictec.2019.109408

Download references

Funding

This work was financially supported by the Tehran University of Medical Sciences, Tehran, Iran (Grant number 1401–1-104–57255) to M.A. Faramarzi. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Somayeh Mojtabavi: conceptualization, methodology, investigation, and writing – original draft. Farnoosh Rezayaraghi: formal analysis, writing – review and editing, and conceptualization. Fatemeh Kiaei: data curation, writing – original draft preparation, visualization, and software. Tina Adelpour: methodology, investigation, and data curation. Mohammad-Reza Delnavazi: supervision, conceptualization, methodology, resources, data curation, and writing – review and editing. Mohammad Ali Faramarzi: supervision, conceptualization, methodology, resources, data curation, writing – review and editing, project administration, and funding acquisition. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Mohammad-Reza Delnavazi or Mohammad Ali Faramarzi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 699 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojtabavi, S., Rezayaraghi, F., Adelpour, T. et al. Synthesis and Characterization of Quercetin@Ca3(PO4)2 Hybrid Nanofibers with Antibiofilm Properties and Antioxidant Activity for the Deep-frying Procedure of Sunflower Oil. Food Bioprocess Technol 16, 2184–2201 (2023). https://doi.org/10.1007/s11947-023-03053-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03053-w

Keywords

Navigation