Skip to main content
Log in

Novel Bioactive Composite Films Based on Pectin-Nanocellulose-Synergistic Triple Essential Oils: Development and Characterization

  • ORIGINAL RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study aimed to formulate and characterize the bioactive pectin-nanocellulose-based films carrying a synergistic mixture of shirazi thyme (Zataria multiflora), cinnamon (Cinnamomum zeylanicum), and clove (Syzygium aromaticum) essential oils (EOs). Four bioactive nanocomposite films including two different synergistic EO combinations in high (HC) and low concentrations (LC) were developed. Physical, thermal, mechanical, and biological properties of the prepared films were investigated. The moisture content, moisture absorption, and water vapor permeability of the bioactive films with high concentrations of EOs showed an average reduction by 16.3%, 64.5%, and 35.8%, respectively (p < 0.05). Additionally, increasing the EO concentration improved the elongation at break from 44.96 to 52.5% and from 43.73 to 53.81% in the bioactive films with double and triple EO combinations, respectively. However, analysis of the thermal properties indicated that the incorporation of EOs in high concentrations decreased the melting temperatures (Tm) of the bioactive films significantly from 165.37 °C in the control film to 156.09 and 155.4 °C in the thyme/cinnamon (HC) and thyme/cinnamon/clove (HC) bioactive films, respectively (p ≤ 0.05). Thyme/cinnamon/clove (HC) film presented the highest antioxidant and antimicrobial effects with the inhibition zone of 314, 200.96, and 113.04 mm against S. aureus, E. coli, and P. fluorescens bacteria. In brief, the incorporation of nanocellulose and synergistic EOs into pectin-based films leads to the development of water-resistant bioactive films and boosts the antibacterial and antioxidant properties that have the potential to be used in the food packaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  • Anis, A., Pal, K., & Al-Zahrani, S. M. (2021). Essential oil-containing polysaccharide-based edible films and coatings for food security applications. Polymers, 13, 575. https://doi.org/10.3390/polym13040575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assis, R. Q., Rios, P. D. A., de Oliveira Rios, A., & Olivera, F. C. (2020). Biodegradable packaging of cellulose acetate incorporated with norbixin, lycopene or zeaxanthin. Industrial Crops and Products, 147, 112212.

    Article  CAS  Google Scholar 

  • ASTM International. (2007a). Standard test methods for water vapor transmission standards. E96–00. Annual Book of ASTM Standards.14.02.United States.

  • ASTM International. (2007b). Standard test methods for tensile properties of thin plastic sheeting.D882–02 Annual Book of ASTM Standards. 14.02.United States.

  • Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical andantibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110, 232–239.

    Article  CAS  Google Scholar 

  • Bonilla, J., Poloni, T., Lourenço, R. V., & Sobral, P. J. (2018). Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films. Food Bioscience, 23, 107–114.

    Article  CAS  Google Scholar 

  • Botsoglou, N. A., Govaris, A., Botsoglou, E. N., Grigoropoulou, S. H., & Papageorgiou, G. (2003). Antioxidant activity of dietary oregano essential oil and α-tocopheryl acetate supplementation in long-term frozen stored turkey meat. Journal of Agricultural and Food Chemistry, 51, 2930–2936.

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30.

    Article  CAS  Google Scholar 

  • Chaich, M., Badii, F., Mohammadi, A., & Hashemi, M. (2019) Water resistance and mechanical properties of low methoxy-pectin nanocomposite film responses to interactions of Ca2+ ions and glycerol concentrations as crosslinking agents. Food Chemistry, 293, 429–437.

  • Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Chaichi, M., Mohammadi, A., Badii, F., & Hashemi, M. (2021). Triple synergistic essential oils prevent pathogenic and spoilage bacteria growth in the refrigerated chicken breast meat. Biocatalysis and Agricultural Biotechnology, 32, 101926.

    Article  CAS  Google Scholar 

  • Chen, G., & Liu, B. (2016). Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocolloids, 55, 100–107.

    Article  CAS  Google Scholar 

  • Cho, T., Park, S. M., Yu, H., Seo, G., Kim, H., Kim, S. A., & Rhee, M. (2020). Recent advances in the application of antibacterial complexes using essential oils. Molecules, 25, 1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Castro e Silva, P., de Oliveira, A. C., Pereira, L. A., Valquíria, M., Carvalho, G. R., Miranda, K. W., & Oliveira, J. E. (2020). Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polymer Composites, 41(3), 858–870.

    Article  CAS  Google Scholar 

  • de Souza, A. G., dos Santos, N. M. A., da Silva Torin, R. F., & dos Santos Rosa, D. (2020). Synergic antimicrobial properties of carvacrol essential oil and montmorillonite in biodegradable starch films. International Journal of Biological Macromolecules, 164, 1737–1747.

    Article  PubMed  Google Scholar 

  • Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450.

    Article  CAS  PubMed  Google Scholar 

  • Du, W. X., Olsen, C., Avena-Bustillos, R., McHugh, T., Levin, C., & Friedman, M. (2009). Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. Journal of Food Science, 74, 372–378.

    Article  Google Scholar 

  • Fabra, M., Pérez-Masiá, R., Talens, P., & Chiralt, A. (2011). Influence of the homogenization conditions and lipid self-association on properties of sodium caseinate based films containing oleic and stearic acids. Food Hydrocolloids, 25, 1112–1121.

  • Fisher, K., & Phillips, C. (2006). The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. Journal of Applied Microbiology, 101, 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  • Gao, H. X., He, Z., Sun, Q., He, Q., & Zeng, & WC. (2019). A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydrate Polymers, 215, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Guimarães, R., Sousa, M. J., & Ferreira, I. C. (2010). Contribution of essential oils and phenolics to the antioxidant properties of aromatic plants. Industrial Crops and Products, 32(2), 152–156.

    Article  Google Scholar 

  • Hernandez, E. (1994). Edible coatings from lipids and resins. Edible coatings and films to improve. Food Quality, 1, 279–303.

    Google Scholar 

  • Jeevahan, J. J., Chandrasekaran, M., Venkatesan, S. P., Sriram, V., Joseph, G. B., Mageshwaran, G., & Durairaj, R. B. (2020). Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends in Food Science & Technology, 100, 210–222.

    Article  Google Scholar 

  • Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., et al. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92, 22–32.

    Article  CAS  Google Scholar 

  • Jung, J., Simonsen, J., Wang, W., & Zhao, Y. (2018). Evaluation of consumer acceptance and quality of thermally and high hydrostatic pressure processed blueberries and cherries subjected to cellulose nanofiber (CNF) incorporated water-resistant coating treatment. Food and Bioprocess Technology, 11, 1412–1421. https://doi.org/10.1007/s11947-018-2114-5

    Article  CAS  Google Scholar 

  • Ma, Q., Zhang, Y., Critzer, F., Davidson, P. M., Zivanovic, S., & Zhong, Q. (2016). Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloids, 52, 533–542.

    Article  CAS  Google Scholar 

  • Mathew, S., & Abraham, T. E. (2006). Studies on the antioxidant activities of cinnamon (Cinnamomum Verum) bark extracts, through various in vitro models. Food Chemistry, 94, 520–528.

    Article  CAS  Google Scholar 

  • Moayedi, A., Hashemi, M., & Safari, M. (2016). Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: Optimization of fermentation conditions. Journal of Food Science and Technology, 53(1), 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Nisar, T., Wang, Z. C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670–680.

    Article  CAS  Google Scholar 

  • Norcino, L., Mendes, J., Natarelli, C., Manrich, A., Oliveira, J., & Mattoso, L. (2020). Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocolloids, 105862.

  • Otoni, C. G., de Moura, M. R., Aouada, F. A., Camilloto, G. P., Cruz, R. S., Lorevice, M. V., et al. (2014). Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids, 41, 188–194.

    Article  CAS  Google Scholar 

  • Parejo, I., Vialdomat, F., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., & Codina, C. (2002). Comparison between the radical sacvenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. Journal of Agricultural and Food Chemistry, 50, 6882–6890.

    Article  CAS  PubMed  Google Scholar 

  • Park, S., & Zhao, Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal of Agricultural and Food Chemistry, 52, 1933–1939.

    Article  CAS  PubMed  Google Scholar 

  • Pei, R. S., Zhou, F., Ji, B. P., & Xu, J. (2009). Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. Journal of Food Science, 74, 379–383.

    Article  Google Scholar 

  • Ranjbaryan, S., Pourfathi, B., & Almasi, H. (2019). Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil. Food Packaging and Shelf Life, 21, 100341.

    Article  Google Scholar 

  • Rodrigues, D. C., Cunha, A. P., Silva, L. M., Rodrigues, T. H., Gallão, M. I., & Azeredo, H. M. (2018). Emulsion films from tamarind kernel xyloglucan and sesame seed oil by different emulsification techniques. Food Hydrocolloids, 77, 270–276.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Avena-Bustillos, R. J., Friedman, M., Henika, P. R., Martín-Belloso, O., & McHugh, T. H. (2006). Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils. Journal of Agricultural and Food Chemistry, 54, 9262–9267.

    Article  PubMed  Google Scholar 

  • Saffarionpour, S. (2020). Nanocellulose for stabilization of pickering emulsions and delivery of nutraceuticals and its interfacial adsorption mechanism. Food and Bioprocess Technology, 13, 1292–1328. https://doi.org/10.1007/s11947-020-02481-2

    Article  CAS  Google Scholar 

  • Salarbashi, D., Tajik, S., Shojaee-Aliabadi, S., Ghasemlou, M., Moayyed, H., Khaksar, R., & Shahidi, M. S. (2014). Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils. Food Chemistry, 146, 614–622.

    Article  CAS  PubMed  Google Scholar 

  • Salmieri, S., & Lacroix, M. (2006). Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. Journal of Agricultural and Food Chemistry, 54(26), 10205–10214.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246–253.

    Article  Google Scholar 

  • Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids, 23, 2102–2109.

    Article  Google Scholar 

  • Santiesteban-Lopez, A., Palou, E., & Lopez-Malo, A. (2006). Susceptibility of food borne bacteria to binary combinations of antimicrobials at selected aw and pH. Journal of Applied Microbiology, 102, 486–497.

    Google Scholar 

  • Sogut, E. (2020). Active whey protein isolate films including bergamot oil emulsion stabilized by nanocellulose. Food Packaging and Shelf Life, 23, 100430.

    Article  Google Scholar 

  • Suyatma, N. E., Ishikawa, Y., & Kitazawa, H. (2014). Nanoreinforcement of pectin film to enhance its functional packaging properties by incorporating ZnO nanoparticles. Advanced Materials Research, 845, 451–456.

    Article  Google Scholar 

  • Wang, B., Sui, J., Yu, B., Yuan, C., Guo, L., Abd El-Aty, A., & Cui, B. (2021). Physicochemical properties and antibacterial activity of corn starch-based films incorporated with Zanthoxylum bungeanum essential oil. Carbohydrate Polymers, 254, 117314.

    Article  CAS  PubMed  Google Scholar 

  • Wei, A., & Shibamoto, T. (2010). Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. Journal of Agricultural and Food Chemistry, 58, 7218–7225.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fojan Badii or Maryam Hashemi.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaichi, M., Badii, F., Mohammadi, A. et al. Novel Bioactive Composite Films Based on Pectin-Nanocellulose-Synergistic Triple Essential Oils: Development and Characterization. Food Bioprocess Technol 16, 1794–1805 (2023). https://doi.org/10.1007/s11947-023-03036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03036-x

Keywords

Navigation