Skip to main content
Log in

Culture-dependent and Culture-independent Evaluation of the Effect of Protective Cultures on Spoilage-related Bacteria in Vacuum-packaged Beef Mince

  • Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study investigated the effects of two commercial protective cultures, one containing Lactobacillus sakei (now Latilactobacillus sakei) and the other containing Staphylococcus carnosus and L. sakei, in vacuum-packaged minced beef (ground beef) to advance the understanding of this biopreservation approach for fresh meat shelf-life extension. The protective cultures’ effects on spoilage-related bacterial profiles over time were evaluated using both culture-dependent and culture-independent methods in premium (containing 7.7% fat) and standard (containing 19.2% fat) beef mince stored at 4 °C for 12 days. The culture-dependent method showed that in premium mince, the mixed culture containing S. carnosus and L. sakei significantly suppressed the growth of Enterobacteriaceae and Pseudomonas spp. The culture containing only L. sakei exhibited a slight inhibitory effect against these spoilage bacteria. In contrast, neither protective culture inhibited the spoilage bacteria in standard mince. The 16S rRNA gene sequencing indicated bacterial community changes by protective cultures. Photobacterium spp., a potentially important group of meat spoilage bacteria that were usually undetected in culture-dependent studies, were found to be abundant in this study. The protective cultures’ impact on other meat quality aspects was also assessed. The culture containing S. carnosus and L. sakei lowered the pH of both premium and standard mince more than the culture containing only L. sakei, and the mixed culture slightly decreased the redness of premium mince. These findings support the use of protective cultures for bacterial spoilage control and shelf-life extension of fresh red meat, but their application may be limited to lean or low-fat products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Aiyegoro, O. A. (2014). Microbial contamination | Microbial contamination of fresh meat. In M. Dikeman & C. Devine (Eds.), Encyclopedia of meat sciences (2nd ed., Vol. 2, pp. 285–288). Academic Press. https://doi.org/10.1016/B978-0-12-384731-7.00232-4

  • American Meat Science Association. (2012). AMSA meat color measurement guidelines. https://meatscience.org/docs/default-source/publications-resources/hot-topics/2012_12_meat_clr_guide.pdf

  • Barcenilla, C., Ducic, M., López, M., Prieto, M., & Álvarez-Ordóñez, A. (2022). Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Science, 183, Article 108661. https://doi.org/10.1016/j.meatsci.2021.108661

  • Bautista, D. A. (2014). Spoilage problems | Problems caused by bacteria. In C. A. Batt & M. L. Tortorello (Eds.), Encyclopedia of food microbiology (2nd ed., Vol. 3, pp. 465–470). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00314-1

  • Ben Said, L., Gaudreau, H., Dallaire, L., Tessier, M., & Fliss, I. (2019). Bioprotective culture: A new generation of food additives for the preservation of food quality and safety. Industrial Biotechnology, 15(3), 138–147. https://doi.org/10.1089/ind.2019.29175.lbs

    Article  Google Scholar 

  • Bokulich, N. A., Dillon, M. R., Zhang, Y., Rideout, J. R., Bolyen, E., Li, H., Albert, P. S., & Caporaso, J. G. (2018). q2-longitudinal: Longitudinal and paired-sample analyses of microbiome data. mSystems, 3(6). https://doi.org/10.1128/mSystems.00219-18

  • Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., & Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  Google Scholar 

  • Borges, F., Briandet, R., Callon, C., Champomier-Vergès, M.-C., Christieans, S., Chuzeville, S., Denis, C., Desmasures, N., Desmonts, M.-H., Feurer, C., Leroi, F., Leroy, S., Mounier, J., Passerini, D., Pilet, M. -F., Schlusselhuber, M., Stahl, V., Strub, C., Talon, R., & Zagorec, M. (2022). Contribution of omics to biopreservation: Toward food microbiome engineering. Frontiers in Microbiology, 13, Article 951182. https://doi.org/10.3389/fmicb.2022.951182

  • Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  Google Scholar 

  • Casaburi, A., Piombino, P., Nychas, G. -J., Villani, F., & Ercolini, D. (2015). Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology, 45, 83–102. https://doi.org/10.1016/j.fm.2014.02.002

    Article  CAS  Google Scholar 

  • Conte-Junior, C. A., Monteiro, M. L. G., Patrícia, R., Mársico, E. T., Lopes, M. M., Alvares, T. S., & Mano, S. B. (2020). The effect of different packaging systems on the shelf life of refrigerated ground beef. Foods, 9(4), Article 495. https://doi.org/10.3390/foods9040495

  • Corlett, M. T., Pethick, D. W., Kelman, K. R., Jacob, R. H., & Gardner, G. E. (2021). Consumer perceptions of meat redness were strongly influenced by storage and display times. Foods, 10(3). https://doi.org/10.3390/foods10030540

  • Crowley, K. M., Prendergast, D. M., Sheridan, J. J., & McDowell, D. A. (2010). The influence of storing beef aerobically or in vacuum packs on the shelf life of mince. Journal of Applied Microbiology, 109(4), 1319–1328. https://doi.org/10.1111/j.1365-2672.2010.04755.x

    Article  CAS  Google Scholar 

  • Danza, A., Lucera, A., Lavermicocca, P., Lonigro, S. L., Bavaro, A. R., Mentana, A., Centonze, D., Conte, A., & Del Nobile, M. A. (2018). Tuna burgers preserved by the selected Lactobacillus paracasei IMPC 4.1 strain. Food and Bioprocess Technology, 11, 1651–1661. https://doi.org/10.1007/s11947-018-2129-y

    Article  CAS  Google Scholar 

  • Davidson, P. M., Bozkurt Cekmer, H., Monu, E. A., & Techathuvanan, C. (2015). The use of natural antimicrobials in food: An overview. In T. M. Taylor (Ed.), Handbook of natural antimicrobials for food safety and quality (pp. 1–27). Woodhead. https://doi.org/10.1016/B978-1-78242-034-7.00001-3

  • Fuertes-Perez, S., Hauschild, P., Hilgarth, M., & Vogel, R. F. (2019). Biodiversity of Photobacterium spp. isolated from meats. Frontiers in Microbiology, 10, Article 2399. https://doi.org/10.3389/fmicb.2019.02399

  • Gálvez, A., Grande Burgos, M. J., Lucas López, R., & Pérez Pulido, R. (2014). Food biopreservation. Springer.

    Book  Google Scholar 

  • Ghanbari, M., Jami, M., Domig, K. J., & Kneifel, W. (2013). Seafood biopreservation by lactic acid bacteria - A review. LWT - Food Science and Technology, 54(2), 315–324. https://doi.org/10.1016/j.lwt.2013.05.039

    Article  CAS  Google Scholar 

  • Hilgarth, M., Fuertes-Perez, S., Ehrmann, M., & Vogel, R. F. (2018). An adapted isolation procedure reveals Photobacterium spp. as common spoilers on modified atmosphere packaged meats. Letters in Applied Microbiology, 66(4), 262–267. https://doi.org/10.1111/lam.12860

  • Höll, L., Hilgarth, M., Geissler, A. J., Behr, J., & Vogel, R. F. (2019). Prediction of in situ metabolism of photobacteria in modified atmosphere packaged poultry meat using metatranscriptomic data. Microbiological Research, 222, 52–59. https://doi.org/10.1016/j.micres.2019.03.002

    Article  CAS  Google Scholar 

  • Holman, B. W. B., & Hopkins, D. L. (2021). The use of conventional laboratory-based methods to predict consumer acceptance of beef and sheep meat: A review. Meat Science, 181, Article 108586. https://doi.org/10.1016/j.meatsci.2021.108586

  • Holman, B. W. B., van de Ven, R. J., Mao, Y., Coombs, C. E. O., & Hopkins, D. L. (2017). Using instrumental (CIE and reflectance) measures to predict consumers’ acceptance of beef colour. Meat Science, 127, 57–62. https://doi.org/10.1016/j.meatsci.2017.01.005

    Article  Google Scholar 

  • International Organization for Standardization. (2010). Meat and meat products—Enumeration of presumptive Pseudomonas spp. (ISO Standard No. 13720:2010). https://www.iso.org/standard/45099.html

  • International Organization for Standardization. (2017). Microbiology of the food chain—Enumeration of Brochothrix spp.—Colony-count technique (ISO Standard No. 13722:2017). https://www.iso.org/standard/69052.html

  • Juszczuk-Kubiak, E., Dekowska, A., Sokołowska, B., Połaska, M., & Lendzion, K. (2021). Evaluation of the spoilage-related bacterial profiles of vacuum-packaged chilled ostrich meat by next-generation DNA sequencing approach. Processes, 9(5), Article 803. https://doi.org/10.3390/pr9050803

  • Karwowska, M., Łaba, S., & Szczepański, K. (2021). Food loss and waste in meat sector—Why the consumption stage generates the most losses? Sustainability, 13(11), Article 6227. https://doi.org/10.3390/su13116227

  • Li, N., Zhang, Y., Wu, Q., Gu, Q., Chen, M., Zhang, Y., Sun, X., & Zhang, J. (2019). High-throughput sequencing analysis of bacterial community composition and quality characteristics in refrigerated pork during storage. Food Microbiology, 83, 86–94. https://doi.org/10.1016/j.fm.2019.04.013

    Article  CAS  Google Scholar 

  • Lipinski, B. (2020). Why does animal-based food loss and waste matter? Animal Frontiers, 10(4), 48–52. https://doi.org/10.1093/af/vfaa039

    Article  Google Scholar 

  • Meat & Livestock Australia. (2018). The effect of pH on beef eating quality. https://www.mla.com.au/globalassets/mla-corporate/effect-of-ph-on-beef-eating-quality_sep11.pdf

  • Nieminen, T. T., Dalgaard, P., & Björkroth, J. (2016). Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork. International Journal of Food Microbiology, 218, 86–95. https://doi.org/10.1016/j.ijfoodmicro.2015.11.003

    Article  CAS  Google Scholar 

  • Olaoye, O. A., Onilude, A. A., & Idowu, O. A. (2011). Microbiological profile of goat meat inoculated with lactic acid bacteria cultures and stored at 30 °C for 7 days. Food and Bioprocess Technology, 4, 312–319. https://doi.org/10.1007/s11947-010-0343-3

    Article  Google Scholar 

  • Pennacchia, C., Ercolini, D., & Villani, F. (2011). Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, 28(1), 84–93. https://doi.org/10.1016/j.fm.2010.08.010

    Article  CAS  Google Scholar 

  • Quinto, E. J., Caro, I., Villalobos-Delgado, L. H., Mateo, J., De-Mateo-Silleras, B., & Redondo-Del-Río, M. P. (2019). Food safety through natural antimicrobials. Antibiotics, 8(4), Article 208. https://doi.org/10.3390/antibiotics8040208

  • Seideman, S. C., Cross, H. R., Smith, G. C., & Durland, P. R. (1984). Factors associated with fresh meat color: A review. Journal of Food Quality, 6(3), 211–237. https://doi.org/10.1111/j.1745-4557.1984.tb00826.x

    Article  CAS  Google Scholar 

  • Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9, Article 594. https://doi.org/10.3389/fmicb.2018.00594

  • Sofos, J. N., Flick, G., Nychas, G. -J., Bryan, C. A., Ricke, S. C., & Crandall, P. G. (2013). Meat, poultry, and seafood. In M. P. Doyle & R. L. Buchanan (Eds.), Food microbiology: Fundamentals and frontiers (4th ed., pp. 111–167). ASM Press. https://doi.org/10.1128/9781555818463.ch6

  • Trabelsi, I., Ben Slima, S., Ktari, N., Triki, M., Abdehedi, R., Abaza, W., Moussa, H., Abdeslam, A., & Ben Salah, R. (2019). Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science, 154, 29–36. https://doi.org/10.1016/j.meatsci.2019.04.005

    Article  CAS  Google Scholar 

  • Xu, M. M., Kaur, M., Pillidge, C. J., & Torley, P. J. (2022). Microbial biopreservatives for controlling the spoilage of beef and lamb meat: Their application and effects on meat quality. Critical Reviews in Food Science and Nutrition, 62(17), 4571–4592. https://doi.org/10.1080/10408398.2021.1877108

    Article  CAS  Google Scholar 

  • Young, N. W. G., & O’Sullivan, G. R. (2011). The influence of ingredients on product stability and shelf life. In D. Kilcast & P. Subramaniam (Eds.), Food and beverage stability and shelf life (pp. 132–183). Woodhead. https://doi.org/10.1533/9780857092540.1.132

  • Zhang, Y., Zhu, L., Dong, P., Liang, R., Mao, Y., Qiu, S., & Luo, X. (2018). Bio-protective potential of lactic acid bacteria: Effect of Lactobacillus sakei and Lactobacillus curvatus on changes of the microbial community in vacuum-packaged chilled beef. Asian-Australasian Journal of Animal Sciences, 31(4), 585–594. https://doi.org/10.5713/ajas.17.0540

    Article  CAS  Google Scholar 

  • Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of the RMIT STEM College microbiology laboratories and the Food Research and Innovation Centre for their support in the experimental activities.

Funding

This work was supported by the Australian Meat Processor Corporation (grant no. 2016–1438) and the Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Michelle Xu, Mandeep Kaur, Christopher Pillidge, and Peter Torley; methodology: Michelle Xu, Mandeep Kaur, Christopher Pillidge, and Peter Torley; investigation: Michelle Xu; formal analysis: Michelle Xu and Mandeep Kaur; writing—original draft: Michelle Xu; writing—review and editing: Michelle Xu, Mandeep Kaur, Christopher Pillidge, and Peter Torley; funding acquisition: Peter Torley; supervision: Mandeep Kaur, Christopher Pillidge, and Peter Torley; project administration: Michelle Xu, Mandeep Kaur, Christopher Pillidge, and Peter Torley.

Corresponding author

Correspondence to Michelle M. Xu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 113 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M.M., Kaur, M., Pillidge, C.J. et al. Culture-dependent and Culture-independent Evaluation of the Effect of Protective Cultures on Spoilage-related Bacteria in Vacuum-packaged Beef Mince. Food Bioprocess Technol 16, 382–394 (2023). https://doi.org/10.1007/s11947-022-02948-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02948-4

Keywords

Navigation