Skip to main content

Advertisement

Log in

Legume Seeds Treated by High Hydrostatic Pressure: Effect on Functional Properties of Flours

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pigeon pea (PP), cowpea (CU), dolichos bean (DB), and jack bean (JB) are legumes that constitute the daily diet in many countries. Legumes are a good source of proteins, carbohydrates, and minerals. Considering that legumes present potentials to be used as ingredients for food formulation, the study of functional and physicochemical properties of flours obtained from legume seeds treated by high hydrostatic pressure treatment (HHPT) (200, 400, 600 MPa) was conducted. Flours were evaluated for polypeptide composition (SDS-PAGE), fluorescence spectroscopy, color, protein solubility (PS), water-holding capacity (WHC), oil-holding capacity (OHC), emulsion activity (EA), emulsion stability (ES), foaming capacity (FC), foaming stability (FS), and least gelation concentration (LGC). PS of PP, CU, and DB diminished with the increase of pressure and only CU showed an increase of PS (7–40%) at the isoelectric point. WHC of PP, CU, and DB varied with the pressure applied; however, WHC of JB was not modified by HHPT as we observed in lambda max fluorescence-emission values and PS. Only PP showed an increment of OHC at 400 and 600 MPa. EA of PP was not affected by HPPT, while DB and JB showed a decrease. ES of CU, DB, and JB was not affected by HHPT. FC of PP, DB, and JB diminished with the increase of pressure. FS of DB and CU (400 MPa) was improved and continued for 120 min. LGC values and the equilibrium moisture content of flours were not influenced by HHPT, but the last decreased with the increase of temperature. Moisture sorption isotherms of flours fitted adequately to H-H equation covering the practical range of water activity (0.10–0.90) at the three temperatures tested. High pressure processed flours of PP, CU, DB, and JB showed functional properties that could be useful for food formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acevedo, B. A., Avanza, M. V., Chaves, M. G., & Ronda, F. (2013). Gelation, thermal and pasting properties of pigeon pea (Cajanus cajan L.), dolichos bean (Dolichos lablab L.) and jack bean (Canavalia ensiformis) flours. Journal of Food Engineering, 119(1), 65–71.

    Google Scholar 

  • Acevedo, B. A., Thompson, C. M. B., González Foutel, N. S., Chaves, M. G., & Avanza, M. V. (2017). Effect of different treatments on the microstructure and functional and pasting properties of pigeon pea (Cajanus cajan, L.), dolichos bean (Dolichos lablab, L.) and jack bean (Canavalia ensiformis) flours from north East Argentina. International Journal of Food Science and Technology, 52, 222–230.

    CAS  Google Scholar 

  • Adebowale, K. O., & Lawal, O. S. (2004). Comparative study of the functional properties of Bambarra groundnut (Voandzeia subterranean), jack bean (Canavalia ensiformis) and mucuna bean (Mucuna pruriens) flour. Food Research International, 37, 355–365.

    CAS  Google Scholar 

  • Ahmed, J., Thomas, L., Taher, A., & Joseph, A. (2016). Impact of high-pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions. Carbohydrate Polymers, 152, 639–647.

    CAS  PubMed  Google Scholar 

  • Ahmed, J., Mulla, M. Z., Arfat, Y. A., & Kumar, V. (2017). Effects of high-pressure treatment on functional, rheological, thermal and structural properties of Thai Jasmine rice flour dispersion. Journal of Food Processing and Preservation, 41, e12964.

    Google Scholar 

  • Akande, K. E., Abubakar, M. M., Adogbola, S. E., Bogoro, S. E., & Doma, U. D. (2010). Chemical evaluation of the nutritive quality of pigeon pea [Cajanus cajan (L.) Millsp]. International Journal of Poultry Science, 9(1), 63–65.

    CAS  Google Scholar 

  • Angioloni, A., & Collar, C. (2013). Impact of high hydrostatic pressure on protein aggregation and rheological properties of legume batters. Food and Bioprocess Technology, 6(12), 3576–3584.

    CAS  Google Scholar 

  • AOAC. (1990). Official methods of analysis (15th ed.). Arlington: Association of Official Analytical Chemists. Method 920.87.

    Google Scholar 

  • Asif, M., Rooney, L. W., Ali, R., & Riaz, M. N. (2013). Application and opportunities of pulses in food system: a review. Critical Reviews in Food Science and Nutrition, 53(11), 1168–1179.

    CAS  PubMed  Google Scholar 

  • Avanza, M. V., Chaves, M. G., Acevedo, B. A., & Añón, M. C. (2012). Functional properties and microstructure of cowpea cultivated in the north-east of Argentina. LWT- Food Science and Technology, 49(1), 123–130.

    CAS  Google Scholar 

  • Avanza, M. V., Acevedo, B., Chaves, M. G., & Añón, M. (2013). Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: principal component analysis. LWT - Food Science and Technology, 51, 148–157.

    CAS  Google Scholar 

  • Balasubramaniam, V. M., Martinez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure-based technologies in the food industry. Annual Review of Food Science and Technology, 6, 435–462.

    CAS  PubMed  Google Scholar 

  • Betancur-Ancona, D., Gallegos-Tintoré, S., Delgado-Herrera, A., Pérez-Flores, V., Castellanos Ruelas, A., & Chel-Guerrero, L. (2008). Some physicochemical and antinutritional properties of raw flours and protein isolates from Mucuna pruriens (velvet bean) and Canavalia ensiformis (jack bean). International Journal of Food Science and Technology, 43(5), 816–823.

  • Beuchat, L. (1977). Functional and electrophoretic characteristics of succinylated peanut flour proteins. Journal of Agricultural and Food Chemistry, 25, 258–263.

    CAS  Google Scholar 

  • Biaszczak, W., Doblado, R., Frias, J., Vidal-Valverde, C., Sadowska, J., & Fornal, J. (2007). Microstructural and biochemical changes in raw and germinated cowpea seeds upon high-pressure treatment. Food Research International, 40(2007), 415–423.

    Google Scholar 

  • Bos, M. A., & van Vliet, T. (2001). Interfacial rheological properties of absorbed protein layers and surfactants: a review. Advances in Colloid and Interface Science, 91(3), 437–471.

    CAS  PubMed  Google Scholar 

  • Bouquet, R., Chirife, J., & Iglesias, H. A. (1980). On the equivalence of isotherms equation. Journal of Food Technology, 15, 344–348.

    Google Scholar 

  • Carballo Perez, I., Mu, T., Zhang, M., & Ji, L. (2018). Effect of high hydrostatic pressure to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread. International Journal of Food Science and Technology, 3(4), 1087–1094.

    Google Scholar 

  • Chao, D., Jung, S., & Aluko, R. E. (2018). Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science and Emerging Technologies, 45, 179–185.

    CAS  Google Scholar 

  • Clemente, A., & Olias, R. (2017). Beneficial effects of legumes in gut health. Current Opinion in Food Science, 14, 32–36.

    Google Scholar 

  • de Heij, W. B. C., van Schepdael L. J. M. M., Moezelaar, R., Hoogland, H., Matser, A. M., & van den Berg, R. W. (2003). High-pressure sterilization: Maximizing the benefits of adiabatic heating. Food Chemistry 57 (3), 37–41.

  • Di Rienzo, J.A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2017). InfoStat version 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar).

  • Dufour, E., Hoa, G. H., & Haertlé, T. (1994). High-pressure effects of lactoglobulin interactions with ligands studied by fluorescence. Biochimica et Biophysica Acta, 1206(2), 166–172.

    CAS  PubMed  Google Scholar 

  • Fennema, O. R. (1985). Food chemistry (2nd ed.). New York: Marcel Dekker, Inc..

    Google Scholar 

  • Ferro-Fontán, C., Chirife, J., Sancho, E., & Iglesias, H. A. (1982). Analysis of a model for water sorption phenomena in foods. Journal of Food Science, 47, 1590–1594.

    Google Scholar 

  • Graham, D. E., & Phillips, M. C. (1976). Foams (p. 237). London: Academic Press.

    Google Scholar 

  • Gross, M., & Jaenicke, R. (1994). Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. European Journal of Biochemistry, 15(2), 617–630.

    Google Scholar 

  • Hailwood, A. J., & Horrobin, S. (1946). Absorption of water by polymers: analysis in terms of a simple model. Transactions of the Faraday Society, 42, 84–82.

    Google Scholar 

  • He, X., Liu, H., Liu, L., Hu, H., & Wang, Q. (2014). Effects of high pressure on the physicochemical properties and micro-structure of peanut protein isolates. Journal of Chinese Institute of Food Science and Technology, 14(8), 123–130.

    CAS  Google Scholar 

  • Iglesias, H. A., & Chirife, J. (1995). An alternative to the Guggenheim, Anderson and De Boer model for the mathematical description of moisture sorption isotherms of foods. Food Research International, 28(3), 317–321.

    Google Scholar 

  • Iqbal, A., Khalil, I. A., Ateeq, N., & Khan, M. (2006). Nutritional quality of important food legumes. Food Chemistry, 97, 331–335.

    CAS  Google Scholar 

  • Katopo, H., Song, Y., & Jane, J. L. (2002). Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydrate Polymers, 47, 233–244.

    CAS  Google Scholar 

  • Kaushal, P., Kumar, V., & Sharma, H. K. (2012). Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeon pea (Cajanus cajan) flour and their blends. Food Science and Technology, 48, 59–68.

    CAS  Google Scholar 

  • Knorr, D. (2000). Process aspects of high-pressure treatment of food systems. In: Barbosa-Cánovas GV & Gould, GW, (eds) Food preservation technology series. Innovations in Food Processing. Technomic Publishing Co. Inc., p. 13–31.

  • Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta, Proteins and Proteomics, 1764(3), 619–631.

    CAS  Google Scholar 

  • Labuza, T. P. (1984). Moisture sorption: practical aspects of isotherm measurement and use. St Paul, MN: American Association of Cereal Chemistry.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227(5259), 680–685.

    CAS  PubMed  Google Scholar 

  • Lawal, O. S. (2004). Functionality of African locust bean (Parkia biglobossa) protein isolate: effects of pH, ionic strength and various protein concentrations. Food Chemistry, 86, 345–355.

    CAS  Google Scholar 

  • Li, W., Bai, Y., Mousaa, S., Zhang, Q., & Shen, Q. (2012). Effect of high hydrostatic pressure on physicochemical and structural properties of rice starch. Food and Bioprocess Technology, 5, 2233–2241.

    CAS  Google Scholar 

  • Lim, S. Y., Swanson, B. G., & Clark, S. (2008). High hydrostatic pressure modification of whey protein concentrate for improved functional properties. Journal of Dairy Science, 91(4), 1299–1307.

    CAS  PubMed  Google Scholar 

  • Lin, M. J. Y., Humbert, E. S., & Sosulski, F. W. (1974). Certain functional properties of sunflower meal products. Journal of Food Science, 39, 368–370.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–267.

    CAS  PubMed  Google Scholar 

  • Manassero, C. A., Vaudagna, S. R., Añón, M. C., & Speroni, F. (2015). High hydrostatic pressure improves protein solubility and dispersion stability of mineral-added soybean protein isolate. Food Hydrocolloids, 43, 629–635.

    CAS  Google Scholar 

  • Meng, G. T., & Ma, C. Y. (2001). Thermal properties of Phaseolus angularis (red bean) globulin. Food Chemistry, 73, 453–460.

    CAS  Google Scholar 

  • Miano, A. C., & Augusto, P. E. D. (2017). The hydration of grains: a critical review from description of phenomena to process improvements. Comprehensive Reviews on Food Science and Safety, 00, 1–19.

    Google Scholar 

  • Morales de la Peña, M., Welti-Chanes, J., & Martín-Belloso, O. (2019). Novel technologies to improve food safety and quality. Current Opinion in Food Science, 30, 1–7.

    Google Scholar 

  • Mwasaru, M., Muhammad, K., Bakar, J., & CheMan, Y. (1999). Effects of isolation technique and conditions on the extractability, physicochemical and functional properties of pigeon pea (Cajanus cajan L.) and cowpea (Vigna unguiculata) protein isolates. II. Functional properties. Food Chemistry, 67, 445–452.

    CAS  Google Scholar 

  • Nagmani, B., & Prakash, J. (1997). Functional properties of thermally treated legume flours. International Journal of Food Science and Nutrition, 48, 205–214.

    CAS  Google Scholar 

  • Nazck, M., Diosady, L. L., & Rubin, L. J. (1985). Functional properties of canola meals produced by two-phase solvent extraction systems. Journal of Food Science, 50, 1685–1692.

    Google Scholar 

  • Pallarés, I., Vendrell, J., Avilés, F. X., & Ventura, S. (2004). Amyloid fibril formation by a partially structured intermediate state of a-chymotrypsin. Journal of Molecular Biology, 342(1), 321–331.

    PubMed  Google Scholar 

  • Peyrano, F., Speroni, F., & Avanza, M. V. (2016). Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 33, 38–46.

    CAS  Google Scholar 

  • Peyrano, F., de Lamballerie, M., Avanza, M. V., & Speroni, F. (2017). Calorimetric study of cowpea protein isolates. Effect of calcium and high hydrostatic pressure. Food Biophysics, 12, 374–382.

    Google Scholar 

  • Qin, Z., Guo, X., Lin, Y., Chen, J., Liao, X., Hu, X., & Wu, J. (2013). Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate. Journal of the Science of Food and Agriculture, 93(5), 1105–1111.

    CAS  PubMed  Google Scholar 

  • Rubens, P., & Heremans, K. (2000). Pressure–temperature gelatinization phase diagram of starch: an in situ Fourier transform infrared study. Biopolymers, 54, 524–530.

    CAS  PubMed  Google Scholar 

  • Sangronis, E., Machado, C., & Cava, R. (2004). Propiedades funcionales de las harinas de leguminosas (Phaseolus vulgaris y Cajan cajan) germinadas. Interciencia, 29, 521–526.

    Google Scholar 

  • Sathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1981). Functional properties of lupin seeds (Lupinus mutabilis) proteins and protein concentrates. Journal of Food Science, 47, 491–502.

    Google Scholar 

  • Schmidt, R. H. (1981). Gelation and coagulation. In J. P. Cherry (Ed.), Protein functionality in foods. ACS symposium series Vol. 147 (p. 131). Washington, DC: American Chemical Society.

    Google Scholar 

  • Sharma, N., Goyal, S. K., Alam, T., Fatma, S., & Niranjan, K. (2018). Effect of germination on the functional and moisture sorption properties of high-pressure-processed foxtail millet grain flour. Food and Bioprocess Technology, 11, 209.

    CAS  Google Scholar 

  • Tang, C. H. (2008). Thermal denaturation and gelation of vicilin-rich protein isolates from three Phaseolus legumes: a comparative study. Food Science and Technology, 41, 1380–1388.

    CAS  Google Scholar 

  • Tsoukala, A., Papalamprou, E., Makri, E., Doxastakis, G., & Braudo, E. E. (2006). Adsorption at the air–water interface and emulsification properties of grain legume protein derivatives from pea and broad bean. Colloids and Surfaces B: Biointerfaces, 53(2), 203–208.

    CAS  PubMed  Google Scholar 

  • Wang, X. S., Tang, C. H., Li, B. S., Yang, X. Q., Li, L., & Ma, C. Y. (2008). Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocolloids, 22(4), 560–567.

    CAS  Google Scholar 

  • Were, L., Hettiarachchy, L., & Kalapathy, U. (1997). Modified soy proteins with improved foaming and water hydration properties. Journal of Food Science, 62(4), 821–824.

    CAS  Google Scholar 

  • Yin, S. W., Tang, C. H., Wen, Q. B., Yang, X. Q., & Li, L. (2008). Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: effect of high-pressure treatment. Food Chemistry, 110(4), 938–945.

    CAS  PubMed  Google Scholar 

  • Zhao, Z.-K., Mu, T.-H., Zhang, M., & Riche, A. (2018). Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure. Food and Bioprocess Technology, 11(9), 1719–1732.

    CAS  Google Scholar 

  • Zhu, S. M., Lin, S. L., Ramaswamy, H. S., Yu, Y., & Zhang, Q. T. (2017). Enhancement of functional properties of rice bran proteins by high pressure treatment and their correlation with surface hydrophobicity. Food and Bioprocess Technology, 10, 317.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and the Universidad Nacional del Nordeste (UNNE), Argentina. B.A.A. and V.A. are research members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Chaves.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosa, E.F., Thompson, C., Chaves, M.G. et al. Legume Seeds Treated by High Hydrostatic Pressure: Effect on Functional Properties of Flours. Food Bioprocess Technol 13, 323–340 (2020). https://doi.org/10.1007/s11947-019-02386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02386-9

Keywords

Navigation