Skip to main content
Log in

Spontaneous Color Change of 3D Printed Healthy Food Product over Time after Printing as a Novel Application for 4D Food Printing

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A four-dimensional healthy food product was fabricated, in which 3D printed anthocyanin-potato starch (PS) gel changed its color over time to an attractive color (the 4th dimension). The color changed not only when sprayed the 3D product with different pH solutions but also independently as a response to an internal pH stimulus from another part inside the printed multi-material product. To achieve this, two parts of the gel system were combined, one part was from anthocyanin-PS gel and another part from lemon juice gel. In addition, the color change of anthocyanin-PS gel was also assessed after spraying with different pH solutions at different concentrations of PS and anthocyanin. Color changes were evaluated in terms of lightness (L*), redness (a*), and blueness (b*) using a colorimeter. The color stability of the 4D food product was examined for 24 h after printing. Moreover, a sensory evaluation test was performed to assess the consumer acceptance of the 4D food product. The printed samples sprayed with pH solutions 2, 2.5, 3, and 3.5 showed significant differences (p ≤ 0.05) in color at all PS and anthocyanin concentrations. However, pH samples 4, 4.5, and 5 did not show any visible difference in color after treatment compared to control samples. Furthermore, the color of the 3D printed anthocyanin-PS gel in model (A) gradually changed from purple to red over time during and after the printing process. On the contrary, the 3D printed anthocyanin-PS gel in model (B) did not show any noticeable color change over time after printing. This paper presents a novel application for 4D printing in the food field, which is very important for the food industry to fabricate a healthy product with attractive colors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • An, Y. J., Guo, C. F., Zhang, M., & Zhong, Z. P. (2019). Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass. Journal of the Science of Food and Agriculture, 99(2), 639–646.

    Article  CAS  PubMed  Google Scholar 

  • Ananga, A., Georgiev, V., Ochieng, J., Phills, B., & Tsolova, V. (2013). Production of anthocyanins in grape cell cultures: A potential source of raw material for pharmaceutical, food, and cosmetic industries. In The Mediterranean genetic code-grapevine and olive. London: InTech.

    Google Scholar 

  • Azam, S. M., Zhang, M., Mujumdar, A. S., & Yang, C. (2018). Study on 3D printing of orange concentrate and material characteristics. Journal of Food Process Engineering., 41(5), e12689.

    Article  Google Scholar 

  • Bayarri, S., Calvo, C., Costell, E., & Durán, L. (2001). Influence of color on perception of sweetness and fruit flavor of fruit drinks. Food Science and Technology International., 7(5), 399–404.

    Article  Google Scholar 

  • Bridle, P., & Timberlake, C. (1997). Anthocyanins as natural food colours—Selected aspects. Food Chemistry, 58(1–2), 103–109.

    Article  CAS  Google Scholar 

  • Brouillard, R. (1982). Chemical structure of anthocyanins. New York: Academic Press Inc..

    Book  Google Scholar 

  • Burton-Freeman, B., Sandhu, A., & Edirisinghe, I. (2016). Chapter 35 - anthocyanins. In R. C. Gupta (Ed.), Nutraceuticals (pp. 489–500). Boston: Academic.

    Chapter  Google Scholar 

  • Castañeda-Ovando, A., Pacheco-Hernández, M. L., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry., 113(4), 859–871.

    Article  CAS  Google Scholar 

  • Cavalcanti, R. N., Santos, D. T., & Meireles, M. A. A. (2011). Non-thermal stabilization mechanisms of anthocyanins in model and food systems—An overview. Food Research International., 44(2), 499–509.

    Article  CAS  Google Scholar 

  • Choi, J., Kwon, O.-C., Jo, W., Lee, H. J., & Moon, M.-W. (2015). 4D printing technology: A review. 3D. Printing and Additive Manufacturing., 2(4), 159–167.

    Article  Google Scholar 

  • Choi, I., Lee, J. Y., Lacroix, M., & Han, J. (2017). Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry., 218, 122–128.

    Article  CAS  PubMed  Google Scholar 

  • Clydesdale, F. M., Main, J. H., & Francis, F. J. (1979). Roselle (Hibiscus sabdariffa L.) anthocyanins as colorants for beverages and gelatin desserts. Journal of Food Protection., 42(3), 204–207.

    Article  CAS  PubMed  Google Scholar 

  • Cooper-Driver, G. A. (2001). Contributions of Jeffrey Harborne and co-workers to the study of anthocyanins. Phytochemistry., 56(3), 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Dankar, I., Haddarah, A., Omar, F. E. L., Sepulcre, F., & Pujolà, M. (2018a). 3D printing technology: The new era for food customization and elaboration. Trends in Food Science & Technology., 75, 231–242.

    Article  CAS  Google Scholar 

  • Dankar, I., Pujolà, M., El Omar, F., Sepulcre, F., & Haddarah, A. (2018b). Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food and bioprocess technology., 11(11), 2021–2031.

    Article  CAS  Google Scholar 

  • Duthie, G. G., Duthie, S. J., & Kyle, J. A. (2000). Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutrition Research Reviews, 13(1), 79–106.

    Article  CAS  PubMed  Google Scholar 

  • EFSA. (2013). Scientific opinion on the re-evaluation of anthocyanins (E 163) as a food additive. EFSA Journal., 11(4), 3145.

    Article  CAS  Google Scholar 

  • Espín, J. C., García-Conesa, M. T., & Tomás-Barberán, F. A. (2007). Nutraceuticals: Facts and fiction. Phytochemistry., 68(22), 2986–3008.

    Article  CAS  PubMed  Google Scholar 

  • Graf, D., Seifert, S., Jaudszus, A., Bub, A., & Watzl, B. (2013). Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in fischer rats. PLoS One, 8(6), e66690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakimuddin, F., Paliyath, G., & Meckling, K. (2004). Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Research and Treatment, 85(1), 65–79.

    Article  CAS  PubMed  Google Scholar 

  • Horbowicz, M., Kosson, R., Grzesiuk, A., & Dębski, H. (2008). Anthocyanins of fruits and vegetables - their occurrence, analysis and role in human nutrition. In Vegetable crops research bulletin (Vol. 68, p. 5).

    Google Scholar 

  • Hou, D. X. (2003). Potential mechanisms of cancer chemoprevention by anthocyanins. Current Molecular Medicine, 3(2), 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M.-S., Zhang, M., & Bhandari, B. (2019). Assessing the 3D printing precision and texture properties of brown rice induced by infill levels and printing variables. Food and Bioprocess Technology, 1–12.

  • Hubbermann, E. M. (2005). Functional properties of anthocyanin concentrates and the influence of physicochemical parameters and food additives on the color and stability of isolated anthocyanins in food matrices. Der Andere Verlag.

  • Hubbermann, E. M., Heins, A., Stöckmann, H., & Schwarz, K. (2006). Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. European Food Research and Technology., 223(1), 83–90.

    Article  CAS  Google Scholar 

  • ISO-4121. (2003). Sensory analysis. In Guidelines for the Use of Quantitative Response Scales. Geneva: International Organization for Standardization.

    Google Scholar 

  • Kamiloglu, S., Capanoglu, E., Grootaert, C., & Van Camp, J. (2015). Anthocyanin absorption and metabolism by human intestinal Caco-2 cells—A review. International journal of molecular sciences., 16(9), 21555–21574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan, V., Vargo, E., Machover, N., Ishii, H., Pan, S., Chen, W., & Kakehi, Y. (2017). Organic primitives: Synthesis and design of pH-reactive materials using molecular I/O for sensing, actuation, and interaction. In Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 989–1000). Denver: ACM.

    Chapter  Google Scholar 

  • Khanal, R. C., Howard, L. R., & Prior, R. L. (2010). Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins. Food Research International., 43(5), 1464–1469.

    Article  CAS  Google Scholar 

  • Kuhnau, J. (1976). The flavonoids. A class of semi-essential food components: their role in human nutrition. World Review of Nutrition and Dietetics, 24, 117–191.

    Article  CAS  PubMed  Google Scholar 

  • Le Tohic, C., O'Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., Kerry, J. P., & Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering., 220, 56–64.

    Article  CAS  Google Scholar 

  • Lewis, C. E., Walker, J. R. L., & Lancaster, J. E. (1995). Effect of polysaccharides on the colour of anthocyanins. Food Chemistry., 54(3), 315–319.

    Article  CAS  Google Scholar 

  • Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., & Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering., 220, 20–27.

    Article  CAS  Google Scholar 

  • Liu, Z., Zhang, M., & Bhandari, B. (2018a). Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes. International Journal of Biological Macromolecules., 117, 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2018b). Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering., 220, 76–82.

    Article  Google Scholar 

  • Liu, Z., Zhang, M., & Yang, C.-h. (2018c). Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. LWT., 96, 589–596.

    Article  CAS  Google Scholar 

  • Liu, L., Meng, Y., Dai, X., Chen, K., & Zhu, Y. (2019). 3D printing complex egg white protein objects: Properties and optimization. Food and Bioprocess Technology., 12(2), 267–279.

    Article  CAS  Google Scholar 

  • Messina, V., Domínguez, P. G., Sancho, A. M., Walsöe de Reca, N., Carrari, F., & Grigioni, G. (2012). Tomato quality during short-term storage assessed by colour and electronic nose. International Journal of Electrochemistry, 2012, 1–7.

    Article  CAS  Google Scholar 

  • Momeni, F., Hassani, N. S. M. M., Liu, X., & Ni, J. (2017). A review of 4D printing. Materials & Design, 122(Supplement C), 42–79.

    Article  CAS  Google Scholar 

  • Muche, B. M., Speers, R. A., & Rupasinghe, H. P. V. (2018). Storage temperature impacts on anthocyanins degradation, color changes and haze development in juice of “merlot” and “ruby” grapes (Vitis vinifera). Frontiers in Nutrition., 5(100).

  • Nunes, C., Raymundo, A., & Sousa, I. (2006). Rheological behaviour and microstructure of pea protein/k-carrageenan/starch gels with different setting conditions. Food Hydrocoll Food Hydrocolloids., 20(1).

  • Ozel, B., Uguz, S. S., Kilercioglu, M., Grunin, L., & Oztop, M. H. (2017). Effect of different polysaccharides on swelling of composite whey protein hydrogels: A low field (LF) NMR relaxometry study. Journal of Food Process Engineering., 40(3), e12465.

    Article  CAS  Google Scholar 

  • Pei, E. (2014). 4D printing: Dawn of an emerging technology cycle. Assembly Automation., 34(4), 310–314.

    Article  Google Scholar 

  • Pei, E., Loh, G. H., Harrison, D., Almeida, H. A., Monzón Verona, M. D., & Paz, R. (2017). A study of 4D printing and functionally graded additive manufacturing. Assembly Automation., 37(2), 147–153.

    Article  Google Scholar 

  • Rein, M. (2005). Copigmentation reactions and color stability of berry anthocyanins. Helsinki: University of Helsinki, Department of Applied Chemistry and Microbiology.

    Google Scholar 

  • Shiotsubo, T. (1983). Starch gelatinization at different temperatures as measured by enzymic digestion method. Agricultural and Biological Chemistry., 47(11), 2421–2425.

    CAS  Google Scholar 

  • Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 15(1), 19–38.

    Article  CAS  Google Scholar 

  • Sun, J., Zhou, W., Huang, D., Fuh, J. Y., & Hong, G. S. (2015). An overview of 3D printing technologies for food fabrication. Food and Bioprocess Technology, 8(8), 1605–1615.

    Article  CAS  Google Scholar 

  • Sun, J., Zhou, W., Yan, L., Huang, D., & Lin, L.-y. (2018). Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering, 220, 1–11.

    Article  Google Scholar 

  • Tibbits, S. (2014). 4D printing: Multi-material shape change. Architectural Design, 84(1), 116–121.

    Article  Google Scholar 

  • Tsuda, T., Horio, F., Uchida, K., Aoki, H., & Osawa, T. (2003). Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition, 133(7), 2125–2130.

    Article  CAS  PubMed  Google Scholar 

  • Umar Lule, S., & Xia, W. (2005). Food phenolics, pros and cons: A review. Food Reviews International, 21(4), 367–388.

    Article  CAS  Google Scholar 

  • USDA (1962). United States Standards for Grades of Canned Lemon Juice. Federal Register (27 FR 10315). 9. Available online: https://www.ams.usda.gov/sites/default/files/media/Canned_Lemon_Juice_Standard%5B1%5D_0.pdf

  • Wang, J., & Mazza, G. (2002). Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. Journal of Agricultural and Food Chemistry, 50(15), 4183–4189.

    Article  CAS  PubMed  Google Scholar 

  • Wang L., Zhang M., Bhandari B. & Yang, C. (2017a). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220, 101–108.

  • Wang, W., Yao, L., Zhang, T., Cheng, C.-Y., Levine, D., & Ishii, H. (2017b). Transformative appetite: Shape-changing food transforms from 2D to 3D by water interaction through cooking. In Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 6123–6132). Denver: ACM.

    Chapter  Google Scholar 

  • Xun Khoo, Z., Ee Mei Teoh, J., Liu, Y., Kai Chua, C., Yang, S., An, J., Leong, K. F., & Yeong, W. Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 10, 103–122.

    Article  Google Scholar 

  • Yamada, T., Komiya, T., & Akaki, M. (1980). Formation of an inclusion complex of anthocyanin with cyclodextrin. Agricultural and Biological Chemistry., 44(6), 1411–1413.

    CAS  Google Scholar 

  • Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018a). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT-Food Science and Technology., 87, 67–76.

    Article  CAS  Google Scholar 

  • Yang, F., Zhang, M., Prakash, S., & Liu, Y. (2018b). Physical properties of 3D printed baking dough as affected by different compositions. Innovative Food Science & Emerging Technologies., 49, 202–210.

    Article  Google Scholar 

  • Yang, F., Guo, C., Zhang, M., Bhandari, B., & Liu, Y. (2019). Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT., 102, 89–99.

    Article  CAS  Google Scholar 

  • Zhang, B., Zhang, Y., Yang, L., & Chen, J. (2001). Study on the crystalline structure and property of corn, cassava and potato starch granules. Food Science, 22(2), 11–13.

    Google Scholar 

Download references

Acknowledgments

This study is financially supported by the National Natural Science Foundation Program of China (No. 3187101297), China State Key Laboratory of Food Science and Technology Innovation Project (Contract No. SKLF-ZZA-201706), National First-class Discipline Program of Food Science and Technology (No. JUFSTR20180205), and Jiangsu Province Key Laboratory Project of Advanced Food Manufacturing Equipment and Technology (No. FMZ201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazal, A.F., Zhang, M. & Liu, Z. Spontaneous Color Change of 3D Printed Healthy Food Product over Time after Printing as a Novel Application for 4D Food Printing. Food Bioprocess Technol 12, 1627–1645 (2019). https://doi.org/10.1007/s11947-019-02327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02327-6

Keywords

Navigation