Skip to main content
Log in

Phenolic Compound–Loaded Nanosystems: Artificial Neural Network Modeling to Predict Particle Size, Polydispersity Index, and Encapsulation Efficiency

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Artificial neural networks (ANNs) are a useful tool for the prediction of the particle size (PS), polydispersity index (PDI), and encapsulation efficiency (EE) of phenolic compounds (PC) in nanosystems because they consider the effects of all independent variables. This is very important for the prediction of the PS, PDI, and EE of nanosystems produced by ultrasound because the number of variables involved in the encapsulation process makes this prediction very complex. In this research work, three mathematical models for predicting the PS, PDI, and EE of PC in nanosystems produced by ultrasounds using ANN were developed. A database of scientific literature was used. These models allow the PS, PDI, and EE to be correlated mathematically with the PC mass; encapsulating copolymer concentration, ratio and mass; solvent volume; surfactant concentration; emulsion volume; and ultrasound time and power. The optimal configuration of the ANN consisted of a hidden layer with three, four, and two neurons in the hidden layer for PS, PDI, and EE, respectively. The models allowed us to predict PS, PDI, and EE for a wide range of factors. Mean square errors of 0.0538, 0.0337, and 0.0198 and correlation coefficients of 0.9139, 0.9064, and 0.8472 for PS, PDI, and EE, respectively, were obtained during training. Furthermore, mean square errors of 0.0408, 0.0224, and 0.0117 and correlation coefficients of 0.9138, 0.9115, and 0.8955 for PS, PDI, and EE, respectively, were achieved during verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas, S., Karangwa, E., Bashiri, M., Hayat, K., Hong, X., Sharif, H. R., & Zhang, X. M. (2015). Fabrication of polymeric nanocapsules from curcumin-loaded nanoemulsions templates by self-assembly. Ultrasound Sonochemistry, 23, 81–92.

    Article  CAS  Google Scholar 

  • Amani, A., York, P., Chrystyn, H., Clark, B. J., & Do, D. Q. (2008). Determination of factors controlling the particle size in nanoemulsions using Artificial Neural Networks. European Journal of Pharmaceutical Sciences, 35(1-2), 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Arunkumar, R., Prashanth, K. V. H., Manabe, Y., Hirata, T., Sugawara, T., Dharmesh, S. M., & Baskaran, V. (2015). Biodegradable poly (lactic-co-glycolic acid)-polyethylene glycol nanocapsules: an efficient carrier for improved solubility, bioavailability, and anticancer property of lutein. Journal of Pharmaceutical Sciences, 104(6), 2085–2093.

    Article  CAS  PubMed  Google Scholar 

  • Bogue, J., Collins, O., & Troy, A. J. (2017). Chapter 2 – market analysis and concept development of functional foods. In Developing New Functional Food and Nutraceutical Products (pp. 29–45).

  • Coradini, K., Lima, F. O., Oliveira, C. M., Chaves, P. S., Athayde, M. L., Carvalho, L. M., & Beck, R. C. R. (2014). Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. European Journal of Pharmaceutics and Biopharmaceutics, 88(1), 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Cubeddu, A., Rauh, C., & Delgado, A. (2014). Hybrid artificial neural network for prediction and control of process variables in food extrusion. Innovative Food Science & Emerging Technologies, 21, 142–150.

    Article  Google Scholar 

  • Elkomy, M., Elmenshawe, S., Eid, H., & Ali, A. (2017). Topical ketoprofen nanogel: artificial neural network optimization, clustered bootstrap validation, and in-vivo activity evaluation based on longitudinal dose response modeling. Drug Delivery, 7544, 1–13.

    Google Scholar 

  • Gomes, C., Moreira, R. G., & Castell-Perez, E. (2011). Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. Journal of Food Science, 76(2), 16–24.

    Article  CAS  Google Scholar 

  • Gómez-Gómez, H., Vanz, C., Minatel, I., Luvizon, A. C., & Pereira, G. (2018). Health benefits of dietary phenolic compounds and biogenic amines. In health benefits and bioaccesibility. In J. M. Mérillon & K. Ramawat (Eds.), Bioactive Molecules in Food. Reference Series in Phytochemistry. Cham: Springer.

    Google Scholar 

  • Hashad, R. A., Ishak, R. A. H., Fahmy, S., Mansour, S., & Geneidi, A. S. (2016). Chitosan-tripolyphosphate nanoparticles: optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. International Journal of Biological Macromolecules, 86, 50–58.

    Article  CAS  PubMed  Google Scholar 

  • Hill, L., & Gomes, C. (2014). Characterization of temperature and pH-responsive nanoparticles for the release of antimicrobials. Materials Research Express, 1(3), 1–7.

    Article  CAS  Google Scholar 

  • Hill, L. E., Taylor, T. M., & Gomes, C. (2013). Antimicrobial efficacy of poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped cinnamon bark extract against Listeria monocytogenes and Salmonella typhimurium. Journal of Food Science, 78(4), 626–632.

    Article  CAS  Google Scholar 

  • Hosseini, S., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in-vitro release study. Carbohydrate Polymers, 95(1), 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Kangas, L., & Rasco, B. (2007). Applications of artificial neural networks (ANNs) in food science. Critical reviews in food science and nutrition, 47(2), 113–126.

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi, M., Ghaedi, M., Dashtian, K., Ghaedi, A. M., Hajati, S., Goudarzi, A., & Alipanahpour, E. (2015). Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: artificial neural network modeling and central composite design optimization. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 153, 257–267.

    Article  CAS  PubMed  Google Scholar 

  • Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innov. Food. Sci. Emerg. Technol., 9(2), 170–175.

    Article  CAS  Google Scholar 

  • Kumari, A., Yadav, S. K., Pakade, Y., Singh, B., & Yadav, S. C. (2010). Development of biodegradable nanoparticles for delivery of quercetin. Colloids and Surfaces B: Biointerfaces, 80(2), 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Lefebre, G., Riou, J., Bastiat, G., Roger, E., Frombach, K., Gimel, J. C., Saulnier, P., & Calvignac, B. (2017). Spontaneous nano-emulsification: process optimization and modelling for the prediction of the nanoemulsions size and polydispersity. International Journal of Pharmaceutics, 534(1-2), 220–228.

    Article  CAS  Google Scholar 

  • Li, Y., Abbaspour, M., Grootendorst, P., Rauth, A., & Wu, X. (2015). Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. European Journal of Pharmaceutics and Biopharmaceutics, 94(1), 170–179.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Yang, J., Ao, P., & Zhou, C. (2015). Preparation and characterization of chitosan hollow nanospheres for anticancer drug curcumin delivery. Materials Letters, 150, 115–117.

    Article  CAS  Google Scholar 

  • Mukerjee, A., & Vishwanatha, J. (2014). Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy formulation. Anticancer Research, 29, 3867–3876.

    Google Scholar 

  • Natrajan, D., Srinivasan, S., Sundar, K., & Ravindran, A. (2015). Formulation of essential oil-loaded chitosan-alginate nanocapsules. Journal of Food and Drug Analysis, 23(3), 560–568.

    Article  CAS  PubMed  Google Scholar 

  • Neethirajan, S., & Javas, D. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47.

    Article  CAS  Google Scholar 

  • Ochoa-Martínez, C. I., & Ayala-Aponte, A. A. (2007). Prediction of mass transfer kinetics during osmotic dehydration of apples using neural networks. LWT - Food Science and Technology, 40(4), 638–645.

    Article  CAS  Google Scholar 

  • Ojha, V., Abraham, A., & Snášel, V. (2017). Metaheuristic design of feedforward neural networks: a review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97–116.

    Article  Google Scholar 

  • Oliveira, D., Angonese, M., Ferreira, S., & Gomes, L. (2017). Food and bioproducts processing nanoencapsulation of passion fruit by-products extracts for enhanced antimicrobial activity. Food and Bioproducts Processing, 104, 137–146.

    Article  CAS  Google Scholar 

  • Pereira, M., Oliveira, D., Hill, L., Carlos, R., Borges, C., Vizzotto, M., & Gomes, C. (2018). Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chemistry, 240, 396–404.

    Article  CAS  PubMed  Google Scholar 

  • Prakash, B., Kujur, A., Singh, P. P., Kumar, A., & Yadav, A. (2017). Plants-derived bioactive compounds as functional food ingredients and food preservative. Journal of Nutrition and Food Science, 1(1), 1–7.

    Google Scholar 

  • Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152–159.

    Article  Google Scholar 

  • Rigo, L., Da Silva, C., De Oliveira, S., Cabreira, T., De Bona Da Silva, C., Ferreira, J., & Beck, R. (2015). Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice. European Journal of Pharmaceutics and Biopharmaceutics, 93, 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Shahsavari, S., Rezaie Shirmard, L., Amini, M., & Abedin Dokoosh, F. (2017). Application of artificial neural networks in the design and optimization of a nanoparticulate fingolimod delivery system based on biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate). Journal of Pharmaceutical Sciences, 106(1), 176–182.

    Article  CAS  PubMed  Google Scholar 

  • Silva, H. D., Cerqueira, M. A., & Vicente, A. (2012). Nanoemulsions for food applications: development and characterization. Food and Bioprocess Technology, 5(3), 854–867.

    Article  CAS  Google Scholar 

  • Silva, L., Hill, L., Figueiredo, E., & Gomes, C. (2014). Delivery of phytochemicals of tropical fruit by-products using poly (DL-lactide-co-glycolide) (PLGA) nanoparticles: synthesis, characterization, and antimicrobial activity. Food Chemistry, 165, 362–370.

    Article  CAS  PubMed  Google Scholar 

  • Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49.

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman, I. S., Basri, M., Masoumi, H. R., Ashari, S. E., Basri, H., & Ismail, M. (2017). Predicting the optimum compositions of a transdermal nanoemulsion system containing an extract of Clinacanthus nutans (L.) leaves for skin antiaging by Artificial Neural Network model. Journal of Wiley Chemometrics, 31(7), e2894.

    Article  CAS  Google Scholar 

  • Tao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., & Zhou, J. (2017). Combining various wall materials for encapsulation of blueberry anthocyanin extracts: optimization by Artificial Neural Network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technology, 311, 77–87.

    Article  CAS  Google Scholar 

  • Wang, T., Ma, X., Lei, Y., & Luo, Y. (2016). Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids and Surfaces B: Biointerfaces, 148, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Liao, X., Zheng, P., Xue, S., & Peng, R. (2017). Classification of Chinese herbal medicine by laser induced breakdown spectroscopy with Principal Component Analysis and Artificial Neural Network. Analytical Letters, 51(4), 575–586.

    Article  CAS  Google Scholar 

  • Zhao, M., Nian, Y., Allen, P., Downey, G., Kerry, J., & ODonell, C. (2018). Performance of full cross-validation partial least squares regression models developed using raman spectral data for the prediction of bull beef sensory attributes. Data in Brief, 19, 1355–1360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zigoneanu, I., Astete, C., & Sabliov, C. (2008). Nanoparticles with entrapped α-tocopherol: synthesis, characterization and controlled release. Nanotechnology, 19, 1–10.

    Article  CAS  Google Scholar 

Download references

Funding

Espinosa-Sandoval, L.A. received funding from COLCIENCIAS–COLFUTURO of Colombia though the call 647 of 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Cerqueira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 14 kb)

ESM 3

(DOCX 13 kb)

ESM 4

(DOCX 13 kb)

ESM 5

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Sandoval, L.A., Cerqueira, M.A., Ochoa-Martínez, C.I. et al. Phenolic Compound–Loaded Nanosystems: Artificial Neural Network Modeling to Predict Particle Size, Polydispersity Index, and Encapsulation Efficiency. Food Bioprocess Technol 12, 1395–1408 (2019). https://doi.org/10.1007/s11947-019-02298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02298-8

Keywords

Navigation