Skip to main content
Log in

NIR Spectroscopy Applications for Internal and External Quality Analysis of Citrus Fruit—A Review

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The global citrus industry is continually confronted by new technological challenges to meet the ever-increasing consumer awareness and demand for quality-assured fruit. To face these challenges, recent trend in agribusiness is declining reliance on subjective assessment of quality and increasing adoption of objective, quantitative and non-destructive techniques of quality assessment. Non-destructive instrument-based methods are preferred to destructive techniques because they allow the measurement and analysis of individual fruit, reduce waste and permit repeated measures on the same item over time. A wide range of objective instruments for sensing and measuring the quality attributes of fresh produce have been reported. Among non-destructive quality assessment techniques, near-infrared (NIR) spectroscopy (NIRS) is arguably the most advanced with regard to instrumentation, applications, accessories and chemometric software packages. This paper reviews research progress on NIRS applications in internal and external quality measurement of citrus fruit, including the selection of NIR characteristics for spectra capture, analysis and interpretation. A brief overview on the fundamental theory, history, chemometrics of NIRS including spectral pre-processing methods, model calibration, validation and robustness is included. Finally, future prospects for NIRS-based imaging systems such as multispectral and hyperspectral imaging as well as optical coherence tomography as potential non-destructive techniques for citrus quality assessment are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33, 121–137.

    Google Scholar 

  • Alferéz, F., Agustí, M., & Zacarìas, L. (2003). Postharvest rind staining in ‘Navel’ oranges is aggravated by changes in storage relative humidity: effect on respiration, ethylene production and water potential. Postharvest Biology and Technology, 28, 143–152.

    Google Scholar 

  • Alferéz, F., & Burns, J. (2004). Postharvest peel pitting at non-chilling temperatures in grapefruit is promoted by changes from low to high relative humidity during storage. Postharvest Biology and Technology, 32, 79–87.

    Google Scholar 

  • Antonucci, F., Pallottino, F., Paglia, G., Palma, A., D’Aquino, S., & Menesatti, P. (2010). Non-destructive estimation of mandarin maturity status through portable VIS-NIR spectrophotometer. Food and Bioprocess Technology, 3. doi:10.1007/s11947-010-0414-5.

  • Balasundaram, D., Burks, T. F., Bulanon, D. M., Schubert, T., & Lee, W. S. (2009). Spectral reflectance characteristics of citrus canker and other peel condition of grapefruit. Postharvest Biology and Technology, 51, 220–226.

    Google Scholar 

  • Blanco, M., & Villarroya, I. (2002). NIR spectroscopy: a rapid-response analytical tool. Trends in Analytical Chemistry, 21, 240–250.

    CAS  Google Scholar 

  • Blasco, J., Aleixos, N., & Moltó, E. (2007). Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm. Journal of Food Engineering, 81, 535–543.

    Google Scholar 

  • Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83, 384–393.

    Google Scholar 

  • Blasco, J., Aleixos, N., Gómez-Sanchís, J., & Moltó, E. (2009). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 10, 137–145.

    Google Scholar 

  • Bobelyn, E., Serban, A., Nicu, M., Lammertyn, J., Nicolaï, B. M., & Saeys, W. (2010). Postharvest quality of apple predicted by NIR-spectroscopy: study of the effect of biological variability on spectra and model performance. Postharvest Biology and Technology, 55, 133–143.

    CAS  Google Scholar 

  • Bulanon, D. M., Burks, T. F., & Alchanatis. (2010). A multispectral imaging analysis for enhancing citrus fruit detection. Environmental Control and Biology, 48(2), 81–91.

    Google Scholar 

  • Butz, P., Hofmann, C., & Tauscher, B. (2005). Recent developments in non-invasive techniques for fresh fruit and vegetable internal quality analysis. Concise Reviews in Food Science, 70, 131–141.

    Google Scholar 

  • Camps, C., & Christen, D. (2009). Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy. Food Science and Technology, 42, 1125–1131.

    CAS  Google Scholar 

  • Carlini, P., Massantini, R., & Mencarelli, F. (1999). Wavelength selection methods for PLS-based vis–NIR evaluation of SSC in fresh fruits. In: Proceedings of the NIR’99, 9th International Conference on Near-Infrared Spectroscopy, Verona, Italy, 13–18 June 1999.

  • Carlini, P., Massantini, R., & Mencarelli, F. (2000). Vis–NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection. Journal of Agricultural and Food Chemistry, 48, 5236–5242.

    CAS  Google Scholar 

  • Cayuela, J. A. (2008). Vis–NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance. Postharvest Biology and Technology, 47, 75–80.

    CAS  Google Scholar 

  • Cayuela, J. S., & Weiland, C. (2010). Intact orange quality prediction with two portable NIR spectrometers. Postharvest Biology and Technology, 58, 113–120.

    Google Scholar 

  • Cen, H., He, Y., & Huang, M. (2006). Measurements of soluble solids contents and pH in orange juice using chemometrics and Vis–NIRS. Journal of Agricultural Food Chemistry, 54, 7437–7443.

    CAS  Google Scholar 

  • Cen, H., Bao, Y., He, Y., & Sun, D.-W. (2007). Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. Journal of Food Engineering, 82, 253–260.

    CAS  Google Scholar 

  • Centner, V., Massart, D. L., de Noord, O. E., de Jong, S., Vandeginste, M. B., & Sterna, C. (1996). Elimination of uninformative variables for multivariate calibration. Analytical Chemistry, 68, 3851–3858.

    CAS  Google Scholar 

  • Clark, C. J., McGlone, V. A., DeSilva, H. N., Manning, M. A., Burdon, J., & Mowat, A. D. (2004). Prediction of storage disorders of kiwifruit (Actanidia cinensis) based on visible-NIR spectral characteristics at harvest. Postharvest Biology and Technology, 32, 147–158.

    Google Scholar 

  • Cronje, P.J.R. (2005). Peteca spot of lemons. South African Fruit Journal (Feb/March issue) 26–28

  • Cronje, P.J.R. (2009). Postharvest rind breakdown of ‘Nules Clementine’ mandarins (Citrus reticulate Blanco) fruit. Ph.D. thesis, Department of Horticultural Science, University of Stellenbosch, Stellenbosch, South Africa.

  • Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2010). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology. doi:10.1007/s11947-010-0411-8.

  • De Jong, S. (1993). PLS fits closer than PCR. Journal of Chemometrics, 7, 551–557.

    Google Scholar 

  • Dull, G. G., & Birth, G. S. (1989). Nondestructive evaluation of fruit quality: use of near infrared spectrophotometry to measure soluble solids in intact honeydew melons. HortScience, 24, 754.

    Google Scholar 

  • Dull, G., Birth, G., & Leffler, R. (1989). Use of near infrared analysis for the non-destructive measurement of dry matter in potatoes. American Potato Journal, 66, 215–225.

    Google Scholar 

  • Dull, G. G., Birth, G. S., Smittle, D. A., & Leffler, R. G. (1989). Near infrared analysis of soluble solids of intact cantaloupe. Journal of Food Science, 54, 393–395.

    CAS  Google Scholar 

  • Fercher, A. F., Drexler, W., Hitzenberger, C. K., & Lasser, T. (2003). Optical coherence tomography—principles and applications. Reports on Progress in Physics, 66, 239–303.

    Google Scholar 

  • Fraser, D. G., Künnemeyer, R., McGlone, V. A., & Jordan, R. B. (2001). Letter to the editor. Postharvest Biology and Technology, 22, 191–195.

    Google Scholar 

  • Fraser, D. G., Jordan, R. B., Künnemeyer, R., & McGlone, V. A. (2003). Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy. Postharvest Biology and Technology, 27, 185–196.

    Google Scholar 

  • Fu, X., Ying, Y., Lu, H., & Xu, X. (2007). Comparison of diffuse reflectance and transmission mode of visible-near infrared spectroscopy for detecting brown heart of pear. Journal of Food Engineering, 83, 317–323.

    Google Scholar 

  • Gaffney, J. J. (1973). Reflectance properties of citrus fruit. Transactions of the American Society of Agricultural Engineers, 16(2), 310–314.

    Google Scholar 

  • Geeola, F., Geeola, F., & Peiper, U. M. (1994). A spectrophotometric method for detecting surface bruises on ‘Golden Delicious’ apples. Journal of Agricultural Engineering Research, 58, 47–51.

    Google Scholar 

  • Golic, M., Walsh, K. B., & Lawson, P. (2003). Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature. Applied spectroscopy, 57, 139–145.

    CAS  Google Scholar 

  • Golic, M., & Walsh, K. B. (2006). Robustness of calibration medels based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids contents. Analytica Chimica Acta, 555, 286–291.

    CAS  Google Scholar 

  • Gómez, A. H., He, Y., & Pereira, A. G. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using vis–NIR spectroscopy techniques. Journal of Food Engineering, 77, 313–319.

    Google Scholar 

  • Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.

    Google Scholar 

  • Gowen, A. A., O’Donnell, C. P., Cullen, P. J., Downey, G., & Frias, J. M. (2007). Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends in Food Science and Technology, 18, 590–598.

    CAS  Google Scholar 

  • Greensill, C. V., & Walsh, K. B. (2002). Calibration transfer between miniature photodiode array-based spectrometers in the near infrared assessment of mandarin soluble solids content. Journal of Near Infrared Spectroscopy, 10, 27–35.

    CAS  Google Scholar 

  • Guthrie, J., & Walsh, K. (1997). Non-invasive assessment of pineapple and mango fruit quality using near infrared spectroscopy. Australian Journal of Experimental Agriculture, 37, 253–263.

    Google Scholar 

  • Guthrie, J. A., Wedding, B., & Walsh, K. B. (1998). Robustness of NIR calibrations for soluble solids in intact melon and pineapple. Journal of Near Infrared Spectroscopy, 6, 259–265.

    CAS  Google Scholar 

  • Guthrie, J. A., Walsh, K. B., Reid, D. J., & Liebenberg, C. J. (2005). Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development. Australian Journal of Agricultural Research, 56, 405–416.

    Google Scholar 

  • Guthrie, J. A., Reid, D. J., & Walsh, K. B. (2005). Assessment of internal quality attributes of mandarin fruit. 2. NIR calibration model robustness. Australian Journal of Agricultural Research, 56, 417–426.

    Google Scholar 

  • Guthrie, J. A., Liebenberg, C. J., & Walsh, K. B. (2006). NIR model development and robustness in prediction of melon fruit total soluble solids. Australian Journal of Agricultural Research, 57, 1–8.

    Google Scholar 

  • Hebden, J. C., Gibson, A., Yusof, R. M., Everdell, N., Hillman, E. M. C., Delpy, D. T., et al. (2002). Three-dimensional optical tomography of the premature infant brain. Physics in Medicine and Biology, 47, 4155–4166.

    Google Scholar 

  • Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., et al. (1991). Optical coherence tomography. Science, 254, 1178–1181.

    CAS  Google Scholar 

  • Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87, 303–313.

    CAS  Google Scholar 

  • Kader, A. A. (2002). Opportunities in using biotechnology to maintain postharvest quality and safety of fresh produce. HortScience, 37, 24–25.

    Google Scholar 

  • Kawano, S., Fujiwara, T., & Iwamoto, M. (1993). Non-destructive determination of sugar content in ‘Satsuma’ mandarins using NIRS transmittance. Journal of the Japanese Society for Horticultural Science, 62, 465–470.

    CAS  Google Scholar 

  • Kemsely, E. K., Tapp, H. S., Binns, R., Mackin, R. O., & Peyton, A. J. (2008). Feasibility study of NIR diffuse optical tomography on agricultural produce. Postharvest Biology and Technology, 48, 223–230.

    Google Scholar 

  • Kim, J., Mowat, A., Poole, P., & Kasabov, N. (2000). Linear and non-linear pattern recognition models for classification of fruit from visible–near infrared spectra. Chemometrics and Intelligent Laboratory Systems, 51, 201–216.

    CAS  Google Scholar 

  • Krivoshiev, G. P., Chalucova, R. P., & Moukarev, M. I. (2000). A possibility for elimination of the interference from the peel in nondestructive determination of the internal quality of fruit and vegetables by vis–NIR spectroscopy. Lebensm-Wiss University of technology, 33, 344–353.

    CAS  Google Scholar 

  • Kutis, I. S., Sapozhnikova, V. V., Kuranov, R. V., & Kamenskii, V. A. (2005). Study of the morphological and functional state of higher plant tissues by optical coherence microscopy and optical coherence tomography. Russian Journal of Plant Physiology, 52, 559–564.

    CAS  Google Scholar 

  • Lammertyn, J., Peirs, J., De Baerdemaeker, J., & Nicolaï, B. M. (2000). Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biology and Technology, 18, 121–132.

    Google Scholar 

  • Lammertyn, J., Dressalaers, T., Van Hecke, P., Jancsók, P., Wevers, M., & Nicolaï, B. M. (2003). MRI and X-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears. Magnetic Resonance Imaging, 21(7), 805–815.

    CAS  Google Scholar 

  • Lammertyn, J., Dresselaers, T., Van Hecke, P., Jancsók, P., Wevers, M., & Nicolaï, B. M. (2003). Analysis of the time course of core breakdown in ‘Conference’ pears by means of MRI and X-ray CT. Postharvest Biology and Technology, 29, 19–28.

    CAS  Google Scholar 

  • Leonardi, L., & Burns, D. H. (1999). Quantitative multiwavelength consistuent measurements using single-wavelength photo time-of-flight correction. Applied Spectroscopy, 53, 637–646.

    CAS  Google Scholar 

  • Liu, Y., Sun, X., & Ouyang, A. (2010). Non-destructive measurements of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLS and PCA-BPNN. LWT-Food Science and Technology, 43, 602–607.

    CAS  Google Scholar 

  • Liu, Y., Sun, X., Zhang, H., & Aiguo, O. (2010). Nondestructive measurement of internal quality of Nanfeng mandarin fruit by charge coupled device near infrared spectroscopy. Computers and Electronics in Agriculture, 71(S1), S10–S14.

    Google Scholar 

  • López-García, F., Andreu-García, A., Blasco, J., Aleixos, N., & Valiente, J. M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71, 189–197.

    Google Scholar 

  • Louw, E. D., & Theron, K. I. (2010). Robust prediction models for quality parameters in Japanese plums (Prunus salicina L.) using NIR spectroscopy. Postharvest Biology and Technology, 58, 176–184.

    Google Scholar 

  • Lovász, T., Merész, P., & Salgó, A. (1994). Application of near infrared transmission spectroscopy for the determination of some quality parameters of apples. Journal of Near Infrared Spectroscopy, 2, 213–221.

    Google Scholar 

  • Lu, Q., Gan, X., Gu, M., & Luo, Q. (2004). Monte Carlo modelling of optical coherence tomography imaging through turbid media. Applied Optics, 43, 1628–1637.

    Google Scholar 

  • Lu, H., Xu, H., Ying, Y., Fu, X., Yu, H., & Tian, H. (2006). Application Fourier transform near infrared spectrometer in rapid estimation of soluble solids content of intact citrus fruits. Journal of Zhejiang University Scence, 7, 794–799.

    Google Scholar 

  • Magwaza, L.S., Opara, U.L., Nieuwoudt, H., & Cronje, P. (2011). Non-destructive quality assessment of ‘Valencia’ orange using FT-NIR spectroscopy. In: Proceedings of the NIR 2011, 15th International Conference on Near-Infrared Spectroscopy, Cape Town, South Africa, 13–20 May 2011.

  • McClure, W. F. (2003). Review: 204 years of near infrared technology: 1800–2003. Journal of Near Infrared spectroscopy, 11, 487–518.

    CAS  Google Scholar 

  • McGlone, V. A., & Kawano, S. (1998). Firmness, dry-matter and soluble solids assessment of postharvest kiwifruit by NIR spectroscopy. Postharvest Biology and Technology, 13, 131–141.

    Google Scholar 

  • McGlone, V. A., Jordan, R. B., & Martinsen, P. J. (2002). Vis-NIR estimation at harvest of pre- and post-storage quality indices for ‘Royal Gala’ apple. Postharvest Biology and Technology, 25, 135–144.

    CAS  Google Scholar 

  • McGlone, V. A., Fraser, D. G., Jordan, R. B., & Kunnemeyer, R. (2003). Internal quality assessment of mandarin fruit by vis–NIR spectroscopy. Journal of Near Infrared Spectroscopy, 11, 323–332.

    CAS  Google Scholar 

  • Meglinski, I. V., Buranachai, C., & Terry, L. A. (2010). Plant photonics: application of optical tomography to monitor defects and rots in onion. Laser Physics Letters. doi:10.1002/lapl.200910141.

  • Mehl, P. M., Chen, Y.-R., Kim, M. S., & Chan, D. E. (2004). Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering, 61, 67–81.

    Google Scholar 

  • Menesatti, P., Antonucci, F., Pallottino, F., Rocuzzo, G., Allegra, M., Stagno, F., et al. (2010). Estimation of plant nutritional status by vis–NIR spectroscopic analysis on orange leaves [Citrus sinensis (L.) Osbeck cv Tarocco]. Biosystems Engineering, 105, 448–454.

    Google Scholar 

  • Miller, B. K., & Delwiche, M. J. (1991). Spectral analysis of peach surface defects. Transactions of the American Society for Agricultural Engineering, 34, 2509–2515.

    Google Scholar 

  • Miller, W. M., & Zude, M. (2002). Non-destructive brix sensing of Florida grapefruit and honey tangerines. Proceedings of the Florida state Horticultural society, 115, 56–60.

    Google Scholar 

  • Miyamoto, K., & Kitano, Y. (1995). Non-destructive determination of sugar content in Satsuma mandarin fruit by near infrared transmittance spectroscopy. Journal of Near Infrared Spectroscopy, 3, 227–237.

    CAS  Google Scholar 

  • Miyamoto, K., Kawauchi, M., & Fukuda, T. (1998). Classification of high acid fruits by PLS using the near infrared transmittance spectra of intact Satsuma mandarins. Journal of Near Infrared Spectroscopy, 6(1–4), 267–271.

    CAS  Google Scholar 

  • Moon, D. G., & Mizutani, F. (2002). Relationship between fruit shape acid content in different parts of citrus fruits. Journal of the Japanese Society for Horticultural Science, 71, 56–58.

    Google Scholar 

  • Nicolaï, B. M., Lötze, E., Peirs, A., Scheerlinck, N., & Theron, K. I. (2006). Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology, 40, 1–6.

    Google Scholar 

  • Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, I. K., et al. (2007). Non-destructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46, 99–118.

    Google Scholar 

  • Nicolaï, B. M., Theron, K. I., & Lammertyn, J. (2007). Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemometrics and Intelligent Laboratory Systems, 85, 243–252.

    Google Scholar 

  • Nicolaï, B. M., Verlinden, B. E., Desmet, M., Saevels, S., Saeys, W., Theron, K., et al. (2008). Time-resolved and continuous wave NIR reflectance spectroscopy to predict soluble solids content and firmness of pear. Postharvest Biology and Technology, 47, 68–74.

    Google Scholar 

  • Nicolaï, B. M., Bulens, I., De Baerdemaker, J., De Ketelaere, B., Hertog, M. L. A. T. M., Verboven, P., et al. (2009). Non-destructive evaluation: detection of external and internal attributes frequently associated with quality and damage. In D. Florkowiski (Ed.), Postharvest Handling: A Systems Approach (pp. 421–442). Amsterdam: Academic Press, Elsevier.

    Google Scholar 

  • Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., & Engelsen, S. B. (2000). Interval partial least-square (iPLS): a comparative chemometric study with an example from near infrared spectroscopy. Applied Spectroscopy, 54, 413–419.

    Google Scholar 

  • Norris, K. H., & Hart, J. R. (1965). Direct spectrophotometric determination of moisture content of grain and seeds. In Humidity and moisture, vol 4. Principles and methods of measuring moisture in liquids and solids. New York: Reinhold.

    Google Scholar 

  • Osborne, S. D., Jordan, R. B., & Kunnemeyer, R. (1997). Method of wavelength selection for partial least squares. Analyst, 122, 1531–1537.

    CAS  Google Scholar 

  • Osborne, S. D., Kunnemeyer, R., & Jordan, R. B. (1999). A low-cost system for the grading of kiwifruit. Journal of Near Infrared Spectroscopy, 7, 9–15.

    CAS  Google Scholar 

  • Osborne, B. G. (2000). Near infrared spectroscopy in food analysis (pp. 1–14). Australia: BRI Australia Ltd.

    Google Scholar 

  • Ou, A. S., Lin, S., Lin, T., Wu, S., & Tiarn, M. (1997). Studies on the determination of quality-related constituents in ‘Ponkan’ mandarin by near infrared spectroscopy. Journal of the Chinese Agricultural Chemical Society, 35, 462–474.

    CAS  Google Scholar 

  • Pallav, P., Diamond, G. G., Hutchins, D. A., Green, R. J., & Gan, T. J. (2009). A near infrared (NIR) technique for imaging food materials. Journal of Food Science, 74, 23–33.

    Google Scholar 

  • Palmer, K. F., & Williams, D. (1974). Optical properties of water in the near infrared. Journal of the Optical Society of America, 64, 1107–1110.

    CAS  Google Scholar 

  • Peirera, A. F. C., Pontes, M. J. C., Neto, F. F. G., Santos, S. R. B., Galvaõ, R. K. H., & Araújo, M. C. U. (2008). NIR spectrometric determination of quality parameters in vegetable oils using iPLS and variable selection. Food Research International, 41, 341–348.

    Google Scholar 

  • Peiris, K. H. S., Dull, G. G., Leffler, R. G., & Kays, S. J. (1998a). Near-infrared spectrometric method for nondestructive determination of soluble solids content of peaches. American society for Horticultural Science, 123, 898–905.

    CAS  Google Scholar 

  • Peiris, K. H. S., Dull, G. G., Leffler, R. G., & Kays, S. J. (1998b). Near-infrared (NIR) spectrometric technique for non-destructive determination of soluble solids content in processing tomatoes. American society for Horticultural Science, 123, 1089–1093.

    CAS  Google Scholar 

  • Peiris, K. H. S., Dull, G. G., & Leffler, R. G. (1998c). Nondestructive detection of selection drying, an internal disorder in tangerine. HortScience, 33, 310–312.

    Google Scholar 

  • Peiris, K. H. S., Dull, G. G., Leffler, R. G., & Kays, S. J. (1999). Spatial variability of soluble solids or dry-matter content within individual fruits, bulbs, or tubers: Implications for the development and use of NIR spectrometric techniques. HortScience, 34, 114–118.

    Google Scholar 

  • Peirs, A., Tirry, J., Verlinden, B., Darius, P., & Nicolaï, B. M. (2002). Effect of biological variability on the robustness of NIR-models for soluble solids content of apples. Postharvest Biology and Technology, 28, 269–280.

    Google Scholar 

  • Peirs, A., Scheerlinck, N., & Nicolaï, B. M. (2003). Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents. Postharvest Biology and Technology, 30, 233–248.

    Google Scholar 

  • Qin, J., Burks, T. F., Kim, M. S., Chao, K., & Ritenour, M. A. (2008). Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sensory and Instrumental Food Quality, 2, 168–177.

    Google Scholar 

  • Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191.

    Google Scholar 

  • Saiz-Abajo, M. J., Mevick, B.-H., Segtnan, V. H., & Naes, T. (2005). Ensemble methods and data augmentation by noise addition applied to the analysis of spectroscopic data. Analytica Chimica Acta, 533, 147–159.

    CAS  Google Scholar 

  • Sapozhnikova, V. V., Kamenskii, V. A., & Kuranov, R. V. (2003). Visualization of plant tissues by optical coherence tomography. Russian Journal of Plant Physiology, 50, 282–286.

    CAS  Google Scholar 

  • Sapozhnikova, V. V., Kamensky, V. A., Kuranov, R. V., Kutis, I., Snopova, L. B., & Myakov, A. V. (2004). In vivo visualization of Tradescantia leaf tissue and monitoring the physiological and morphological states under different water supply conditions using optical coherence tomography. Planta, 219, 601–609.

    CAS  Google Scholar 

  • Schaare, P. N., & Fraser, D. G. (2000). Comparison of reflectance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis). Postharvest Biology and Technology, 20, 175–184.

    Google Scholar 

  • Smith, L. G. (1984). Pineapple sepcifiuc gravity as an index of eating quality. Tropical Agriculture (Trinidad), 61, 196–199.

    Google Scholar 

  • Spreen, T.H. (2009). Projections of world production and consumption of citrus to 2010. China/FAO citrus symposium. Food and Agricultural Organisation of the United nations. http://www.fao.org/docrep/003/x6732e/x6732e02.htm.

  • Steuer, B., Schulz, H., & Läger, E. (2001). Classification and analysis of citrus oils by NIR spectroscopy. Food Chemistry, 72, 113–117.

    CAS  Google Scholar 

  • Sun, X., Zhang, H., & Liu, Y. (2009). Nondestructive assessment of quality of ‘Nanfeng’ mandarin fruit by a portable near infrared spectroscopy. International Journal of Agricultural and Biological Engineering, 2, 65–71.

    CAS  Google Scholar 

  • Tewari, J. C., Dixit, V., Chi, B.-K., & Malik, K. A. (2008). Determination of origin and sugars of citrus fruit using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 1119–1127.

    Google Scholar 

  • Tomlins, P. H., & Wang, R. K. W. (2005). Theory, developments and applications of optical coherence tomography. Journal of Physics. D: Applied Physics, 38, 2519–2535.

    CAS  Google Scholar 

  • Tsuchikawa, S., Sakai, E., Inoue, K., & Miyamoto, K. (2003). Application of time-of-flight near-infrared spectroscopy to detect sugar and acid content in Satsuma mandarin. Journal of the American Society for Horticultural Science, 128, 391–396.

    Google Scholar 

  • Walsh, K. B., Guthrie, J. A., & Burney, J. W. (2000). Application of commercially available, low cost, miniaturised NIR spectrometers to the assessment of the sugar content of intact fruit. Australian Journal of Plant Physiology, 27, 1175–1186.

    CAS  Google Scholar 

  • Walsh, K.B. (2005). Commercial adoption of technologies for fruit grading, with emphasis on NIRS. Information and technology for sustainable fruit and vegetable production, FRUTIC 05, Montpellier, France, 12–16 September 2005

  • Wang, W., & Paliwal, J. (2007). Near-infrared spectroscopy and imaging in food quality and safety. Sensory and Instrumental Food Chemistry, 1, 193–207.

    Google Scholar 

  • Wetzel, D. L. (1983). Near infrared reflectance analysis: sleeper among spectroscopic techniques. Analytical Chemistry, 55, 1165–1176.

    Google Scholar 

  • Williams, P. C., & Norris, K. H. (1987). Qualitative applications of near-infrared reflectance spectroscopy. In P. C. Williams & K. H. Norris (Eds.), Near-infrared technology in the agricultural and food industries (pp. 241–246). St. Paul: American Association of Cereal Chemistry.

    Google Scholar 

  • Williams, P., & Norris, K. H. (2001). Variable affecting near infrared spectroscopic analysis. In P. Williams & K. H. Norris (Eds.), Near infrared technology in the agriculture and food industries (2nd ed., pp. 171–185). St Paul: The American Association of Cereal Chemists.

    Google Scholar 

  • Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    CAS  Google Scholar 

  • Xia, J., Li, X., Li, P., Ma, Q., & Ding, X. (2007). Application of wavelet transform in the prediction of ‘Navel’ orange vitamin C content by near-infrared spectroscopy. Agricultural Sciences in China, 6(9), 1067–1073.

    CAS  Google Scholar 

  • Xing, J., Landahl, S., Lammertyn, J., Vrindts, E., & De Baerdemaeker, J. (2003). Effects of bruise type on discrimination of bruised and nonbruised ‘Golden Delicious’ apples by vis–NIR spectroscopy. Postharvest Biology and Technology, 30, 249–258.

    Google Scholar 

  • Xing, J., Bravo, C., Jancsó, P. T., Ramon, H., & De Baerdemaeker, J. (2005). Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering, 90, 27–36.

    Google Scholar 

  • Zhao, X., Burks, T. F., Qin, J., & Ritenour, M. A. (2010). Effect of fruit harvest time on citrus canker detection using hyperspectral reflectance imaging. Sensory and Instrumental Food Quality, 4, 126–135.

    Google Scholar 

  • Zheng, Y., He, S., Yi, S., Zhou, Z., Mao, S., Zhao, X., et al. (2010). Predicting oleocellosis sensitivity in citrus using vis–NIR reflectance spectroscopy. Scientia Hoticulturae, 125, 401–405.

    Google Scholar 

  • Zude, M., Pflanz, M., Kaprielian, C., & Aivazian, B. (2008). NIRS as a tool for precision horticulture in citrus industry. Biosystem Engineering, 99, 455–459.

    Google Scholar 

Download references

Acknowledgements

This project was funded by the DST/NRF South African Research Chairs Initiative. The authors are also grateful to the Perishable Products Export Control Board and the South Africa/Flanders Research Cooperation Programme for financial support which made it possible to undertake the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umezuruike Linus Opara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magwaza, L.S., Opara, U.L., Nieuwoudt, H. et al. NIR Spectroscopy Applications for Internal and External Quality Analysis of Citrus Fruit—A Review. Food Bioprocess Technol 5, 425–444 (2012). https://doi.org/10.1007/s11947-011-0697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0697-1

Keywords

Navigation