Skip to main content

Advertisement

Log in

Telehealth and Virtual Reality Technologies in Chronic Pain Management: A Narrative Review

  • Chronic Pain Medicine (O Viswanath, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides medical practitioners with an overview of the present and emergent roles of telehealth and associated virtual reality (VR) applications in chronic pain (CP) management, particularly in the post-COVID-19 healthcare landscape.

Recent Findings

Accumulated evidence points to the efficacy of now well-established telehealth modalities, such as videoconferencing, short messaging service (SMS), and mobile health (mHealth) applications in complementing remote CP care. More recently, and although still in early phases of clinical implementation, a wide range of VR-based interventions have demonstrated potential for improving the asynchronous remote management of CP. Additionally, VR-associated technologies at the leading edge of science and engineering, such as VR-assisted biofeedback, haptic technology, high-definition three-dimensional (HD3D) conferencing, VR-enabled interactions in a Metaverse, and the use of wearable monitoring devices, herald a new era for remote, synchronous patient-physician interactions. These advancements hold the potential to facilitate remote physical examinations, personalized remote care, and innovative interventions such as ultra-realistic biofeedback. Despite the promise of VR-associated technologies, several limitations remain, including the paucity of robust long-term effectiveness data, heterogeneity of reported pain-related outcomes, challenges with scalability and insurance coverage, and demographic-specific barriers to patient acceptability. Future research efforts should be directed toward mitigating these limitations to facilitate the integration of telehealth-associated VR into the conventional management of CP.

Summary

Despite ongoing barriers to widespread adoption, recent evidence suggests that VR-based interventions hold an increasing potential to complement and enhance the remote delivery of CP care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Treede RD, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the International Classification of Diseases (ICD-11). Pain. 2019;160(1):19–27. https://doi.org/10.1097/J.PAIN.0000000000001384.

    Article  PubMed  Google Scholar 

  2. Yong RJ, Mullins PM, Bhattacharyya N. Prevalence of chronic pain among adults in the United States. Pain. 2022;163(2):E328–32. https://doi.org/10.1097/J.PAIN.0000000000002291.

    Article  PubMed  Google Scholar 

  3. Pitcher MH, Von Korff M, Bushnell MC, Porter L. Prevalence and profile of high-impact chronic pain in the United States. J Pain. 2019;20(2):146–60. https://doi.org/10.1016/j.jpain.2018.07.006.

    Article  PubMed  Google Scholar 

  4. Mullins PM, Yong RJ, Bhattacharyya N. Associations between chronic pain, anxiety, and depression among adults in the United States. Pain Pract. 2023;23(6):589–94. https://doi.org/10.1111/PAPR.13220.

    Article  PubMed  Google Scholar 

  5. Meints SM, Edwards RR. Evaluating psychosocial contributions to chronic pain outcomes. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:168–82. https://doi.org/10.1016/J.PNPBP.2018.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain. 2012;13(8):715–24. https://doi.org/10.1016/j.jpain.2012.03.009.

    Article  PubMed  Google Scholar 

  7. Dieleman JL, et al. US health care spending by payer and health condition, 1996–2016. JAMA. 2020;323(9):863–84. https://doi.org/10.1001/JAMA.2020.0734.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nielsen CS. Assessing the societal cost of chronic pain. Scand J Pain. 2022;22(4):684–5. https://doi.org/10.1515/SJPAIN-2022-0101/MACHINEREADABLECITATION/RIS.

    Article  PubMed  Google Scholar 

  9. Chen QL, Bharadwaj V, Irvine KA, Clark JD. Mechanisms and treatments of chronic pain after traumatic brain injury. Neurochem Int. 2023;171:105630. https://doi.org/10.1016/J.NEUINT.2023.105630.

    Article  CAS  PubMed  Google Scholar 

  10. Gatchel RJ, Peng YB, Peters ML, Fuchs PN, Turk DC. The biopsychosocial approach to chronic pain: scientific advances and future directions. Psychol Bull. 2007;133(4):581–624. https://doi.org/10.1037/0033-2909.133.4.581.

    Article  PubMed  Google Scholar 

  11. Dahlhamer J, et al. Prevalence of chronic pain and high-impact chronic pain among adults — United States, 2016. Morb Mortal Wkly Rep. 2018;67(36):1001. https://doi.org/10.15585/MMWR.MM6736A2.

    Article  Google Scholar 

  12. Craig KD, et al. Pain in persons who are marginalized by social conditions. Pain. 2020;161(2):261. https://doi.org/10.1097/J.PAIN.0000000000001719.

    Article  PubMed  Google Scholar 

  13. Pronovost A, Peng P, Kern R. Telemedicine in the management of chronic pain: a cost analysis study. Can J Anesth. 2009;56(8):590–6. https://doi.org/10.1007/S12630-009-9123-9/FIGURES/3.

    Article  PubMed  Google Scholar 

  14. Emerick T, et al. “Telemedicine for chronic pain in the COVID-19 era and beyond. Pain Med: Official J Am Acad Pain Med. 2020;21(9):1743. https://doi.org/10.1093/PM/PNAA220.

    Article  Google Scholar 

  15. Eccleston C, et al. Managing patients with chronic pain during the COVID-19 outbreak: considerations for the rapid introduction of remotely supported (eHealth) pain management services. Pain. 2020. https://doi.org/10.1097/j.pain.0000000000001885.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shanthanna H, et al. Recommendations on chronic pain practice during the COVID-19 pandemic: a joint statement by American Society of Regional Anesthesia and Pain Medicine (ASRA) and European Society of Regional Anesthesia and Pain Therapy (ESRA). Accessed: 10 Nov 2023. [Online]. Available: https://www.asra.com/news-publications/asra-updates/blog-landing/legacy-b-blog-posts/2020/03/27/recommendations-on-chronic-pain-practice-during-the-covid-19-pandemic.

  17. Brenner B, et al. Telemedicine implementation in pain medicine: a survey evaluation of pain medicine practices in spring 2020. Pain Physician. 2022;25(5):387–90.

    PubMed  Google Scholar 

  18. Vorenkamp KE, Kochat S, Breckner F, Dimon C. Challenges in utilizing telehealth for chronic pain. Curr Pain Headache Rep. 2022;26(8):617. https://doi.org/10.1007/S11916-022-01067-1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Birnie KA, et al. Best practices for virtual care to support youth with chronic pain and their families: a rapid systematic review to inform health care and policy during COVID-19 and beyond. Pain Rep. 2021;6(2). https://doi.org/10.1097/PR9.0000000000000935.

  20. de Moraes ÉB, Santos Garcia JB, de Macedo Antunes J, Daher DV, Seixas FL, Muniz Ferrari MF. Chronic pain management during the Covid-19 pandemic: a scoping review. Pain Manag Nurs. 2021;22(2):103. https://doi.org/10.1016/J.PMN.2020.11.010.

    Article  PubMed  Google Scholar 

  21. Perez J, Niburski K, Stoopler M, Ingelmob P. Telehealth and chronic pain management from rapid adaptation to long-term implementation in pain medicine: a narrative review. Pain Rep. 2021;6(1). https://doi.org/10.1097/PR9.0000000000000912.

  22. Overstreet DS, Pester BD, Wilson JM, Flowers KM, Kline NK, Meints SM. The experience of BIPOC living with chronic pain in the USA: biopsychosocial factors that underlie racial disparities in pain outcomes, comorbidities, inequities, and barriers to treatment. Curr Pain Headache Rep. 2023;27(1):1–10. https://doi.org/10.1007/S11916-022-01098-8.

    Article  PubMed  Google Scholar 

  23. Choe K, Zinn E, Lu K, Hoang D, Yang LH. Impact of COVID-19 pandemic on chronic pain and opioid use in marginalized populations: a scoping review. Front Public Health. 2023;11. https://doi.org/10.3389/FPUBH.2023.1046683.

  24. Drerup B, Espenschied J, Wiedemer J, Hamilton L. Reduced no-show rates and sustained patient satisfaction of telehealth during the COVID-19 pandemic. Telemed J E Health. 2021;27(12):1409–15. https://doi.org/10.1089/TMJ.2021.0002.

    Article  PubMed  Google Scholar 

  25. Mathews CP, Convoy S, Heyworth L, Knisely M. Quality improvement evaluation of the use of telehealth video visits for veterans with chronic pain. Pain Manag Nurs. 2022;23:418–23. https://doi.org/10.1016/j.pmn.2022.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stefos T, Carey K, Shen ML, Poe S, Oh DH, Moran E. The effect of telehealth services on provider productivity. Med Care. 2021;59(5):456–60. https://doi.org/10.1097/MLR.0000000000001529.

    Article  PubMed  Google Scholar 

  27. Theodore BR, et al. Transaction cost analysis of in-clinic versus telehealth consultations for chronic pain: preliminary evidence for rapid and affordable access to interdisciplinary collaborative consultation. Pain Med. 2015;16(6):1045. https://doi.org/10.1111/PME.12688.

    Article  PubMed  Google Scholar 

  28. FAIR Health. Monthly telehealth regional tracker. Accessed: 10 Nov 2023. [Online]. Available: https://www.fairhealth.org/fh-trackers/telehealth.

  29. El-Tallawy SN, et al. Pain management in the post-COVID era—an update: a narrative review. Pain Ther. 2023;12(2):423. https://doi.org/10.1007/S40122-023-00486-1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burke C, et al. Videoconferencing of movement-based and psychologically informed interventions for chronic pain: a systematic review and horizon scan. Telemed J E Health. 2023;29(9):1275–88. https://doi.org/10.1089/TMJ.2022.0308.

    Article  PubMed  Google Scholar 

  31. Buonanno P, Marra A, Iacovazzo C, Franco M, De Simone S. Telemedicine in cancer pain management: a systematic review and meta-analysis of randomized controlled trials. Pain Med. 2023;24(3):226–33. https://doi.org/10.1093/PM/PNAC128.

    Article  PubMed  Google Scholar 

  32. Wu YQ, et al. The efficacy and safety of telerehabilitation for fibromyalgia: systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2023;25. https://doi.org/10.2196/42090.

  33. Fisher E, Law E, Dudeney J, Eccleston C, Palermo TM. Psychological therapies (remotely delivered) for the management of chronic and recurrent pain in children and adolescents. Cochrane Database Syst Rev. 2019;4(4). https://doi.org/10.1002/14651858.CD011118.PUB3.

  34. Rosser BA, Fisher E, Janjua S, Eccleston C, Keogh E, Duggan G. Psychological therapies delivered remotely for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst Rev. 2023;8(8):CD013863. https://doi.org/10.1002/14651858.CD013863.PUB2.

    Article  PubMed  Google Scholar 

  35. Sánchez-Gutiérrez C, Gil-García E, Rivera-Sequeiros A, López-Millán JM. Effectiveness of telemedicine psychoeducational interventions for adults with non-oncological chronic disease: a systematic review. J Adv Nurs. 2022;78(5):1267–80. https://doi.org/10.1111/JAN.15151.

    Article  PubMed  Google Scholar 

  36. Herbert MS, et al. Telehealth versus in-person acceptance and commitment therapy for chronic pain: a randomized noninferiority trial. J Pain. 2017;18(2):200–11. https://doi.org/10.1016/J.JPAIN.2016.10.014.

    Article  PubMed  Google Scholar 

  37. Chung JE. Social interaction in online support groups: preference for online social interaction over offline social interaction. Comput Human Behav. 2013;29(4):1408–14. https://doi.org/10.1016/j.chb.2013.01.019.

    Article  Google Scholar 

  38. Wallace LM, Falla D, Rushton A, Heneghan NR. Group and individual telehealth for chronic musculoskeletal pain: a scoping review. Musculoskeletal Care. 2022;20(2):245–58. https://doi.org/10.1002/MSC.1594.

    Article  CAS  PubMed  Google Scholar 

  39. Holtz BE. Patients perceptions of telemedicine visits before and after the coronavirus disease 2019 pandemic. https://home-liebertpub-com.proxy.lib.umich.edu/tmj, 2021;27(1):107–12. https://doi.org/10.1089/TMJ.2020.0168.

  40. Cascella M, et al. Satisfaction with telemedicine for cancer pain management: a model of care and cross-sectional patient satisfaction study. Curr Oncol. 2022;29(8):5566–78. https://doi.org/10.3390/CURRONCOL29080439.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hanna GM, et al. Development and patient satisfaction of a new telemedicine service for pain management at Massachusetts General Hospital to the Island of Martha’s Vineyard. Pain Med. 2016;17(9):1658–63. https://doi.org/10.1093/pm/pnw069.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fernandes LG, Devan H, Fioratti I, Kamper SJ, Williams CM, Saragiotto BT. At my own pace, space, and place: a systematic review of qualitative studies of enablers and barriers to telehealth interventions for people with chronic pain. Pain. 2022;163(2):e165–81. https://doi.org/10.1097/j.pain.0000000000002364.

    Article  PubMed  Google Scholar 

  43. Kyle MA, Blendon RJ, Findling MG, Benson JM. Telehealth use and satisfaction among U.S. households: results of a national survey. J Patient Exp. 2021;8. https://doi.org/10.1177/23743735211052737/SUPPL_FILE/SJ-DOCX-1-JPX-10.1177_23743735211052737.DOCX.

  44. Hoff T, Lee DR. Physician satisfaction with telehealth: a systematic review and agenda for future research. Qual Manag Health Care. 2022;31(3):160–9. https://doi.org/10.1097/QMH.0000000000000359.

    Article  PubMed  Google Scholar 

  45. Shaver J. The state of telehealth before and after the COVID-19 pandemic. Prim Care. 2022;49(4):517. https://doi.org/10.1016/J.POP.2022.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Buck C, Keweloh C, Bouras A, Simoes EJ. Efficacy of short message service text messaging interventions for postoperative pain management: systematic review. JMIR Mhealth Uhealth. 2021;9(6):e20199. https://doi.org/10.2196/20199.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pew Research Center. Mobile fact sheet. Accessed: 10 Nov 2023. [Online]. Available: https://www.pewresearch.org/internet/fact-sheet/mobile/#:~:text=The%20vast%20majority%20of%20Americans,smartphone%20ownership%20conducted%20in%202011.

  48. Tsang A, et al. Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders. J Pain. 2008;9(10):883–91. https://doi.org/10.1016/J.JPAIN.2008.05.005.

    Article  PubMed  Google Scholar 

  49. Chang PF, Bazarova NN, Wethington E. How older adults with chronic pain manage social support interactions with mobile media. Health Commun. 2022;37(3):384. https://doi.org/10.1080/10410236.2020.1846272.

    Article  PubMed  Google Scholar 

  50. Guillory J, et al. Piloting a text message-based social support intervention for patients with chronic pain: establishing feasibility and preliminary efficacy. Clin J Pain. 2015;31(6):548–56. https://doi.org/10.1097/AJP.0000000000000193.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gholamrezaei A, et al. Protocol: text messaging intervention to support patients with chronic pain during prescription opioid tapering: protocol for a double-blind randomised controlled trial. BMJ Open. 2023;13(10):e073297. https://doi.org/10.1136/BMJOPEN-2023-073297.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim EK, et al. Development of a patient-centered text message-based platform for the self-management of interstitial cystitis/bladder pain syndrome symptoms. Neurourol Urodyn. 2023;42(2):510–22. https://doi.org/10.1002/NAU.25115.

    Article  PubMed  Google Scholar 

  53. Gandy M, et al. Short message service prompts for skills practice in Internet-delivered cognitive behaviour therapy for chronic pain - are they feasible and effective? Eur J Pain. 2016;20(8):1288–98. https://doi.org/10.1002/EJP.853.

    Article  CAS  PubMed  Google Scholar 

  54. Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health. Sci Transl Med. 2015;7(283). https://doi.org/10.1126/SCITRANSLMED.AAA3487.

  55. MacPherson M, Bakker AM, Anderson K, Holtzman S. Do pain management apps use evidence-based psychological components? A systematic review of app content and quality. Can J Pain. 2022;6(1):33. https://doi.org/10.1080/24740527.2022.2030212.

    Article  PubMed  PubMed Central  Google Scholar 

  56. • Moreno-Ligero M, Moral-Munoz JA, Salazar A, Failde I. mHealth intervention for improving pain, quality of life, and functional disability in patients with chronic pain: systematic review. JMIR Mhealth Uhealth. 2023;11. https://doi.org/10.2196/40844. In this systematic review, Moreno-Ligero et al. provide a detailed overview of recent mobile health interventions for chronic pain. They analyzed 23 randomized controlled trials, focusing on disease-specific effects on pain intensity, quality of life, and functional disability.

  57. Moman RN, et al. A systematic review and meta-analysis of unguided electronic and mobile health technologies for chronic pain-is it time to start prescribing electronic health applications? Pain Med. 2019;20(11):2238–55. https://doi.org/10.1093/PM/PNZ164.

    Article  PubMed  Google Scholar 

  58. Pfeifer AC, Uddin R, Schröder-Pfeifer P, Holl F, Swoboda W, Schiltenwolf M. Mobile application-based interventions for chronic pain patients: a systematic review and meta-analysis of effectiveness. J Clin Med. 2020;9(11):1–18. https://doi.org/10.3390/JCM9113557.

    Article  Google Scholar 

  59. Arfaei Chitkar SS, Mohaddes Hakkak HR, Saadati H, Hosseini SH, Jafari Y, Ganji R. The effect of mobile-app-based instruction on the physical function of female patients with knee osteoarthritis: a parallel randomized controlled trial. BMC Womens Health. 2021;21(1):1–7. https://doi.org/10.1186/S12905-021-01451-W/TABLES/3.

    Article  Google Scholar 

  60. Abadiyan F, Hadadnezhad M, Khosrokiani Z, Letafatkar A, Akhshik H. Adding a smartphone app to global postural re-education to improve neck pain, posture, quality of life, and endurance in people with nonspecific neck pain: a randomized controlled trial. Trials. 2021;22(1). https://doi.org/10.1186/S13063-021-05214-8.

  61. Simon JDHP, et al. Digital health tools for pain monitoring in pediatric oncology: a scoping review and qualitative assessment of barriers and facilitators of implementation. Support Care Cancer. 2023;31(3):3. https://doi.org/10.1007/S00520-023-07629-2.

    Article  Google Scholar 

  62. Suso-Ribera C, Castilla D, Zaragozá I, Ribera-Canudas MV, Botella C, García-Palacios A. Validity, reliability, feasibility, and usefulness of pain monitor: a multidimensional smartphone app for daily monitoring of adults with heterogenous chronic pain. Clin J Pain. 2018;34(10):900–8. https://doi.org/10.1097/AJP.0000000000000618.

    Article  PubMed  Google Scholar 

  63. Suso-Ribera C, et al. Telemonitoring in chronic pain management using smartphone apps: a randomized controlled trial comparing usual assessment against app-based monitoring with and without clinical alarms. Int J Environ Res Public Healthvol. 2020;17(18):6568. https://doi.org/10.3390/IJERPH17186568.

    Article  Google Scholar 

  64. Atee M, Hoti K, Parsons R, Hughes JD. Pain assessment in dementia: evaluation of a point-of-care technological solution. J Alzheimer’s Dis. 2017;60:137–50. https://doi.org/10.3233/JAD-170375.

    Article  Google Scholar 

  65. Alasfour M, Almarwani M. The effect of innovative smartphone application on adherence to a home-based exercise programs for female older adults with knee osteoarthritis in Saudi Arabia: a randomized controlled trial. Disabil Rehabil. 2022;44(11):2420–7. https://doi.org/10.1080/09638288.2020.1836268.

    Article  PubMed  Google Scholar 

  66. Thongtipmak S, Buranruk O, Eungpinichpong W, Konharn K. Immediate effects and acceptability of an application-based stretching exercise incorporating deep slow breathing for neck pain self-management. Healthc Inform Res. 2020;26(1):50–60. https://doi.org/10.4258/HIR.2020.26.1.50.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ashton-James CE, Glare P, Darnall BD. Out of office hours: scalable, on-demand, digital support for patients tapering prescription opioids. Pain. 2020;161(10):2252–4. https://doi.org/10.1097/J.PAIN.0000000000001947.

    Article  PubMed  Google Scholar 

  68. Stanford University. Collaborative Health Outcomes Information Registry (CHOIR). Accessed: 10 Nov 2023. [Online]. Available: https://choir.stanford.edu/.

  69. Wilson JM, et al. Increased pain catastrophizing longitudinally predicts worsened pain severity and interference in patients with chronic pain and cancer: a collaborative health outcomes information registry study (CHOIR). Psychooncology. 2022;31(10):1753. https://doi.org/10.1002/PON.6020.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Darnall BD, et al. Comparative effectiveness of cognitive behavioral therapy for chronic pain and chronic pain self-management within the context of voluntary patient-centered prescription opioid tapering: the EMPOWER study protocol. Pain Med. 2020;21(8):1523–31. https://doi.org/10.1093/PM/PNZ285.

    Article  PubMed  Google Scholar 

  71. Flint R, et al. The Safer Prescription of Opioids Tool (SPOT): a novel clinical decision support digital health platform for opioid conversion in palliative and end of life care-a single-centre pilot study. Int J Environ Res Public Health. 2019;16(11). https://doi.org/10.3390/IJERPH16111926.

  72. Salazar A, de Sola H, Failde I, Moral-Munoz JA. Measuring the quality of mobile apps for the management of pain: systematic search and evaluation using the Mobile App Rating Scale. JMIR Mhealth Uhealth. 2018;6(10). https://doi.org/10.2196/10718.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hoffman HG, Doctor JN, Patterson DR, Carrougher GJ, Furness TA. Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain. 2000;85(1–2):305–9. https://doi.org/10.1016/S0304-3959(99)00275-4.

    Article  CAS  PubMed  Google Scholar 

  74. Hoffman HG, Patterson DR, Carrougher GJ. Use of virtual reality for adjunctive treatment of adult burn pain during physical therapy: a controlled study. Clin J Pain. 2000;16(3):244–50. https://doi.org/10.1097/00002508-200009000-00010.

    Article  CAS  PubMed  Google Scholar 

  75. Matthie NS, et al. Use and efficacy of virtual, augmented, or mixed reality technology for chronic pain: a systematic review. Pain Manag. 2022;12(7):859–78. https://doi.org/10.2217/PMT-2022-0030/SUPPL_FILE/PMT-12-859-S1.DOCX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grassini S. Virtual reality assisted non-pharmacological treatments in chronic pain management: a systematic review and quantitative meta-analysis. Int J Environ Res Public Health. 2022;19(7). https://doi.org/10.3390/IJERPH19074071.

  77. • Goudman L, et al. Virtual reality applications in chronic pain management: systematic review and meta-analysis. JMIR Serious Games. 2022;10(2). https://doi.org/10.2196/34402. In this recent systematic review and meta-analysis of 41 virtual reality applications in chronic pain management, Goudman et al. demonstrated favorable results on pain relief and functional outcomes overall. The review classifies interventions according to immersivity and provides an excellent descriptive summary of populations involved, duration of the intervention, software and hardware deployed, and outcomes measured.

  78. Ahmadpour N, Randall H, Choksi H, Gao A, Vaughan C, Poronnik P. Virtual reality interventions for acute and chronic pain management. Int J Biochem Cell Biol. 2019;114:105568. https://doi.org/10.1016/J.BIOCEL.2019.105568.

    Article  CAS  PubMed  Google Scholar 

  79. Hoffman HG, et al. The analgesic effects of opioids and immersive virtual reality distraction: evidence from subjective and functional brain imaging assessments. Anesth Analg. 2007;105(6):1776–83. https://doi.org/10.1213/01.ANE.0000270205.45146.DB.

    Article  CAS  PubMed  Google Scholar 

  80. Barcatta K, Holl E, Battistutta L, van der Meulen M, Rischer KM. When less is more: investigating factors influencing the distraction effect of virtual reality from pain. Front Pain Res. 2021;2:800258. https://doi.org/10.3389/FPAIN.2021.800258/BIBTEX.

    Article  Google Scholar 

  81. Bordeleau M, Stamenkovic A, Tardif PA, Thomas J. The use of virtual reality in back pain rehabilitation: a systematic review and meta-analysis. J Pain. 2022;23(2):175–95. https://doi.org/10.1016/J.JPAIN.2021.08.001.

    Article  PubMed  Google Scholar 

  82. Álvarez de la Campa Crespo M, Donegan T, Amestoy-Alonso B, Just A, Combalía A, Sanchez-Vives MV. Virtual embodiment for improving range of motion in patients with movement-related shoulder pain: an experimental study. J Orthop Surg Res. 2023;18(1):1–13. https://doi.org/10.1186/S13018-023-04158-W/FIGURES/6.

    Article  Google Scholar 

  83. Chuan A, Zhou JJ, Hou RM, Stevens CJ, Bogdanovych A. Virtual reality for acute and chronic pain management in adult patients: a narrative review. Anaesthesia. 2021;76(5):695–704. https://doi.org/10.1111/anae.15202.

    Article  CAS  PubMed  Google Scholar 

  84. Lombard M, Biocca F, Freeman J, IJsselsteijn W, Schaevitz RJ. Immersed in media. Cham: Springer International Publishing. 2015. https://doi.org/10.1007/978-3-319-10190-3.

  85. Gava V, Fialho HRF, Calixtre LB, Barbosa GM, Kamonseki DH. Effects of gaming on pain-related fear, pain catastrophizing, anxiety, and depression in patients with chronic musculoskeletal pain: a systematic review and meta-analysis. Games Health J. 2022;11(6):369–84. https://doi.org/10.1089/G4H.2021.0232.

    Article  Google Scholar 

  86. Nambi G, et al. Short-term psychological and hormonal effects of virtual reality training on chronic low back pain in soccer players. J Sport Rehabil. 2021;30(6):884–93. https://doi.org/10.1123/JSR.2020-0075.

    Article  PubMed  Google Scholar 

  87. Mouraux D, et al. 3D augmented reality mirror visual feedback therapy applied to the treatment of persistent, unilateral upper extremity neuropathic pain: a preliminary study. J Man Manip Ther. 2017;25(3):137. https://doi.org/10.1080/10669817.2016.1176726.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Alemanno F, et al. Efficacy of virtual reality to reduce chronic low back pain: proof-of-concept of a non-pharmacological approach on pain, quality of life, neuropsychological and functional outcome. PLoS One. 2019;14(5). https://doi.org/10.1371/JOURNAL.PONE.0216858.

  89. Matheve T, Bogaerts K, Timmermans A. Virtual reality distraction induces hypoalgesia in patients with chronic low back pain: a randomized controlled trial. J Neuroeng Rehabil. 2020;17(1). https://doi.org/10.1186/S12984-020-00688-0.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Phoon Nguyen AH, Balasubramaniam R, Bellan V, Newport RN, Stanton TR. The effect of multisensory illusions on pain and perceived burning sensations in patients with burning mouth syndrome: a proof-of-concept study. J Oral Pathol Med. 2020;49(6):505–13. https://doi.org/10.1111/JOP.13065.

    Article  PubMed  Google Scholar 

  91. Sato K, et al. Nonimmersive virtual reality mirror visual feedback therapy and its application for the treatment of complex regional pain syndrome: an open-label pilot study. Pain Med. 2010;11(4):622–9. https://doi.org/10.1111/J.1526-4637.2010.00819.X/2/PME_819_F2.JPEG.

    Article  PubMed  Google Scholar 

  92. Sarig Bahat H, Takasaki H, Chen X, Bet-Or Y, Treleaven J. Cervical kinematic training with and without interactive VR training for chronic neck pain – a randomized clinical trial. Man Ther. 2015;20(1):68–78. https://doi.org/10.1016/J.MATH.2014.06.008.

    Article  PubMed  Google Scholar 

  93. Griffin A, et al. Virtual reality in pain rehabilitation for youth with chronic pain: pilot feasibility study. JMIR Rehabil Assist Technol. 2020;7(2). https://doi.org/10.2196/22620.

  94. Ortiz-Catalan M, et al. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet. 2016;388(10062):2885–94. https://doi.org/10.1016/S0140-6736(16)31598-7.

    Article  PubMed  Google Scholar 

  95. Trost Z, et al. Immersive interactive virtual walking reduces neuropathic pain in spinal cord injury: findings from a preliminary investigation of feasibility and clinical efficacy. Pain. 2022;163(2):350–61. https://doi.org/10.1097/j.pain.0000000000002348.

    Article  PubMed  Google Scholar 

  96. Darnall BD, Krishnamurthy P, Tsuei J, Minor JD. Self-administered skills-based virtual reality intervention for chronic pain: randomized controlled pilot study. JMIR Form Res. 2020;4(7):e17293. https://doi.org/10.2196/17293.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Garrett B, Taverner T, McDade P. Virtual reality as an adjunct home therapy in chronic pain management: an exploratory study. JMIR Med Inform. 2017;5(2):e11. https://doi.org/10.2196/medinform.7271.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Brown L, Chen ET, Binder DS. The use of virtual reality for peri-procedural pain and anxiety at an outpatient spine clinic injection visit: an exploratory controlled randomized trial. Am J Transl Re 2020;12(9):5818. Accessed: 10 Nov 2023. [Online]. Available: /pmc/articles/PMC7540157/.

  99. Chau B, et al. Immersive virtual reality for pain relief in upper limb complex regional pain syndrome: a pilot study. Innov Clin Neurosci. 2020;17(4–6):47.

    PubMed  PubMed Central  Google Scholar 

  100. Rutledge T, et al. A virtual reality intervention for the treatment of phantom limb pain: development and feasibility results. Pain Med. 2019;20(10):2051–9. https://doi.org/10.1093/PM/PNZ121.

    Article  PubMed  Google Scholar 

  101. Solcà M, et al. Enhancing analgesic spinal cord stimulation for chronic pain with personalized immersive virtual reality. Pain. 2021;162(6):1641–9. https://doi.org/10.1097/J.PAIN.0000000000002160.

    Article  PubMed  Google Scholar 

  102. Tsiringakis G, Dimitriadis Z, Triantafylloy E, McLean S. Motor control training of deep neck flexors with pressure biofeedback improves pain and disability in patients with neck pain: a systematic review and meta-analysis. Musculoskelet Sci Pract. 2020;50. https://doi.org/10.1016/J.MSKSP.2020.102220.

  103. Yetwin AK, Mahrer NE, Bell TS, Gold JI. Heart rate variability biofeedback therapy for children and adolescents with chronic pain: a pilot study. J Pediatr Nurs: Nurs Care Child Fam. 2022;66:151–9. https://doi.org/10.1016/J.PEDN.2022.06.008.

    Article  Google Scholar 

  104. Hesam-Shariati N, et al. The analgesic effect of electroencephalographic neurofeedback for people with chronic pain: a systematic review and meta-analysis. Eur J Neurol. 2022;29(3):921–36. https://doi.org/10.1111/ENE.15189.

    Article  PubMed  Google Scholar 

  105. Girishan Prabhu V, Stanley L, Morgan R, Shirley B. Designing and developing a nature-based virtual reality with heart rate variability biofeedback for surgical anxiety and pain management: evidence from total knee arthroplasty patients. Aging Ment Health. 2023. https://doi.org/10.1080/13607863.2023.2270442.

    Article  PubMed  Google Scholar 

  106. Ghazavi Dozin SM, Mohammad Rahimi N, Aminzadeh R. Wii fit-based biofeedback rehabilitation among post-stroke patients: a systematic review and meta-analysis of randomized controlled trial. Biol Res Nurs. 2023. https://doi.org/10.1177/10998004231180316.

    Article  PubMed  Google Scholar 

  107. Orgil Z, et al. Dataset used to refine a treatment protocol of a biofeedback-based virtual reality intervention for pain and anxiety in children and adolescents undergoing surgery. Data Brief. 2023;49:109331. https://doi.org/10.1016/j.dib.2023.109331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Orgil Z, et al. Feasibility and acceptability of perioperative application of biofeedback-based virtual reality versus active control for pain and anxiety in children and adolescents undergoing surgery: protocol for a pilot randomised controlled trial. BMJ Open. 2023;13(1). https://doi.org/10.1136/BMJOPEN-2022-071274.

  109. Cuneo A, et al. The utility of a novel, combined biofeedback-virtual reality device as add-on treatment for chronic migraine. Clin J Pain. 2023;39(6):286–96. https://doi.org/10.1097/AJP.0000000000001114.

    Article  PubMed  Google Scholar 

  110. Shiri S, et al. A virtual reality system combined with biofeedback for treating pediatric chronic headache—a pilot study. Pain Med. 2013;14(5):621–7. https://doi.org/10.1111/pme.12083.

    Article  PubMed  Google Scholar 

  111. Gromala D, Tong X, Choo A, Karamnejad M, Shaw CD. The virtual meditative walk. in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, New York, NY, USA: ACM. 2015;521–24. https://doi.org/10.1145/2702123.2702344.

  112. Kamal MA, et al. Telemedicine, E-health, and multi-agent systems for chronic pain management. Clin Pract. 2023;13(2):470. https://doi.org/10.3390/CLINPRACT13020042.

    Article  Google Scholar 

  113. Park S-M, Kim Y-G. A metaverse: taxonomy, components, applications, and open challenges. Inst Electr Electron Eng Access. 2022;10:4209–51. https://doi.org/10.1109/ACCESS.2021.3140175.

    Article  Google Scholar 

  114. Fridman L. #398 – Mark Zuckerberg: first interview in the metaverse. The Lex Fridman Podcast, United State. 2023.

  115. Wang G, et al. Development of metaverse for intelligent healthcare. Nat Mach Intell. 2022;4(11):922–9. https://doi.org/10.1038/s42256-022-00549-6.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Liebowitz JE. The metaverse: a new frontier for rheumatology. Rheumatology (Oxford). 2023. https://doi.org/10.1093/RHEUMATOLOGY/KEAD534.

    Article  Google Scholar 

  117. Rabotin A, et al. Practicing emergency medicine in the metaverse: a novel mixed reality casualty care training platform. Surg Innov. 2023;30(5). https://doi.org/10.1177/15533506231191576.

  118. Dione M, Watkins RH, Vezzoli E, Lemaire-Semail B, Wessberg J. Human low-threshold mechanoafferent responses to pure changes in friction controlled using an ultrasonic haptic device. Sci Rep. 2021;11(1). https://doi.org/10.1038/S41598-021-90533-8.

  119. Hoffman HG, et al. Adding tactile feedback increases avatar ownership and makes virtual reality more effective at reducing pain in a randomized crossover study. Sci Rep. 2023;13(1):7915. https://doi.org/10.1038/s41598-023-31038-4.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. De Nunzio AM, et al. Relieving phantom limb pain with multimodal sensory-motor training. J Neural Eng. 2018;15(6):066022. https://doi.org/10.1088/1741-2552/aae271.

    Article  PubMed  Google Scholar 

  121. Gmeiner M, et al. Virtual cerebral aneurysm clipping with real-time haptic force feedback in neurosurgical education. World Neurosurg. 2018;112:e313–23. https://doi.org/10.1016/J.WNEU.2018.01.042.

    Article  PubMed  Google Scholar 

  122. Zheng T, et al. Research and application of a teaching platform for combined spinal-epidural anesthesia based on virtual reality and haptic feedback technology. BMC Med Educ. 2023;23(1):794. https://doi.org/10.1186/s12909-023-04758-4.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Motaharifar M, et al. Applications of haptic technology, virtual reality, and artificial intelligence in medical training during the COVID-19 pandemic. Front Robot AI. 2021;8. https://doi.org/10.3389/FROBT.2021.612949.

  124. Liikkanen S, Mäkinen M, Huttunen T, Sarapohja T, Stenfors C, Eccleston C. Body movement as a biomarker for use in chronic pain rehabilitation: an embedded analysis of an RCT of a virtual reality solution for adults with chronic pain. Front Pain Res. 2022;3. https://doi.org/10.3389/FPAIN.2022.1085791.

  125. Chan FHF, Suen H, Jackson T, Vlaeyen JWS, Barry TJ. Pain-related attentional processes: a systematic review of eye-tracking research. Clin Psychol Rev. 2020;80:101884. https://doi.org/10.1016/J.CPR.2020.101884.

    Article  PubMed  Google Scholar 

  126. Adhanom IB, MacNeilage P, Folmer E. Eye tracking in virtual reality: a broad review of applications and challenges. Virtual Real. 2023;27(2):1481–505. https://doi.org/10.1007/s10055-022-00738-z.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Trost Z, France C, Anam M, Shum C. Virtual reality approaches to pain: toward a state of the science. Pain. 2021;162(2):325–31. https://doi.org/10.1097/J.PAIN.0000000000002060.

    Article  PubMed  Google Scholar 

  128. Won AS, et al. Assessing the feasibility of an open-source virtual reality mirror visual feedback module for complex regional pain syndrome: pilot usability study. J Med Internet Res. 2021;23(5). https://doi.org/10.2196/16536.

  129. Mertz L. Virtual reality is taking the hurt out of pain. IEEE Pulse. 2019;10(3):3–8. https://doi.org/10.1109/MPULS.2019.2911819.

    Article  PubMed  Google Scholar 

  130. Kouijzer MMTE, Kip H, Bouman YHA, Kelders SM. Implementation of virtual reality in healthcare: a scoping review on the implementation process of virtual reality in various healthcare settings. Implement Sci Commun. 2023;4(1):67. https://doi.org/10.1186/s43058-023-00442-2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IHC, AT, SM, and CLR conceptualized the original idea. IHC, AT, and SM conducted the literature review and drafted the first draft of the manuscript. All authors provided critical reviews and edited subsequent versions of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ivo H. Cerda.

Ethics declarations

Conflict of Interest

Author IHC receives consulting fees from Layer Health. AT, SM, and ARD are co-founders and equity holders of AugMend Health. ML is an Associate Partner at MEDA Angels and Vice President of Operations at AMXRAAS. RT receives consulting fees from Abbott and Medtronic. AS provided consulting and teaching services for Allergan/Abbvie, Eli Lilly and Company, Impel NeuroPharma, Linpharma, Lundbeck, Satsuma, Percept, Pfizer, Teva, and Theranica. MES serves as a research consultant to Modoscript and was a member of an Advisory Committee for Syneos Health. CLR is an equity owner and advisor for AugMend Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerda, I.H., Therond, A., Moreau, S. et al. Telehealth and Virtual Reality Technologies in Chronic Pain Management: A Narrative Review. Curr Pain Headache Rep 28, 83–94 (2024). https://doi.org/10.1007/s11916-023-01205-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-023-01205-3

Keywords

Navigation