Skip to main content

Advertisement

Log in

Sleep as a Therapeutic Target for Pain Management

  • Alternative Treatments for Pain Medicine (M Jones, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to provide a summary of the utilization of sleep as a therapeutic target for chronic pain and to evaluate the recent literature on current and proposed pharmacologic and non-pharmacologic sleep interventions used in the management of pain disorders.

Recent Findings

Sleep is a promising therapeutic target in the treatment of pain disorders with both non-pharmacologic and pharmacologic therapies. Non-pharmacologic therapies include cognitive behavioral therapy and sensory-based therapies such as pink noise, audio-visual stimulation, and morning bright light therapy. Pharmacologic therapies include melatonin, z-drugs, gabapentinoids, and the novel orexin antagonists. However, more research is needed to clarify if these therapies can improve pain specifically by improving sleep.

Summary

There is a vast array of investigational opportunities in sleep-targeted therapies for pathologic pain, and larger controlled, prospective trials are needed to fully elucidate their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data analysed during this study are included in this published article.

References

  1. Yong RJ, Mullins PM, Bhattacharyya N. Prevalence of chronic pain among adults in the United States. Pain. 2021;163(2):e328–32. https://doi.org/10.1097/j.pain.0000000000002291.

    Article  Google Scholar 

  2. Gaskin DJ, Richard P. The economic costs of pain in the United States. Relieving pain in America: a blueprint for transforming prevention care, education, and research. National Academies Press; 2011.

  3. Artner J, Cakir B, Spiekermann JA, et al. Prevalence of sleep deprivation in patients with chronic neck and back pain: a retrospective evaluation of 1016 patients. J Pain Res. 2012. https://doi.org/10.2147/jpr.s36386.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Karaman S, Karaman T, Dogru S, Onder Y, Citil R, Bulut YE, et al. Prevalence of sleep disturbance in chronic pain. Eur Rev Med Pharmacol Sci. 2014;18(17):2475–81.

    CAS  PubMed  Google Scholar 

  5. Sun Y, Laksono I, Selvanathan J, et al. Prevalence of sleep disturbances in patients with chronic non-cancer pain: a systematic review and meta-analysis. Sleep Med Rev. 2021;57:101467. https://doi.org/10.1016/j.smrv.2021.101467.

    Article  PubMed  Google Scholar 

  6. Pilowsky I, Crettenden I, Townley M. Sleep disturbance in pain clinic patients. Pain. 1985;23(1):27–33. https://doi.org/10.1016/0304-3959(85)90227-1.

    Article  CAS  PubMed  Google Scholar 

  7. Smith MT, Perlis ML, Smith MS, Giles DE, Carmody TP. Sleep quality and presleep arousal in chronic pain. J Behav Med. 2000;23(1):1–13. https://doi.org/10.1023/a:1005444719169.

    Article  CAS  PubMed  Google Scholar 

  8. Ohayon MM. Relationship between chronic painful physical condition and insomnia. J Psychiatr Res. 2005;39(2):151–9. https://doi.org/10.1016/j.jpsychires.2004.07.001.

    Article  PubMed  Google Scholar 

  9. Jank R, Gallee A, Boeckle M, Fiegl S, Pieh C. Chronic pain and sleep disorders in primary care. Pain Res Treat. 2017;2017:1–9. https://doi.org/10.1155/2017/9081802.

    Article  Google Scholar 

  10. Taylor DJ, Mallory LJ, Lichstein KL, Durrence HH, Riedel BW, Bush AJ. Comorbidity of chronic insomnia with medical problems. Sleep. 2007;30(2):213–8. https://doi.org/10.1093/sleep/30.2.213.

    Article  PubMed  Google Scholar 

  11. Abad VC, Sarinas PSA, Guilleminault C. Sleep and rheumatologic disorders. Sleep Med Rev. 2008;12(3):211–28. https://doi.org/10.1016/j.smrv.2007.09.001.

    Article  PubMed  Google Scholar 

  12. Langley PC, Van Litsenburg C, Cappelleri JC, Carroll D. The burden associated with neuropathic pain in Western Europe. J Med Econ. 2012;16(1):85–95. https://doi.org/10.3111/13696998.2012.729548.

    Article  PubMed  Google Scholar 

  13. Nijs J, Lahousse A, Kapreli E, Bilika P, Saraçoğlu İ, Malfliet A, et al. Nociplastic pain criteria or recognition of central sensitization? Pain phenotyping in the past, present and future. J Clin Med. 2021;10(15):3203. https://doi.org/10.3390/jcm10153203.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buffum D, Koetters T, Cho M, et al. The effects of pain, gender, and age on sleep/wake and circadian rhythm parameters in oncology patients at the initiation of radiation therapy. J Pain. 2011;12(3):390–400. https://doi.org/10.1016/j.jpain.2010.09.008.

    Article  PubMed  Google Scholar 

  15. Alsaadi SM, McAuley JH, Hush JM, Maher CG. Prevalence of sleep disturbance in patients with low back pain. Eur Spine J. 2010;20(5):737–43. https://doi.org/10.1007/s00586-010-1661-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jennum P, Drewes AM, Andreasen A, Nielsen KD. Sleep and other symptoms in primary fibromyalgia and in healthy controls. J Rheumatol. 1993;20(10):1756–9.

    CAS  PubMed  Google Scholar 

  17. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–287. https://doi.org/10.1016/j.ejpain.2005.06.009.

    Article  PubMed  Google Scholar 

  18. Afolalu EF, Ramlee F, Tang NKY. Effects of sleep changes on pain-related health outcomes in the general population: a systematic review of longitudinal studies with exploratory meta-analysis. Sleep Med Rev. 2018;39:82–97. https://doi.org/10.1016/j.smrv.2017.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Copperman NR, Mullin FJ, Kleitman N. Further observations on the effects of prolonged sleeplessness. Am J Physiol. 1934;589–94.

  20. Moldofsky H, Scarisbrick P. Induction of neurasthenic musculoskeletal pain syndrome by selective sleep stage deprivation. Psychosom Med. 1976;38(1):35–44. https://doi.org/10.1097/00006842-197601000-00006.

    Article  CAS  PubMed  Google Scholar 

  21. Haack M, Sanchez E, Mullington JM. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep. 2007;30(9):1145–52. https://doi.org/10.1093/sleep/30.9.1145.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schuh-Hofer S, Wodarski R, Pfau DB, et al. One night of total sleep deprivation promotes a state of generalized hyperalgesia: a surrogate pain model to study the relationship of insomnia and pain. Pain. 2013;154(9):1613–21. https://doi.org/10.1016/j.pain.2013.04.046.

    Article  PubMed  Google Scholar 

  23. Iacovides S, George K, Kamerman P, Baker FC. Sleep fragmentation hypersensitizes healthy young women to deep and superficial experimental pain. J Pain. 2017;18(7):844–54. https://doi.org/10.1016/j.jpain.2017.02.436.

    Article  PubMed  Google Scholar 

  24. Onen SH, Alloui A, Gross A, Eschallier A, Dubray C. The effects of total sleep deprivation, selective sleep interruption and sleep recovery on pain tolerance thresholds in healthy subjects. J Sleep Res. 2001;10(1):35–42. https://doi.org/10.1046/j.1365-2869.2001.00240.x.

    Article  CAS  PubMed  Google Scholar 

  25. Lentz MJ, Landis CA, Rothermel J, Shaver JL. Effects of selective slow wave sleep disruption on musculoskeletal pain and fatigue in middle aged women. J Rheumatol. 1999;26(7):1586–92.

    CAS  PubMed  Google Scholar 

  26. Arima T, Svensson P, Rasmussen C, Nielsen KD, Drewes AM, Arendt-Nielsen L. The relationship between selective sleep deprivation, nocturnal jaw-muscle activity and pain in healthy men. J Oral Rehabil. 2001;28(2):140–8. https://doi.org/10.1046/j.1365-2842.2001.00687.x.

    Article  CAS  PubMed  Google Scholar 

  27. Older SA, Battafarano DF, Danning CL, Ward JA, Grady EP, Derman S, et al. The effects of delta wave sleep interruption on pain thresholds and fibromyalgia-like symptoms in healthy subjects; correlations with insulin-like growth factor I. J Rheumatol. 1998;25(6):1180–6.

    CAS  PubMed  Google Scholar 

  28. Smith MT, Haythornthwaite JA. How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature. Sleep Med Rev. 2004;8(2):119–32. https://doi.org/10.1016/s1087-0792(03)00044-3.

    Article  PubMed  Google Scholar 

  29. Finan PH, Goodin BR, Smith MT. The association of sleep and pain: an update and a path forward. J Pain. 2013;14(12):1539–52. https://doi.org/10.1016/j.jpain.2013.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Boardman H, Thomas E, Millson D, Croft P. The natural history of headache: predictors of onset and recovery. Cephalalgia. 2006;26(9):1080–8. https://doi.org/10.1111/j.1468-2982.2006.01166.x.

    Article  CAS  PubMed  Google Scholar 

  31. Lyngberg AC, Rasmussen BK, Jorgensen T, Jensen R. Has the prevalence of migraine and tension-type headache changed over a 12-year period? A Danish population survey. Eur J Epidemiol. 2005;20(3):243–9. https://doi.org/10.1007/s10654-004-6519-2.

    Article  PubMed  Google Scholar 

  32. Odegard SS, Sand T, Engstrøm M, Stovner LJ, Zwart JA, Hagen K. The long-term effect of insomnia on primary headaches: a prospective population-based cohort study (HUNT-2 and HUNT-3). Headache. 2011;51(4):570–80. https://doi.org/10.1111/j.1526-4610.2011.01859.x.

    Article  PubMed  Google Scholar 

  33. Affleck G, Urrows S, Tennen H, Higgins P, Abeles M. Sequential daily relations of sleep, pain intensity, and attention to pain among women with fibromyalgia. Pain. 1996;68(2):363–8. https://doi.org/10.1016/s0304-3959(96)03226-5.

    Article  CAS  PubMed  Google Scholar 

  34. Mork PJ, Nilsen TIL. Sleep problems and risk of fibromyalgia: longitudinal data on an adult female population in Norway. Arthritis Rheum. 2011;64(1):281–4. https://doi.org/10.1002/art.33346.

    Article  Google Scholar 

  35. Hamilton NA, Catley D, Karlson C. Sleep and the affective response to stress and pain. Health Psychol. 2007;26(3):288–95. https://doi.org/10.1037/0278-6133.26.3.288.

    Article  PubMed  Google Scholar 

  36. Raymond I, Nielsen TA, Lavigne G, Manzini C, Choinière M. Quality of sleep and its daily relationship to pain intensity in hospitalized adult burn patients. Pain. 2001;92(3):381–8. https://doi.org/10.1093/10.1016/s0304-3959(01)00282-2.

    Article  PubMed  Google Scholar 

  37. Nitter AK, Pripp AH, Forseth KØ. Are sleep problems and non-specific health complaints risk factors for chronic pain? A prospective population-based study with 17 year follow-up. Scand J Pain. 2012;3(4):210–7. https://doi.org/10.1016/j.sjpain.2012.04.001.

    Article  PubMed  Google Scholar 

  38. Drewes AM, Nielsen KD, Hansen B, Taagholt SJ, Bjerregård K, Svendsen L. A longitudinal study of clinical symptoms and sleep parameters in rheumatoid arthritis. Rheumatology. 2000;39(11):1287–9. https://doi.org/10.1093/rheumatology/39.11.1287.

    Article  CAS  PubMed  Google Scholar 

  39. Stone AA, Broderick JE, Porter LS, Kaell AT. The experience of rheumatoid arthritis pain and fatigue: Examining momentary reports and correlates over one week. Arthritis Care Res. 1997;10(3):185–93. https://doi.org/10.1002/art.1790100306.

    Article  CAS  PubMed  Google Scholar 

  40. Cremeans-Smith JK, Millington K, Sledjeski E, Greene K, Delahanty DL. Sleep disruptions mediate the relationship between early postoperative pain and later functioning following total knee replacement surgery. J Behav Med. 2006;29(2):215–22. https://doi.org/10.1007/s10865-005-9045-0.

    Article  PubMed  Google Scholar 

  41. Smith MT, Mun CJ, Remeniuk B, et al. Experimental sleep disruption attenuates morphine analgesia: findings from a randomized trial and implications for the opioid abuse epidemic. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-76934-1.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vitiello MV, McCurry SM, Shortreed SM, et al. Short-term improvement in insomnia symptoms predicts long-term improvements in sleep, pain, and fatigue in older adults with comorbid osteoarthritis and insomnia. Pain. 2014;155(8):1547–54. https://doi.org/10.1016/j.pain.2014.04.032.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vitiello MV, Zhu W, Von Korff M, et al. Long-term improvements in sleep, pain, depression, and fatigue in older adults with comorbid osteoarthritis pain and insomnia. Sleep. 2021. https://doi.org/10.1093/sleep/zsab231.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Climent-Sanz C, Valenzuela-Pascual F, Martínez-Navarro O, et al. Cognitive behavioral therapy for insomnia (CBT-i) in patients with fibromyalgia: a systematic review and meta-analysis. Disabil Rehabil. 2021. https://doi.org/10.1080/09638288.2021.1954706.

    Article  PubMed  Google Scholar 

  45. Whale K, Dennis J, Wylde V, Beswick A, Gooberman-Hill R. The effectiveness of non-pharmacological sleep interventions for people with chronic pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2022. https://doi.org/10.1186/s12891-022-05318-5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Selvanathan J, Pham C, Nagappa M, et al. Cognitive behavioral therapy for insomnia in patients with chronic pain – a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2021;60:101460. https://doi.org/10.1016/j.smrv.2021.101460.

    Article  PubMed  Google Scholar 

  47. Smitherman TA, Kuka AJ, Calhoun AH, et al. Cognitive-behavioral therapy for insomnia to reduce chronic migraine: a sequential Bayesian analysis. Headache. 2018;58(7):1052–9. https://doi.org/10.1111/head.13313.

    Article  PubMed  Google Scholar 

  48. Tang NKY, Goodchild CE, Salkovskis PM. Hybrid cognitive-behaviour therapy for individuals with insomnia and chronic pain: a pilot randomised controlled trial. Behav Res Ther. 2012;50(12):814–21. https://doi.org/10.1016/j.brat.2012.08.006.

    Article  PubMed  Google Scholar 

  49. Salwen JK, Smith MT, Finan PH. Mid-treatment sleep duration predicts clinically significant knee osteoarthritis pain reduction at 6 months: effects from a behavioral sleep medicine clinical trial. Sleep. 2016. https://doi.org/10.1093/sleep/zsw064.

    Article  PubMed Central  Google Scholar 

  50. Smith MT, Finan PH, Buenaver LF, et al. Cognitive-behavioral therapy for insomnia in knee osteoarthritis: a randomized, double-blind, active placebo-controlled clinical trial. Arthritis Rheumatol. 2015;67(5):1221–33. https://doi.org/10.1002/art.39048.

    Article  PubMed  PubMed Central  Google Scholar 

  51. McCrae CS, Williams J, Roditi D, et al. Cognitive behavioral treatments for insomnia and pain in adults with comorbid chronic insomnia and fibromyalgia: clinical outcomes from the SPIN randomized controlled trial. Sleep. 2018. https://doi.org/10.1093/sleep/zsy234.

    Article  PubMed Central  Google Scholar 

  52. McCurry SM, Shortreed SM, Von Korff M, et al. Who benefits from CBT for insomnia in primary care? Important patient selection and trial design lessons from longitudinal results of the lifestyles trial. Sleep. 2014;37(2):299–308. https://doi.org/10.5665/sleep.3402.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vitiello MV, McCurry SM, Shortreed SM, et al. Cognitive-behavioral treatment for comorbid insomnia and osteoarthritis pain in primary care: the lifestyles randomized controlled trial. J Am Geriatr Soc. 2013;61(6):947–56. https://doi.org/10.1111/jgs.12275.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pigeon WR, Moynihan J, Matteson-Rusby S, et al. Comparative effectiveness of CBT interventions for co-morbid chronic pain & insomnia: a pilot study. Behav Res Ther. 2012;50(11):685–9. https://doi.org/10.1016/j.brat.2012.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  55. McCrae CS, Craggs JG, Curtis AF, et al. Neural activation changes in response to pain following cognitive behavioral therapy for patients with comorbid fibromyalgia and insomnia: a pilot study. J Clin Sleep Med. 2022;18(1):203–15. https://doi.org/10.5664/jcsm.9540.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martínez MP, Miró E, Sánchez AI, et al. Cognitive-behavioral therapy for insomnia and sleep hygiene in fibromyalgia: a randomized controlled trial. J Behav Med. 2013;37(4):683–97. https://doi.org/10.1007/s10865-013-9520-y.

    Article  PubMed  Google Scholar 

  57. Yeung K, Zhu W, McCurry SM, Von Korff M, Wellman R, Morin CM, et al. Cost-effectiveness of telephone cognitive behavioral therapy for osteoarthritis-related insomnia. J Am Geriatr Soc. 2022;70(1):188–99. https://doi.org/10.1111/jgs.17469.

    Article  PubMed  Google Scholar 

  58. McCurry SM, Zhu W, Von Korff M, et al. Effect of telephone cognitive behavioral therapy for insomnia in older adults with osteoarthritis pain. JAMA Intern Med. 2021;181(4):530. https://doi.org/10.1001/jamainternmed.2020.9049.

    Article  PubMed  Google Scholar 

  59. Wiklund T, Molander P, Lindner P, Andersson G, Gerdle B, Dragioti E. Internet-delivered cognitive behavioral therapy for insomnia comorbid with chronic pain: randomized controlled trial. J Med Internet Res. 2022;24(4):e29258. https://doi.org/10.2196/29258.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Papaconstantinou E, Cancelliere C, Verville L, et al. Effectiveness of non-pharmacological interventions on sleep characteristics among adults with musculoskeletal pain and a comorbid sleep problem: a systematic review. Chiropr Man Therap. 2021. https://doi.org/10.1186/s12998-021-00381-6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li X, Feng Y, Xia J, et al. Effects of cognitive behavioral therapy on pain and sleep in adults with traumatic brain injury: a systematic review and meta-analysis. Neural Plast. 2021;2021:1–12. https://doi.org/10.1155/2021/6552246.

    Article  Google Scholar 

  62. Caravan B, Hu L, Veyg D, et al. Sleep spindles as a diagnostic and therapeutic target for chronic pain. Mol Pain. 2020;16:174480692090235. https://doi.org/10.1177/1744806920902350.

    Article  CAS  Google Scholar 

  63. Budzynski T, Budzynski H, Sherlin L, Tang HY. Audio-visual stimulation: research and clinical practice. In: Berger J, Turow G, editors. Music, science, and the rhythmic brain. New York: Routledge; 2011. p. 137–53.

    Google Scholar 

  64. Tang HY, Vitiello MV, Perlis M, Mao JJ, Riegel B. A pilot study of audio–visual stimulation as a self-care treatment for insomnia in adults with insomnia and chronic pain. Appl Psychophysiol Biofeedback. 2014;39(3–4):219–25. https://doi.org/10.1007/s10484-014-9263-8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tang HYJ, McCurry SM, Pike KC, Riegel B, Vitiello MV. Open-loop audio-visual stimulation for sleep promotion in older adults with comorbid insomnia and osteoarthritis pain: results of a pilot randomized controlled trial. Sleep Med. 2021;82:37–42. https://doi.org/10.1016/j.sleep.2021.03.025.

    Article  PubMed  PubMed Central  Google Scholar 

  66. van Maanen A, Meijer AM, van der Heijden KB, Oort FJ. The effects of light therapy on sleep problems: a systematic review and meta-analysis. Sleep Med Rev. 2016;29:52–62. https://doi.org/10.1016/j.smrv.2015.08.009.

    Article  PubMed  Google Scholar 

  67. Burgess HJ, Park M, Ong JC, Shakoor N, Williams DA, Burns J. Morning versus evening bright light treatment at home to improve function and pain sensitivity for women with fibromyalgia: a pilot study. Pain Med. 2016;18(1):116–23. https://doi.org/10.1093/pm/pnw160.

    Article  Google Scholar 

  68. Burgess HJ, Rizvydeen M, Kimura M, et al. An open trial of morning bright light treatment among US military veterans with chronic low back pain: a pilot study. Pain Med. 2018;20(4):770–8. https://doi.org/10.1093/pm/pny174.

    Article  PubMed Central  Google Scholar 

  69. Elliott JE, McBride AA, Balba NM, et al. Feasibility and preliminary efficacy for morning bright light therapy to improve sleep and plasma biomarkers in US Veterans with TBI. A prospective, open-label, single-arm trial. PLoS ONE. 2022;17(4):e0262955. https://doi.org/10.1371/journal.pone.0262955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burns JW, Gerhart J, Rizvydeen M, Kimura M, Burgess HJ. Morning bright light treatment for chronic low back pain: potential impact on the volatility of pain, mood, function, and sleep. Pain Med. 2019;21(6):1153–61. https://doi.org/10.1093/pm/pnz235.

    Article  PubMed Central  Google Scholar 

  71. Sasai T, Inoue Y, Komada Y, Nomura T, Matsuura M, Matsushima E. Effects of insomnia and sleep medication on health-related quality of life. Sleep Med. 2010;11(5):452–7. https://doi.org/10.1016/j.sleep.2009.09.011.

    Article  PubMed  Google Scholar 

  72. Sivertsen B, Madsen IEH, Salo P, Tell GS, Øverland S. Use of sleep medications and mortality: the Hordaland health study. Drugs - Real World Outcomes. 2015;2(2):123–8. https://doi.org/10.1007/s40801-015-0023-8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Weiler JM, Bloomfield JR, Woodworth GG, et al. Effects of fexofenadine, diphenhydramine, and alcohol on driving performance. Ann Intern Med. 2000;132(5):354. https://doi.org/10.7326/0003-4819-132-5-200003070-00004.

    Article  CAS  PubMed  Google Scholar 

  74. Tan KR, Rudolph U, Lüscher C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci. 2011;34(4):188–97. https://doi.org/10.1016/j.tins.2011.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morgenthaler TI, Lee-Chiong T, Alessi C, et al. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. Sleep. 2007;30(11):1445–59. https://doi.org/10.1093/sleep/30.11.1445.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Malhotra S, Sawhney G, Pandhi P. The therapeutic potential of melatonin: a review of the science. MedGenMed. 2004;6(2):46.

    PubMed  PubMed Central  Google Scholar 

  77. Palmer ACS, Souza A, dos Santos VS, et al. The effects of melatonin on the descending pain inhibitory system and neural plasticity markers in breast cancer patients receiving chemotherapy: randomized, double-blinded, placebo-controlled trial. Front Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.01382.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vidor LP, Torres ILS, Custódio de Souza IC, Fregni F, Caumo W. Analgesic and sedative effects of melatonin in temporomandibular disorders: a double-blind, randomized, parallel-group, placebo-controlled study. J Pain Symptom Manage. 2013;46(3):422–32. https://doi.org/10.1016/j.jpainsymman.2012.08.019.

    Article  CAS  PubMed  Google Scholar 

  79. de Zanette SA, Vercelino R, Laste G, et al. Melatonin analgesia is associated with improvement of the descending endogenous pain-modulating system in fibromyalgia: a phase II, randomized, double-dummy, controlled trial. BMC Pharmacol Toxicol. 2014. https://doi.org/10.1186/2050-6511-15-40.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schwertner A, Conceição dos Santos CC, Costa GD, et al. Efficacy of melatonin in the treatment of endometriosis: a phase II, randomized, double-blind, placebo-controlled trial. Pain. 2013;154(6):874–81. https://doi.org/10.1016/j.pain.2013.02.025.

    Article  CAS  PubMed  Google Scholar 

  81. Bougea A. Melatonin 4 mg as prophylactic therapy for primary headaches: a pilot study. Funct Neurol. 2016. https://doi.org/10.11138/fneur/2016.31.1.033.

  82. Danilov A, Kurganova J. Melatonin in chronic pain syndromes. Pain Ther. 2016;5(1):1–17. https://doi.org/10.1007/s40122-016-0049-y.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hemati K, Amini Kadijani A, Sayehmiri F, et al. Melatonin in the treatment of fibromyalgia symptoms: a systematic review. Complement Ther Clin Pract. 2020;38:101072. https://doi.org/10.1016/j.ctcp.2019.101072.

    Article  PubMed  Google Scholar 

  84. Oh SN, Myung SK, Jho HJ. Analgesic efficacy of melatonin: a meta-analysis of randomized, double-blind, placebo-controlled trials. JCM. 2020;9(5):1553. https://doi.org/10.3390/jcm9051553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu C, Xu Y, Duan Y, et al. Exogenous melatonin in the treatment of pain: a systematic review and meta-analysis. Oncotarget. 2017;8(59):100582–92. https://doi.org/10.18632/oncotarget.21504.

  86. Huang CT, Chiang RPY, Chen CL, Tsai YJ. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. Sleep. 2014;37(9):1513–23. https://doi.org/10.5665/sleep.4002.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wilhelmsen M, Amirian I, Reiter RJ, Rosenberg J, Gögenur I. Analgesic effects of melatonin: a review of current evidence from experimental and clinical studies. J Pineal Res. 2011;51(3):270–7. https://doi.org/10.1111/j.1600-079x.2011.00895.x.

    Article  CAS  PubMed  Google Scholar 

  88. Xiao Z, Long B, Zhao Z. The effect of improving preoperative sleep quality on perioperative pain by zolpidem in patients undergoing laparoscopic colorectal surgery: a prospective, randomized study. Pain Res Manage. 2022;2022:1–9. https://doi.org/10.1155/2022/3154780.

    Article  Google Scholar 

  89. Cho CH, Lee SW, Lee YK, Shin HK, Hwang I. Effect of a sleep aid in analgesia after arthroscopic rotator cuff repair. Yonsei Med J. 2015;56(3):772. https://doi.org/10.3349/ymj.2015.56.3.772.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shakya H, Wang D, Zhou K, Luo ZY, Dahal S, Zhou ZK. Prospective randomized controlled study on improving sleep quality and impact of zolpidem after total hip arthroplasty. J Orthop Surg Res. 2019. https://doi.org/10.1186/s13018-019-1327-2.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gong L, Wang Z, Fan D. Sleep quality effects recovery after total knee arthroplasty (TKA) — a randomized, double-blind, controlled study. J Arthroplasty. 2015;30(11):1897–1901. https://doi.org/10.1016/j.arth.2015.02.020.

    Article  PubMed  Google Scholar 

  92. Secrist ES, Freedman KB, Ciccotti MG, Mazur DW, Hammoud S. Pain management after outpatient anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(9):2435–47. https://doi.org/10.1177/0363546515617737.

    Article  PubMed  Google Scholar 

  93. O’Hagan ET, Hübscher M, Miller CB, et al. Zolpidem reduces pain intensity postoperatively: a systematic review and meta-analysis of the effect of hypnotic medicines on post-operative pain intensity. Syst Rev. 2020. https://doi.org/10.1186/s13643-020-01458-8.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Krenk L, Jennum P, Kehlet H. Postoperative sleep disturbances after zolpidem treatment in fast-track hip and knee replacement. J Clin Sleep Med. 2014;10(03):321–6. https://doi.org/10.5664/jcsm.3540.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Brandt J, Leong C. Benzodiazepines and Z-drugs: an updated review of major adverse outcomes reported on in epidemiologic research. Drugs R D. 2017;17(4):493–507. https://doi.org/10.1007/s40268-017-0207-7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kapil V, Green JL, Lait CL, Wood DM, Dargan PI. Misuse of benzodiazepines and Z-drugs in the UK. Br J Psychiatry. 2014;205(5):407–8. https://doi.org/10.1192/bjp.bp.114.149252.

    Article  CAS  PubMed  Google Scholar 

  97. Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol. 2013;23(5):752–9. https://doi.org/10.1016/j.conb.2013.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Roehrs T, Withrow D, Koshorek G, Verkler J, Bazan L, Roth T. Sleep and pain in humans with fibromyalgia and comorbid insomnia: double-blind, crossover study of suvorexant 20 mg versus placebo. J Clin Sleep Med. 2020;16(3):415–21. https://doi.org/10.5664/jcsm.8220.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Herring WJ, Ge JY, Jackson S, Assaid C, Connor KM, Michelson D. Orexin receptor antagonism in painful diabetic neuropathy. Clin J Pain. 2018;34(1):37–43. https://doi.org/10.1097/ajp.0000000000000503.

    Article  Google Scholar 

  100. Chincholkar M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review. Br J Anaesth. 2018;120(6):1315–34. https://doi.org/10.1016/j.bja.2018.02.066.

    Article  CAS  PubMed  Google Scholar 

  101. Kapustin D, Bhatia A, McParland A, et al. Evaluating the impact of gabapentinoids on sleep health in patients with chronic neuropathic pain: a systematic review and meta-analysis. Pain. 2019;161(3):476–90. https://doi.org/10.1097/j.pain.0000000000001743.

    Article  Google Scholar 

  102. Boyle J, Eriksson MEV, Gribble L, et al. Randomized, placebo-controlled comparison of amitriptyline, duloxetine, and pregabalin in patients with chronic diabetic peripheral neuropathic pain. Diabetes Care. 2012;35(12):2451–8. https://doi.org/10.2337/dc12-0656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mehta N, Bucior I, Bujanover S, Shah R, Gulati A. Relationship between pain relief, reduction in pain-associated sleep interference, and overall impression of improvement in patients with postherpetic neuralgia treated with extended-release gabapentin. Health Qual Life Outcomes. 2016. https://doi.org/10.1186/s12955-016-0456-0.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kantor D, Panchal S, Patel V, Bucior I, Rauck R. Treatment of postherpetic neuralgia with gastroretentive gabapentin: interaction of patient demographics, disease characteristics, and efficacy outcomes. J Pain. 2015;16(12):1300–11. https://doi.org/10.1016/j.jpain.2015.08.011.

    Article  PubMed  Google Scholar 

  105. Bogan RK, Lee DO, Buchfuhrer MJ, Jaros MJ, Kim R, Shang G. Treatment response to sleep, pain, and mood disturbance and their correlation with sleep disturbance in adult patients with moderate-to-severe primary restless legs syndrome: pooled analyses from 3 trials of gabapentin enacarbil. Ann Med. 2015;47(3):268–76. https://doi.org/10.3109/07853890.2015.1025825.

    Article  CAS  Google Scholar 

  106. Freeman R, Wallace MS, Sweeney M, Backonja MM. Relationships among pain quality, pain impact, and overall improvement in patients with postherpetic neuralgia treated with gastroretentive gabapentin. Pain Med. 2015;16(10):2000–11. https://doi.org/10.1111/pme.12791.

    Article  PubMed  Google Scholar 

  107. Mehta S, McIntyre A, Dijkers M, Loh E, Teasell RW. Gabapentinoids are effective in decreasing neuropathic pain and other secondary outcomes after spinal cord injury: a meta-analysis. Arch Phys Med Rehabil. 2014;95(11):2180–6. https://doi.org/10.1016/j.apmr.2014.06.010.

    Article  PubMed  Google Scholar 

  108. Meng FY, Zhang LC, Liu Y, Pan LH, Zhu M, Li CL, et al. Efficacy and safety of gabapentin for treatment of postherpetic neuralgia: a meta-analysis of randomized controlled trials. Minerva Anestesiol. 2014;80(5):556–67. https://doi.org/10.1155/2018/7474207.

    Article  CAS  PubMed  Google Scholar 

  109. Davari M, Amani B, Amani B, Khanijahani A, Akbarzadeh A, Shabestan R. Pregabalin and gabapentin in neuropathic pain management after spinal cord injury: a systematic review and meta-analysis. Korean J Pain. 2020;33(1):3–12. https://doi.org/10.3344/kjp.2020.33.1.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Biyik Z, Solak Y, Atalay H, Gaipov A, Guney F, Turk S. Gabapentin versus pregabalin in improving sleep quality and depression in hemodialysis patients with peripheral neuropathy: a randomized prospective crossover trial. Int Urol Nephrol. 2012;45(3):831–7. https://doi.org/10.1007/s11255-012-0193-1.

    Article  CAS  PubMed  Google Scholar 

  111. Illeez OG, Oktay KNK, Aktas I, et al. Comparison of the effects of duloxetine and pregabalin on pain and associated factors in patients with knee osteoarthritis. Rev Assoc Med Bras. 2022;68(3):377–83. https://doi.org/10.1590/1806-9282.20211047.

    Article  PubMed  Google Scholar 

  112. Atkin T, Comai S, Gobbi G. Drugs for insomnia beyond benzodiazepines: pharmacology, clinical applications, and discovery. Barker EL, ed. Pharmacol Rev. 2018;70(2):197–245. https://doi.org/10.1124/pr.117.014381.

    Article  CAS  PubMed  Google Scholar 

  113. Benarroch EE. What is the mechanism of therapeutic and adverse effects of gabapentinoids? Neurology. 2021;96(7):318–21. https://doi.org/10.1212/WNL.0000000000011424.

    Article  CAS  PubMed  Google Scholar 

  114. Raouf M, Atkinson TJ, Crumb MW, Fudin J. Rational dosing of gabapentin and pregabalin in chronic kidney disease. J Pain Res. 2017;27(10):275–8. https://doi.org/10.2147/JPR.S130942.

    Article  Google Scholar 

  115. Chou R, Gordon DB, de Leon-Casasola OA, et al. Management of postoperative pain: a clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain. 2016;17(2):131–57. https://doi.org/10.1016/j.jpain.2015.12.008.

    Article  PubMed  Google Scholar 

  116. Dale R, Stacey B. Multimodal Treatment of Chronic Pain. Med Clin North Am. 2016;100(1):55–64. https://doi.org/10.1016/j.mcna.2015.08.012.

    Article  PubMed  Google Scholar 

  117. Cheah JW, Freshman RD, Mah CD, et al. Orthopedic sleep and novel analgesia pathway: a prospective randomized controlled trial to advance recovery after shoulder arthroplasty. J Shoulder Elbow Surg. 2022;31(6):S143–51. https://doi.org/10.1016/j.jse.2022.02.035.

    Article  PubMed  Google Scholar 

  118. Saxena AK, Bhardwaj N, Chilkoti GT, et al. Modulation of mRNA expression of IL-6 and mTORC1 and efficacy and feasibility of an integrated approach encompassing cognitive behavioral therapy along with pregabalin for management of neuropathic pain in postherpetic neuralgia: a pilot study. Pain Med. 2021;22(10):2276–82. https://doi.org/10.1093/pm/pnab142.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lizbeth Hu or Eric Jyun-Han Wang.

Ethics declarations

Conflict of Interest

None.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Wang, E.JH. Sleep as a Therapeutic Target for Pain Management. Curr Pain Headache Rep 27, 131–141 (2023). https://doi.org/10.1007/s11916-023-01115-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-023-01115-4

Keywords

Navigation