Skip to main content

Advertisement

Log in

Mechanical Biomarkers in Bone Using Image-Based Finite Element Analysis

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize insights gained by finite element (FE) model-based mechanical biomarkers of bone for in vivo assessment of bone development and adaptation, fracture risk, and fracture healing.

Recent Findings

Muscle-driven FE models have been used to establish correlations between prenatal strains and morphological development. Postnatal ontogenetic studies have identified potential origins of bone fracture risk and quantified the mechanical environment during stereotypical locomotion and in response to increased loading. FE-based virtual mechanical tests have been used to assess fracture healing with higher fidelity than the current clinical standard; here, virtual torsion test data was a better predictor of torsional rigidity than morphometric measures or radiographic scores. Virtual mechanical biomarkers of strength have also been used to deepen the insights from both preclinical and clinical studies with predictions of strength of union at different stages of healing and reliable predictions of time to healing.

Summary

Image-based FE models allow for noninvasive measurement of mechanical biomarkers in bone and have emerged as powerful tools for translational research on bone. More work to develop nonirradiating imaging techniques and validate models of bone during particularly dynamic phases (e.g., during growth and the callus region during fracture healing) will allow for continued progress in our understanding of how bone responds along the lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References 

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Prescott JW. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making. J Digit Imaging. 2013;26(1):97–108.

    Article  PubMed  Google Scholar 

  2. Vahia BP, Ipsit V, Forester P. Motion mapping in humans as a biomarker for psychiatric disorders. Neuropsychopharmacology. 2019;44(1):231–2.

    Article  PubMed  Google Scholar 

  3. Moissenet F, Rose-Dulcina K, Armand S, Genevay S. A systematic review of movement and muscular activity biomarkers to discriminate non-specific chronic low back pain patients from an asymptomatic population. Sci Rep. 2021;11(1):5850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Howell JD. Early clinical use of the X-ray. Trans Am Clin Climatol Assoc. 2016;127:341.

    PubMed  PubMed Central  Google Scholar 

  5. Currey JD. The structure and mechanics of bone. J Mater Sci. 2012;47(1):41–54.

    Article  CAS  Google Scholar 

  6. Wallace JM. Chapter 6 Skeletal hard tissue biomechanics. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego: Academic Press; 2014. p 115–130. https://doi.org/10.1016/B978-0-12-416015-6.00006-X. https://www.sciencedirect.com/science/article/pii/B978012416015600006X. Accessed 10 Nov 2022.

  7. Cowin SC. (ed.) Bone mechanics handbook, 2nd ed. Boca Raton, FL: CRC press; 2001.

  8. Friedman MA, Zhang Y, Wayne JS, Farber CR, Donahue HJ. Single limb immobilization model for bone loss from unloading. J Biomech. 2019;83:181–9. https://doi.org/10.1016/j.jbiomech.2018.11.049.

    Article  PubMed  Google Scholar 

  9. Warden SJ, Turner CH. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5–10 Hz. Bone. 2004;34(2):261–70. https://doi.org/10.1016/j.bone.2003.11.011.

    Article  CAS  PubMed  Google Scholar 

  10. Kanis J, McCloskey E, Johansson H, Oden A, Ström O, Borgström F. Development and use of FRAX® in osteoporosis. Osteoporos Int. 2010;21(2):407–13.

    Article  Google Scholar 

  11. Tomasian A, Hillen TJ, Jennings JW. Bone biopsies: what radiologists need to know. Am J Roentgenol. 2020;215(3):523–33.

    Article  Google Scholar 

  12. Rauch F. Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol. 2006;21(4):457–62.

    Article  PubMed  Google Scholar 

  13. Brekelmans W, Poort H, Slooff T. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand. 1972;43(5):301–17.

    Article  CAS  PubMed  Google Scholar 

  14. Huiskes R, Chao EY. A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech. 1983;16(6):385–409.

    Article  CAS  PubMed  Google Scholar 

  15. Adams AL, Fischer H, Kopperdahl DL, Lee DC, Black DM, Bouxsein ML, Fatemi S, Khosla S, Orwoll ES, Siris ES, et al. Osteoporosis and hip fracture risk from routine computed tomography scans: the Fracture, Osteoporosis, and CT Utilization Study (FOCUS). J Bone Miner Res. 2018;33(7):1291–301.

    Article  PubMed  Google Scholar 

  16. Schwarzenberg P, Klein K, Ferguson SJ, von Rechenberg B, Darwiche S, Dailey HL. Virtual mechanical tests out-perform morphometric measures for assessment of mechanical stability of fracture healing in vivo. J Orthop Res®. 2021;39(4):727–38.

    Article  CAS  PubMed  Google Scholar 

  17. Basu P, Beall A, Simmons D, Vannier M. 3-D femoral stress analysis using CT scans and p-version FEM. Biomater Med Devices Artif Organs. 1985;13(3–4):163–86.

    Article  PubMed  Google Scholar 

  18. Keyak J, Meagher J, Skinner H, Mote C Jr. Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng. 1990;12(5):389–97.

    Article  CAS  PubMed  Google Scholar 

  19. Eggermont F, Derikx LC, Free J, Van Leeuwen R, Van Der Linden YM, Verdonschot N, Tanck E. Effect of different CT scanners and settings on femoral failure loads calculated by finite element models. J Orthop Res®. 2018;36(8):2288–95.

    Article  PubMed  Google Scholar 

  20. Benca E, Amini M, Pahr DH. Effect of CT imaging on the accuracy of the finite element modelling in bone. Eur Radiol Exp. 2020;4(1):1–8.

    Article  Google Scholar 

  21. Anderson PA, Polly DW, Binkley NC, Pickhardt PJ. Clinical use of opportunistic computed tomography screening for osteoporosis. JBJS. 2018;100(23):2073–81.

    Article  Google Scholar 

  22. Ohman-Magi C, Holub O, Wu D, Hall RM, Persson C. Density and mechanical properties of vertebral trabecular bone—a review. JOR spine. 2021;4(4):e1176.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fleps I, Bahaloo H, Zysset PK, Ferguson SJ, Pálsson H, Helgason B. Empirical relationships between bone density and ultimate strength: a literature review. J Mech Behav Biomed Mater. 2020;110:103866.

    Article  CAS  PubMed  Google Scholar 

  24. •• Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904. Comprehensive development of orientation specific density-modulus relationships in multiple anatomical sites for use in FE model material property assignment.

    Article  PubMed  Google Scholar 

  25. Ren T, Klein K, von Rechenberg B, Darwiche S, Dailey HL. Image based radiodensity profilometry measures early remodeling at the bone callus interface in sheep. Biomech Model Mechanobiol. 2022;21(2):615–26.

    Article  PubMed  Google Scholar 

  26. Fung A, Loundagin LL, Edwards WB. Experimental validation of finite element predicted bone strain in the human metatarsal. J Biomech. 2017;60:22–9.

    Article  PubMed  Google Scholar 

  27. •• Inglis B, Schwarzenberg P, Klein K, von Rechenberg B, Darwiche S, Dailey HL. Biomechanical duality of fracture healing captured using virtual mechanical testing and validated in ovine bones. Sci Rep. 2022;12(1):2492. Application of virtual mechanical testing for in situ optimization of density-modulus scaling equations.

  28. Guha I, Zhang X, Rajapakse CS, Chang G, Saha PK. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling. Med Phys. 2022;49(6):3886–99.

    Article  CAS  PubMed  Google Scholar 

  29. Kersh ME, Zysset PK, Pahr DH, Wolfram U, Larsson D, Pandy MG. Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J Biomech. 2013;46(15):2659–66.

    Article  PubMed  Google Scholar 

  30. Dembia CL, Bianco NA, Falisse A, Hicks JL, Delp SL. OpenSim Moco: Musculoskeletal optimal control. PLoS Comput Biol. 2020;16(12):e1008493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. S. Shourijeh, B. J. Fregly, Muscle synergies modify optimization estimates of joint stiffness during walking, Journal of Biomechanical Engineering 2020; 142 (1).

  32. Sadeghian SM, Shapiro FD, Shefelbine SJ. Computational model of endochondral ossification: Simulating growth of a long bone. Bone. 2021;153:116132.

    Article  PubMed  Google Scholar 

  33. Verbruggen SW, Loo JH, Hayat TT, Hajnal JV, Rutherford MA, Phillips A, Nowlan NC. Modeling the biomechanics of fetal movements. Biomech Model Mechanobiol. 2016;15(4):995–1004.

    Article  PubMed  Google Scholar 

  34. • Verbruggen SW, Kainz B, Shelmerdine SC, Arthurs OJ, Hajnal JV, Rutherford MA, Phillips AT, Nowlan NC. Altered biomechanical stimulation of the developing hip joint in presence of hip dysplasia risk factors. J Biomech. 2018;78:1. Muscle-driven finite element models establishing a correlation between the biomechanics of fetal movements and the risk of developmental hip disorders.

  35. Watson PJ, Fagan MJ, Dobson CA. The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study. Comput Methods Biomech Biomed Engin. 2020;23(13):959–67.

    Article  PubMed  Google Scholar 

  36. Van Der Meulen MC, Carter DR. Developmental mechanics determine long bone allometry. J Theor Biol. 1995;172(4):323–7.

    Article  PubMed  Google Scholar 

  37. Warden SJ, MantilaRoosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, Fuchs RK. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc National Acad Sci. 2014;111(14):5337–42.

    Article  CAS  Google Scholar 

  38. Song H, Polk JD, Kersh ME. Rat bone properties and their relationship to gait during growth. J Exp Biol. 2019;222(18):jeb203554.

    Article  PubMed  Google Scholar 

  39. Moshage SG, McCoy AM, Polk JD, Kersh ME. Temporal and spatial changes in bone accrual, density, and strain energy density in growing foals. J Mech Behav Biomed Mater. 2020;103:103568.

    Article  PubMed  Google Scholar 

  40. Yadav P, Shefelbine SJ, Pontén E, Gutierrez-Farewik EM. Influence of muscle groups’ activation on proximal femoral growth tendency. Biomech Model Mechanobiol. 2017;16(6):1869–83.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kainz H, Killen BA, Wesseling M, Perez-Boerema F, Pitto L, Garcia Aznar JM, Shefelbine S, Jonkers I. A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth. PLoS One. 2020;15(7):e0235966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Kersh ME, Martelli S, Zebaze R, Seeman E, Pandy MG. Mechanical loading of the femoral neck in human locomotion. J Bone Miner Res. 2018;33(11):1999–2006. First subject-specific multi-scale finite element models simulating different locomotive tasks.

  43. Yan C, Bice RJ, Frame JW, Warden SJ, Kersh ME. Multidirectional basketball activities load different regions of the tibia: a subject specific muscle-driven finite element study. Bone. 2022;159:116392.

    Article  PubMed  Google Scholar 

  44. Bhatia VA, Edwards WB, Troy KL. Predicting surface strains at the human distal radius during an in vivo loading task—finite element model validation and application. J Biomech. 2014;47(11):2759–65.

    Article  PubMed  PubMed Central  Google Scholar 

  45. •• Troy KL, Mancuso ME, Johnson JE, Wu Z, Schnitzer TJ, Butler TA. Bone adaptation in adult women is related to loading dose: a 12-month randomized controlled trial. J Bone Miner Res. 2020;35(7):1300–12. Rigorous measurements of bone adaptation to in vivo loading in humans using multi-scale clinical and HR-PQCT finite element models.

  46. Brown JP, Engelke K, Keaveny TM, Chines A, Chapurlat R, Foldes AJ, Nogues X, Civitelli R, De Villiers T, Massari F, et al. Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: results from the Active-Controlled Fracture Study in Postmenopausal Women with Osteoporosis at High Risk (ARCH) trial. J Bone Miner Res. 2021;36(11):2139–52.

    Article  CAS  PubMed  Google Scholar 

  47. Zysset PK, Dall’Ara E, Varga P, Pahr DH. Finite element analysis for prediction of bone strength. Bone Key Rep. 2013;2:386.

  48. Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K. Clinical use of quantitative computed tomography–based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD official positions—part II. J Clin Densitom. 2015;18(3):359–92.

    Article  PubMed  Google Scholar 

  49. Johannesdottir F, Allaire B, Bouxsein ML. Fracture prediction by computed tomography and finite element analysis: current and future perspectives. Curr Osteoporos Rep. 2018;16(4):411–22.

    Article  PubMed  Google Scholar 

  50. Keaveny T, Clarke B, Cosman F, Orwoll E, Siris E, Khosla S, Bouxsein M. Biomechanical computed tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int. 2020;31(6):1025–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aggarwal V, Maslen C, Abel RL, Bhattacharya P, Bromiley PA, Clark EM, Compston JE, Crabtree N, Gregory JS, Kariki EP, et al. Opportunistic diagnosis of osteoporosis fragile bone strength and vertebral fractures from routine CT scans a review of approved technology systems and pathways to implementation. Ther Adv Musculoskelet Dis. 2021;13:1759720X211024029.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, Szulc P, Adachi J, Amin S, Atkinson E, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BOMIC): a prospective study. Lancet Diabetes Endocrinol. 2019;7(1):34–43.

    Article  PubMed  Google Scholar 

  53. Sornay-Rendu E, Boutroy S, Duboeuf F, Chapurlat RD. Bone microarchitecture assessed by HR-PQCT as predictor of fracture risk in postmenopausal women: the OFELY study. J Bone Miner Res. 2017;32(6):1243–51.

    Article  CAS  PubMed  Google Scholar 

  54. Westbury LD, Shere C, Edwards MH, Cooper C, Dennison EM, Ward KA. Cluster analysis of finite element analysis and bone microarchitectural parameters identifies phenotypes with high fracture risk. Calcif Tissue Int. 2019;105(3):252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Litwic A, Westbury L, Robinson D, Ward K, Cooper C, Dennison E. Bone phenotype assessed by HRPQCT and associations with fracture risk in the glow study. Calcif Tissue Int. 2018;102(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  56. Dailey HL, Schwarzenberg P, Daly CJ, Boran SA, Maher MM, Harty JA. Virtual mechanical testing based on low-dose computed tomography scans for tibial fracture: a pilot study of prediction of time to union and comparison with subjective outcomes scoring. JBJS. 2019;101(13):1193–202.

    Article  Google Scholar 

  57. Yu T, Gao H, Liu T, Huang Y, Wang C. Effects of immediately static loading on osteointegration and osteogenesis around 3D-printed porous implant: a histological and biomechanical study. Mater Sci Eng, C. 2020;108:110406.

    Article  CAS  Google Scholar 

  58. Tian Y, Li Z, Chen J, Yuan X, Sadowsky SJ, Coyac BR, Brunski JB, Helms JA. Mechano-adaptive responses of alveolar bone to implant hyper-loading in a pre-clinical in vivo model. Clin Oral Implant Res. 2020;31(12):1159–72.

    Article  CAS  Google Scholar 

  59. Tian Y, Sadowsky SJ, Brunski JB, Yuan X, Helms JA. Effects of masticatory loading on bone remodeling around teeth versus implants: insights from a preclinical model. Clin Oral Implant Res. 2022;33(3):342–52.

    Article  CAS  Google Scholar 

  60. de Barros e Lima Bueno R, Dias AP, Ponce KJ, Brunski JB, Nanci A. System for application of controlled forces on dental implants in rat maxillae: influence of the number of load cycles on bone healing. J Biomed Mater Res Part B: Appl Biomater. 2020;108(3):965–75.

    Article  Google Scholar 

  61. Li C, Tan R, Guo Y, Li S. Using 3D finite element models verified the importance of callus material and microstructure in biomechanics restoration during bone defect repair. Comput Methods Biomech Biomed Engin. 2018;21(1):83–90.

    Article  PubMed  Google Scholar 

  62. Suzuki T, Matsuura Y, Yamazaki T, Akasaka T, Ozone E, Matsuyama Y, Mukai M, Ohara T, Wakita H, Taniguchi S, et al. Biomechanics of callus in the bone healing process, determined by specimen specific finite element analysis. Bone. 2020;132:115212.

    Article  CAS  PubMed  Google Scholar 

  63. Kesavan C, Rundle C, Mohan S. Repeated mild traumatic brain injury impairs fracture healing in male mice. BMC Res Notes. 2022;15(1):1–6.

    Article  Google Scholar 

  64. Hildebrand M, Herrmann M, Gieling F, Gehweiler D, Mischler D, Verrier S, Alini M, Zeiter S, Thompson K. Development and characterization of a predictive microCT-based non-union model in Fischer F344 rats. Arch Orthop Trauma Surg. 2022;142:579–590.

  65. • Malhotra A, Walle M, Paul GR, Kuhn GA, Muller R. Application of subject-specific adaptive mechanical loading for bone healing in a mouse tail vertebral defect. Sci Rep. 2021;11(1):1–10. Use of real time finite element models to assess bone healing longitudinally.

  66. Paul GR, Wehrle E, Tourolle DC, Kuhn GA, Muller R. Realtime finite element analysis allows homogenization of tissue scale strains and reduces variance in a mouse defect healing model. Sci Rep. 2021;11(1):1–12.

    Article  Google Scholar 

  67. • Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, Biver E, Szulc P, Sornay-Rendu E, Merle B, Chapurlat R, et al. Bone microarchitecture phenotypes identified in older adults are associated with different levels of osteoporotic fracture risk. J Bone Miner Res. 2022;37(3):428–39. Identification of bone phenotypes associated with osteoporotic fracture risk using virtual mechanical tests.

  68. Orassi V, Duda GN, Heiland M, Fischer H, Rendenbach C, Checa S. Biomechanical assessment of the validity of sheep as a preclinical model for testing mandibular fracture fixation devices. Frontiers Bioeng and Biotechnol. 2021;9:672176.

    Article  Google Scholar 

  69. Dailey HL, Schwarzenberg P, Webb EB III, Boran SA, Guerin S, Harty JA. Pilot study of micromotion nailing for mechanical stimulation of tibial fracture healing. Bone & Joint Open. 2021;2(10):825.

    Article  Google Scholar 

  70. Yoda N, Zheng K, Chen J, Liao Z, Koyama S, Peck C, Swain M, Sasaki K, Li Q. Biomechanical analysis of bone remodeling following mandibular reconstruction using fibula free flap. Med Eng Phys. 2018;56:1–8.

    Article  PubMed  Google Scholar 

  71. Bevers M, Daniels A, van Rietbergen B, Geusens P, van Kuijk S, Sassen S, Kaarsemaker S, Hannemann P, Poeze M, Janzing H, et al. Assessment of the healing of conservatively-treated scaphoid fractures using HR-PQCT. Bone. 2021;153:116161.

    Article  CAS  PubMed  Google Scholar 

  72. Spanswick PJ, Whittier DE, Kwong C, Korley R, Boyd SK, Schneider PS. Improvements in radiographic and clinical assessment of distal radius fracture healing by FE-estimated bone stiffness. Bone reports. 2021;14:100748.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Spanswick P, Whittier D, Kwong C, Korley R, Boyd S, Schneider P. Restoration of stiffness during fracture healing at the distal radius, using HR-PQCT and finite element methods. J Clin Densitom. 2021;24(3):422–32.

    Article  PubMed  Google Scholar 

  74. Whittier DE, Boyd SK, Burghardt AJ, Paccou J, GhasemZadeh A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the assessment of bone density and microarchitecture in vivo using high resolution peripheral quantitative computed tomography. Osteoporos Int. 2020;31(9):1607–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ohs N, Collins CJ, Atkins PR. Validation of HR-PQCT against microCT for morphometric and biomechanical analyses: a review. Bone reports. 2020;13:100711.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Haider IT, Lobos SM, Simonian N, Schnitzer TJ, Edwards WB. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Osteoporos Int. 2018;29(12):2703–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Edwards WB, Schnitzer TJ, Troy KL. The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury. Bone. 2014;60:141–7.

    Article  PubMed  Google Scholar 

  78. Fang Y, Morse L, Nguyen N, Battaglino R, Goldstein R, Troy K. Functional electrical stimulation (FES)–assisted rowing combined with zoledronic acid, but not alone, preserves distal femur strength and stiffness in people with chronic spinal cord injury. Osteoporos Int. 2021;32(3):549–58.

    Article  CAS  PubMed  Google Scholar 

  79. Edwards WB, Simonian N, Haider IT, Anschel AS, Chen D, Gordon KE, Gregory EK, Kim KH, Parachuri R, Troy KL, et al. Effects of teriparatide and vibration on bone mass and bone strength in people with bone loss and spinal cord injury: a randomized, controlled trial. J Bone Miner Res. 2018;33(10):1729–40.

    Article  CAS  PubMed  Google Scholar 

  80. Troy KL, Edwards WB. Practical considerations for obtaining high quality quantitative computed tomography data of the skeletal system. Bone. 2018;110:58–65.

    Article  PubMed  Google Scholar 

  81. Ketsiri T, Uppuganti S, Harkins KD, Gochberg DF, Nyman JS, Does MD. Finite element analysis of bone mechanical properties using MRI-derived bound and pore water concentration maps. Comput Methods Biomech Biomed Eng. 2022;1–12.

  82. Rajapakse CS, Kobe EA, Batzdorf AS, Hast MW, Wehrli FW. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing. Bone. 2018;108:71–8.

    Article  PubMed  Google Scholar 

  83. Schileo E, Taddei F. Finite element assessment of bone fragility from clinical images Curr Osteoporos Rep. 2021;19(6):688–98.

    PubMed  Google Scholar 

  84. Krohn K, Schwartz EN, Chung Y-S, Lewiecki EM. Dual-energy X-ray absorptiometry monitoring with trabecular bone score: 2019 ISCD official position. J Clin Densitom. 2019;22(4):501–5.

    Article  PubMed  Google Scholar 

  85. Martelli S, Kersh ME, Pandy MG. Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement. J Biomech. 2015;48(13):3606–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana E. Kersh.

Ethics declarations

Conflict of Interest

HD discloses stock or stock options in OrthoXel, DAC (Cork, Ireland) and is an inventor of patents licensed to or held by OrthoXel. There are no other relevant competing interests for any of the authors.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dailey, H.L., Kersh, M.E., Collins, C.J. et al. Mechanical Biomarkers in Bone Using Image-Based Finite Element Analysis. Curr Osteoporos Rep 21, 266–277 (2023). https://doi.org/10.1007/s11914-023-00784-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00784-9

Keywords

Navigation