Skip to main content

Advertisement

Log in

Sleep Disruption and Bone Health

  • Epidemiology and Pathophysiology (J Compston and M Rothman, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Review recent literature investigating the relationship between bone health and sleep/circadian disruptions (e.g., abnormal sleep duration, night shift work).

Recent Findings

Short and long sleep are associated with low bone mineral density (BMD). Recent data from observational studies identified an increased risk of fracture in women with short sleep. Studies suggest that age, sex, weight change, and concurrent circadian misalignment may modify the effects of sleep restriction on bone metabolism. Interventional studies demonstrate alterations in bone metabolism and structure in response to circadian disruption that could underlie the increased fracture risk seen with night shift work. The effects of sleep and circadian disruption during adolescence may have lifelong skeletal consequences if they adversely impact bone modeling.

Summary

Data suggest that short sleep and night shift work negatively impact bone metabolism and health. Rigorous studies of prevalent sleep and circadian disruptions are needed to determine mechanisms and develop prevention strategies to optimize lifelong skeletal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Allada R, Bass J. Circadian mechanisms in medicine. N Engl J Med. 2021;384(6):550–61. https://doi.org/10.1056/NEJMra1802337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kolla BP, Auger RR. Jet lag and shift work sleep disorders: how to help reset the internal clock. Cleve Clin J Med. 2011;78(10):675–84. https://doi.org/10.3949/ccjm.78a.10083.

    Article  PubMed  Google Scholar 

  3. Mavroudis PD, Scheff JD, Calvano SE, Lowry SF, Androulakis IP. Entrainment of peripheral clock genes by cortisol. Physiol Genomics. 2012;44(11):607–21. https://doi.org/10.1152/physiolgenomics.00001.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219–24. https://doi.org/10.1073/pnas.1408886111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018;359(6381) https://doi.org/10.1126/science.aao0318.

  6. Ruben MD, Wu G, Smith DF, Schmidt RE, Francey LJ, Lee YY, et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med. 2018;10(458) https://doi.org/10.1126/scitranslmed.aat8806.

  7. Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol. 2016;26(10):R432–43. https://doi.org/10.1016/j.cub.2016.04.011.

    Article  CAS  PubMed  Google Scholar 

  8. Arble DM, Bass J, Behn CD, Butler MP, Challet E, Czeisler C, Depner CM, Elmquist J, Franken P, Grandner MA, Hanlon EC, Keene AC, Joyner MJ, Karatsoreos I, Kern PA, Klein S, Morris CJ, Pack AI, Panda S, et al. Impact of sleep and circadian disruption on energy balance and diabetes: a summary of workshop discussions. Sleep. 2015;38(12):1849–60. https://doi.org/10.5665/sleep.5226.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med. 2010;71(5):1027–36. https://doi.org/10.1016/j.socscimed.2010.05.041.

    Article  PubMed  Google Scholar 

  10. Knutsson A, Kempe A. Shift work and diabetes--a systematic review. Chronobiol Int. 2014;31(10):1146–51. https://doi.org/10.3109/07420528.2014.957308.

    Article  PubMed  Google Scholar 

  11. Morris CJ, Purvis TE, Hu K, Scheer FA. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A. 2016;113(10):E1402–11. https://doi.org/10.1073/pnas.1516953113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cappuccio FP, Cooper D, D'Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32(12):1484–92. https://doi.org/10.1093/eurheartj/ehr007.

    Article  PubMed  Google Scholar 

  13. Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep. 2010;33(5):585–92. https://doi.org/10.1093/sleep/33.5.585.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hansen J. Light at night, shiftwork, and breast cancer risk. J Natl Cancer Inst. 2001;93(20):1513–5. https://doi.org/10.1093/jnci/93.20.1513.

    Article  CAS  PubMed  Google Scholar 

  15. Group IMV. Carcinogenicity of night shift work. Lancet Oncol. 2019;20(8):1058–9. https://doi.org/10.1016/S1470-2045(19)30455-3.

    Article  Google Scholar 

  16. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106(11):4453–8. https://doi.org/10.1073/pnas.0808180106.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Swanson C, Shea SA, Wolfe P, Cain SW, Munch M, Vujovic N, et al. Bone turnover markers after sleep restriction and circadian disruption: a mechanism for sleep-related bone loss in humans. J Clin Endocrinol Metab. 2017;102:3722–30. https://doi.org/10.1210/jc.2017-01147.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Swanson CM. Sleep disorders and osteoporosis. In: Dempster DW, Cauley JA, Bouxsein ML, Cosman F, editors. Marcus and Feldman’s Osteoporosis. 5th ed. Elsevier: Academic Press; 2021. p. 1459–71.

    Chapter  Google Scholar 

  19. Swanson CM. Sleep disruptions and bone health: what do we know so far? Curr Opin Endocrinol Diabetes Obes. 2021;28(4):348–53. https://doi.org/10.1097/MED.0000000000000639.

    Article  PubMed  Google Scholar 

  20. Swanson CM, Kohrt WM, Buxton OM, Everson CA, Wright KP Jr, Orwoll ES, Shea SA. The importance of the circadian system & sleep for bone health. Metabolism. 2018;84:28–43. https://doi.org/10.1016/j.metabol.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  21. Swanson CM, Shea SA, Kohrt WM, Wright KP, Cain SW, Munch M, et al. Sleep restriction with circadian disruption negatively alter bone turnover markers in women. J Clin Endocrinol Metab. 2020;105(7) https://doi.org/10.1210/clinem/dgaa232. This study identified adverse changes in bone metabolism in response to cumulative sleep restriction and concurrent circadian misalignment in women that may underlie the increased risk of fracture previously identified by Feskanich et al in the Nurses Health Study

  22. Feskanich D, Hankinson SE, Schernhammer ES. Nightshift work and fracture risk: the Nurses’ Health Study. Osteoporosis Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2009;20(4):537–42. https://doi.org/10.1007/s00198-008-0729-5.

    Article  CAS  Google Scholar 

  23. Cauley JA, Hovey KM, Stone KL, Andrews CA, Barbour KE, Hale L, et al. Characteristics of self-reported sleep and the risk of falls and fractures: the Women’s Health Initiative (WHI). J Bone Miner Res Off J Am Soc Bone Miner Res. 2019;34(3):464–74. https://doi.org/10.1002/jbmr.3619. This study identified an increased risk of fracture out to 5 years in postmenopausal women with short (<6 h/night) sleep independent of falls

    Article  CAS  Google Scholar 

  24. Ochs-Balcom HM, Hovey KM, Andrews C, Cauley JA, Hale L, Li W, Bea JW, Sarto GE, Stefanick ML, Stone KL, Watts NB, Zaslavsky O, Wactawski-Wende J. Short sleep is associated with low bone mineral density and osteoporosis in the Women’s Health Initiative. J Bone Miner Res: the official journal of the American Society for Bone and Mineral Research. 2020;35(2):261–8. https://doi.org/10.1002/jbmr.3879.

    Article  CAS  Google Scholar 

  25. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 2002;31(1):57–61.

    Article  CAS  Google Scholar 

  26. Redmond J, Fulford AJ, Jarjou L, Zhou B, Prentice A, Schoenmakers I. Diurnal rhythms of bone turnover markers in three ethnic groups. J Clin Endocrinol Metab. 2016;101(8):3222–30. https://doi.org/10.1210/jc.2016-1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swanson CM, Shea SA, Markwardt S, Czeisler CA, Buxton OM, Orwoll ES. 24-Hr Profile of serum sclerostin & its association with bone biomarkers in men. J Bone Miner Res Off J Am Soc Bone Miner Res. 2016;31(Suppl 1):3205–13.

    Google Scholar 

  28. Okubo N, Minami Y, Fujiwara H, Umemura Y, Tsuchiya Y, Shirai T, Oda R, Inokawa H, Kubo T, Yagita K. Prolonged bioluminescence monitoring in mouse ex vivo bone culture revealed persistent circadian rhythms in articular cartilages and growth plates. PLoS One. 2013;8(11):e78306. https://doi.org/10.1371/journal.pone.0078306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. St Hilaire MA, Rahman SA, Gooley JJ, Witt-Enderby PA, Lockley SW. Relationship between melatonin and bone resorption rhythms in premenopausal women. J Bone Miner Metab. 2019;37(1):60–71. https://doi.org/10.1007/s00774-017-0896-6.

    Article  CAS  PubMed  Google Scholar 

  30. Lombardi G, Perego S, Luzi L, Banfi G. A four-season molecule: osteocalcin. Updates in its physiological roles. Endocrine. 2015;48(2):394–404. https://doi.org/10.1007/s12020-014-0401-0.

    Article  CAS  PubMed  Google Scholar 

  31. Bjarnason NH, Henriksen EE, Alexandersen P, Christgau S, Henriksen DB, Christiansen C. Mechanism of circadian variation in bone resorption. Bone. 2002;30(1):307–13.

    Article  CAS  Google Scholar 

  32. Takarada T, Xu C, Ochi H, Nakazato R, Yamada D, Nakamura S, Kodama A, Shimba S, Mieda M, Fukasawa K, Ozaki K, Iezaki T, Fujikawa K, Yoneda Y, Numano R, Hida A, Tei H, Takeda S, Hinoi E. Bone resorption is regulated by circadian clock in osteoblasts. J Bone Miner Res: the official journal of the American Society for Bone and Mineral Research. 2017;32(4):872–81. https://doi.org/10.1002/jbmr.3053.

    Article  CAS  Google Scholar 

  33. Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, Hinoi E, Okawa A, Takeda S. Circadian clock regulates bone resorption in mice. J Bone Miner Res: the official journal of the American Society for Bone and Mineral Research. 2016;31(7):1344–55. https://doi.org/10.1002/jbmr.2803.

    Article  CAS  Google Scholar 

  34. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122(5):803–15. https://doi.org/10.1016/j.cell.2005.06.028.

    Article  CAS  PubMed  Google Scholar 

  35. Chen G, Tang Q, Yu S, Xie Y, Sun J, Li S, Chen L. The biological function of BMAL1 in skeleton development and disorders. Life Sci. 2020;253:117636. https://doi.org/10.1016/j.lfs.2020.117636.

    Article  CAS  PubMed  Google Scholar 

  36. Akerstedt T, Wright KP Jr. Sleep loss and fatigue in shift work and shift work disorder. Sleep Med Clin. 2009;4(2):257–71. https://doi.org/10.1016/j.jsmc.2009.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, Stothard ER, et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci U S A. 2014;111(48):17302–7. https://doi.org/10.1073/pnas.1412021111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res. 2021:e12749. https://doi.org/10.1111/jpi.12749.

  39. Amstrup AK, Sikjaer T, Mosekilde L, Rejnmark L. Melatonin and the skeleton. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2013;24(12):2919–27. https://doi.org/10.1007/s00198-013-2404-8.

    Article  CAS  Google Scholar 

  40. Swanson CM, Shea SA, Stone KL, Cauley JA, Rosen CJ, Redline S, Karsenty G, Orwoll ES. Obstructive sleep apnea and metabolic bone disease: insights into the relationship between bone and sleep. J Bone Miner Res: the official journal of the American Society for Bone and Mineral Research. 2015;30(2):199–211. https://doi.org/10.1002/jbmr.2446.

    Article  Google Scholar 

  41. Huang T, Tworoger SS, Redline S, Curhan GC, Paik JM. Obstructive sleep apnea and risk for incident vertebral and hip fracture in women. J Bone Miner Res: the official journal of the American Society for Bone and Mineral Research. 2020;35(11):2143–50. https://doi.org/10.1002/jbmr.4127.

    Article  CAS  Google Scholar 

  42. Upala S, Sanguankeo A, Congrete S. Association between obstructive sleep apnea and osteoporosis: a systematic review and meta-analysis. Int J Endocrinol Metab. 2016;14(3):e36317. https://doi.org/10.5812/ijem.36317.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Donnelly K, Bracchi R, Hewitt J, Routledge PA, Carter B. Benzodiazepines, Z-drugs and the risk of hip fracture: a systematic review and meta-analysis. PLoS One. 2017;12(4):e0174730. https://doi.org/10.1371/journal.pone.0174730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luchavova M, Zikan V, Michalska D, Raska I Jr, Kubena AA, Stepan JJ. The effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis. Eur J Endocrinol/ European Federation of Endocrine Societies. 2011;164(4):643–8. https://doi.org/10.1530/EJE-10-1108.

    Article  CAS  Google Scholar 

  45. Michalska D, Luchavova M, Zikan V, Raska I Jr, Kubena AA, Stepan JJ. Effects of morning vs. evening teriparatide injection on bone mineral density and bone turnover markers in postmenopausal osteoporosis. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2012;23(12):2885–91. https://doi.org/10.1007/s00198-012-1955-4.

    Article  CAS  Google Scholar 

  46. Xu X, Wang R, Sun Z, Wu R, Yan W, Jiang Q, et al. Trehalose enhances bone fracture healing in a rat sleep deprivation model. Ann Transl Med. 2019;7(14):297. https://doi.org/10.21037/atm.2019.05.73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kunimoto T, Okubo N, Minami Y, Fujiwara H, Hosokawa T, Asada M, Oda R, Kubo T, Yagita K. A PTH-responsive circadian clock operates in ex vivo mouse femur fracture healing site. Sci Rep. 2016;6:22409. https://doi.org/10.1038/srep22409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Explore sleep deprivation and deficiency: how much sleep is enough? National Heart, Lung, and Blood Institute. 2012. http://www.nhlbi.nih.gov/health/health-topics/topics/sdd/howmuch.

  49. Centers for Disease C. Insufficient Sleep Is a Public Health Epidemic. 2014. http://www.cdc.gov/features/dssleep/index.html#References.

  50. Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft JB. Prevalence of healthy sleep duration among adults - United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65(6):137–41. https://doi.org/10.15585/mmwr.mm6506a1.

    Article  PubMed  Google Scholar 

  51. Wang D, Ruan W, Peng Y, Li W. Sleep duration and the risk of osteoporosis among middle-aged and elderly adults: a dose-response meta-analysis. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2018;29(8):1689–95. https://doi.org/10.1007/s00198-018-4487-8.

    Article  CAS  Google Scholar 

  52. Swanson CM, Blatchford PJ, Orwoll ES, Cauley JA, LeBlanc ES, Fink HA, et al. Association between objective sleep duration and bone mineral density in older postmenopausal women from the Study of Osteoporotic Fractures (SOF). Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2019;30(10):2087–98. https://doi.org/10.1007/s00198-019-05007-5.

    Article  CAS  Google Scholar 

  53. Swanson CM, Blatchford PJ, Stone KL, Cauley JA, Lane NE, Rogers-Soeder TS, Redline S, Bauer DC, Wright KP Jr, Wierman ME, Kohrt WM, Orwoll ES, for The Osteoporotic Fractures in Men (MrOS) Study. Sleep duration and bone health measures in older men. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2021;32(3):515–27. https://doi.org/10.1007/s00198-020-05619-2.

    Article  CAS  Google Scholar 

  54. Zheng XY, Zhou Z, Gao Y, Chen Y, Li R, Zhou M, Zhu D. Racial differences and factors associated with low femoral neck bone mineral density: an analysis of NHANES 2005-2014 data. Arch Osteoporos. 2021;16(1):9. https://doi.org/10.1007/s11657-020-00850-0.

    Article  PubMed  Google Scholar 

  55. Cunningham TD, Di Pace BS. Is self-reported sleep duration associated with osteoporosis? Data from a 4-year aggregated analysis from the National Health and Nutrition Examination Survey. J Am Geriatr Soc. 2015;63(7):1401–6. https://doi.org/10.1111/jgs.13477.

    Article  PubMed  Google Scholar 

  56. Lee CL, Tzeng HE, Liu WJ, Tsai CH. A cross-sectional analysis of the association between sleep duration and osteoporosis risk in adults using 2005-2010 NHANES. Sci Rep. 2021;11(1):9090. https://doi.org/10.1038/s41598-021-88739-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stone KL, Ancoli-Israel S, Blackwell T, Ensrud KE, Cauley JA, Redline S, Hillier TA, Schneider J, Claman D, Cummings SR. Actigraphy-measured sleep characteristics and risk of falls in older women. Arch Intern Med. 2008;168(16):1768–75. https://doi.org/10.1001/archinte.168.16.1768.

    Article  PubMed  Google Scholar 

  58. Zhu Y, Liu S, Chen W, Liu B, Zhang F, Lv H, Ji C, Zhang X, Zhang Y. Epidemiology of low-energy lower extremity fracture in Chinese populations aged 50 years and above. PLoS One. 2019;14(1):e0209203. https://doi.org/10.1371/journal.pone.0209203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin Z, Lv H, Li M, Hou Z, Lian X, Chen W, Zhang Y. Epidemiological investigation of hospitalized patients with traumatic fractures: a cross-sectional study. J Int Med Res. 2021;49(1):300060520979854. https://doi.org/10.1177/0300060520979854.

    Article  PubMed  Google Scholar 

  60. Chen J, Zhang J, So HC, Ai S, Wang N, Tan X, Wing YK. Association of sleep traits and heel bone mineral density: observational and Mendelian randomization studies. J Bone Miner Res: the official journal of the American Society for Bone and Mineral Research. 2021;36:2184–92. https://doi.org/10.1002/jbmr.4406.

    Article  CAS  Google Scholar 

  61. Depner CM, Rice JD, Tussey EJ, Eckel RH, Bergman BC, Higgins JA, Melanson EL, Kohrt WM, Wright KP Jr, Swanson CM. Bone turnover marker responses to sleep restriction and weekend recovery sleep. Bone. 2021;152:116096. https://doi.org/10.1016/j.bone.2021.116096.

    Article  CAS  PubMed  Google Scholar 

  62. Swanson CM, Kohrt WM, Wolfe P, Wright KP Jr, Shea SA, Cain SW, Munch M, Vujović N, Czeisler CA, Orwoll ES, Buxton OM. Rapid suppression of bone formation marker in response to sleep restriction and circadian disruption in men. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2019;30:2485–93. https://doi.org/10.1007/s00198-019-05135-y.

    Article  CAS  Google Scholar 

  63. Everson CA, Folley AE, Toth JM. Chronically inadequate sleep results in abnormal bone formation and abnormal bone marrow in rats. Exp Biol Med. 2012;237(9):1101–9. https://doi.org/10.1258/ebm.2012.012043.

    Article  CAS  Google Scholar 

  64. Xu X, Wang L, Chen L, Su T, Zhang Y, Wang T, Ma W, Yang F, Zhai W, Xie Y, Li D, Chen Q, Fu X, Ma Y, Zhang Y. Effects of chronic sleep deprivation on bone mass and bone metabolism in rats. J Orthop Surg Res. 2016;11(1):87. https://doi.org/10.1186/s13018-016-0418-6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hughes JM, Smith MA, Henning PC, Scofield DE, Spiering BA, Staab JS, Hydren JR, Nindl BC, Matheny RW Jr. Bone formation is suppressed with multi-stressor military training. Eur J Appl Physiol. 2014;114:2251–9. https://doi.org/10.1007/s00421-014-2950-6.

    Article  CAS  PubMed  Google Scholar 

  66. Staab JS, Smith TJ, Wilson M, Montain SJ, Gaffney-Stomberg E. Bone turnover is altered during 72 h of sleep restriction: a controlled laboratory study. Endocrine. 2019;65(1):192–9. https://doi.org/10.1007/s12020-019-01937-6.

    Article  CAS  PubMed  Google Scholar 

  67. Buxton OM, Cain SW, O'Connor SP, Porter JH, Duffy JF, Wang W, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med. 2012;4(129):129ra43. https://doi.org/10.1126/scitranslmed.3003200.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Depner CM, Melanson EL, Eckel RH, Snell-Bergeon JK, Perreault L, Bergman BC, Higgins JA, Guerin MK, Stothard ER, Morton SJ, Wright KP Jr. Ad libitum weekend recovery sleep fails to prevent metabolic dysregulation during a repeating pattern of insufficient sleep and weekend recovery sleep. Curr Biol. 2019;29(6):957–67 e4. https://doi.org/10.1016/j.cub.2019.01.069.

    Article  CAS  PubMed  Google Scholar 

  69. Everson CA, Szabo A. Recurrent restriction of sleep and inadequate recuperation induce both adaptive changes and pathological outcomes. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1430–40. https://doi.org/10.1152/ajpregu.00230.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McMenamin TM. A time to work: recent trends in shift work and flexible schedules. Monthly Labor Review. 2007;December 2007.

  71. Bukowska-Damska A, Skowronska-Jozwiak E, Kaluzny P, Lewinski A, Peplonska B. Night shift work and osteoporosis among female blue-collar workers in Poland - a pilot study. Chronobiol Int. 2020;37:1–11. https://doi.org/10.1080/07420528.2020.1763381.

    Article  Google Scholar 

  72. Quevedo I, Zuniga AM. Low bone mineral density in rotating-shift workers. J Clin Densitom. 2010;13(4):467–9. https://doi.org/10.1016/j.jocd.2010.07.004.

    Article  PubMed  Google Scholar 

  73. Kim BK, Choi YJ, Chung YS. Other than daytime working is associated with lower bone mineral density: the Korea National Health and Nutrition Examination Survey 2009. Calcif Tissue Int. 2013;93(6):495–501. https://doi.org/10.1007/s00223-013-9779-6.

    Article  CAS  PubMed  Google Scholar 

  74. Santhanam P, Khthir R, Dial L, Driscoll HK, Gress TW. Femoral neck bone mineral density in persons over 50 years performing shiftwork: an epidemiological study. J Occup Environ Med. 2016;58(3):e63–5. https://doi.org/10.1097/JOM.0000000000000662.

    Article  PubMed  Google Scholar 

  75. Lucassen EA, Coomans CP, van Putten M, de Kreij SR, van Genugten JH, Sutorius RP, et al. Environmental 24-hr Cycles Are Essential for Health. Curr Biol. 2016;26(14):1843–53. https://doi.org/10.1016/j.cub.2016.05.038.

    Article  CAS  PubMed  Google Scholar 

  76. Schilperoort M, Bravenboer N, Lim J, Mletzko K, Busse B, van Ruijven L, Kroon J, Rensen PCN, Kooijman S, Winter EM. Circadian disruption by shifting the light-dark cycle negatively affects bone health in mice. FASEB J. 2020;34(1):1052–64. https://doi.org/10.1096/fj.201901929R.

    Article  CAS  PubMed  Google Scholar 

  77. Chaves I, van der Eerden B, Boers R, Boers J, Streng AA, Ridwan Y, et al. Gestational jet lag predisposes to later-life skeletal and cardiac disease. Chronobiol Int. 2019;36(5):657–71. https://doi.org/10.1080/07420528.2019.1579734. This was the first study to consider the skeletal effects of in utero exposure to jet lag

    Article  CAS  PubMed  Google Scholar 

  78. Leproult R, Holmback U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63(6):1860–9. https://doi.org/10.2337/db13-1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Adamopoulos IE. Inflammation in bone physiology and pathology. Curr Opin Rheumatol. 2018;30(1):59–64. https://doi.org/10.1097/BOR.0000000000000449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wright KP Jr, Drake AL, Frey DJ, Fleshner M, Desouza CA, Gronfier C, Czeisler CA. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun. 2015;47:24–34. https://doi.org/10.1016/j.bbi.2015.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Khosla S, Drake MT, Volkman TL, Thicke BS, Achenbach SJ, Atkinson EJ, Joyner MJ, Rosen CJ, Monroe DG, Farr JN. Sympathetic beta1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest. 2018;128(11):4832–42. https://doi.org/10.1172/JCI122151.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Takeda S, Karsenty G. Molecular bases of the sympathetic regulation of bone mass. Bone. 2008;42(5):837–40. https://doi.org/10.1016/j.bone.2008.01.005.

    Article  CAS  PubMed  Google Scholar 

  83. Zhong X, Hilton HJ, Gates GJ, Jelic S, Stern Y, Bartels MN, et al. Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J Appl Physiol (1985). 2005;98(6):2024–32. https://doi.org/10.1152/japplphysiol.00620.2004.

    Article  Google Scholar 

  84. Carter JR, Grimaldi D, Fonkoue IT, Medalie L, Mokhlesi B, Van Cauter E. Assessment of sympathetic neural activity in chronic insomnia: evidence for elevated cardiovascular risk. Sleep. 2018;41(9) https://doi.org/10.1093/sleep/zsy126.

  85. Holmes AL, Burgess HJ, McCulloch K, Lamond N, Fletcher A, Dorrian J, et al. Daytime cardiac autonomic activity during one week of continuous night shift. J Hum Ergol (Tokyo). 2001;30(1-2):223–8.

    CAS  Google Scholar 

  86. Dimitri P, Rosen C. The central nervous system and bone metabolism: an evolving story. Calcif Tissue Int. 2017;100(5):476–85. https://doi.org/10.1007/s00223-016-0179-6.

    Article  CAS  PubMed  Google Scholar 

  87. Hirai T. Regulation of clock genes by adrenergic receptor signaling in osteoblasts. Neurochem Res. 2018;43(1):129–35. https://doi.org/10.1007/s11064-017-2365-y.

    Article  CAS  PubMed  Google Scholar 

  88. Wittert G. The relationship between sleep disorders and testosterone. Curr Opin Endocrinol Diabetes Obes. 2014;21(3):239–43. https://doi.org/10.1097/MED.0000000000000069.

    Article  CAS  PubMed  Google Scholar 

  89. Rizza S, Pietroiusti A, Farcomeni A, Mina GG, Caruso M, Virgilio M, Magrini A, Federici M, Coppeta L. Monthly fluctuations in 25-hydroxy-vitamin D levels in day and rotating night shift hospital workers. J Endocrinol Investig. 2020;43(11):1655–60. https://doi.org/10.1007/s40618-020-01265-x.

    Article  CAS  Google Scholar 

  90. Ben-Sasson SA, Finestone A, Moskowitz M, Maron R, Weinner M, Leichter I, et al. Extended duration of vertical position might impair bone metabolism. Eur J Clin Investig. 1994;24(6):421–5. https://doi.org/10.1111/j.1365-2362.1994.tb02186.x.

    Article  CAS  Google Scholar 

  91. McHill AW, Wright KP Jr. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obesity Rev: an official journal of the International Association for the Study of Obesity. 2017;18(Suppl 1):15–24. https://doi.org/10.1111/obr.12503.

    Article  Google Scholar 

  92. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, Wright KP Jr. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U S A. 2013;110(14):5695–700. https://doi.org/10.1073/pnas.1216951110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Premaor M, Compston J. Obesity, diabetes, and fracture. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. 4th ed. Academic Press, Elsevier; 2013. p. 1331–48.

    Chapter  Google Scholar 

  94. Bukowska-Damska A, Skowronska-Jozwiak E, Peplonska B. Night shift work and osteoporosis: evidence and hypothesis. Chronobiol Int. 2019;36(2):171–80. https://doi.org/10.1080/07420528.2018.1528553.

    Article  PubMed  Google Scholar 

  95. Marie Hansen A, Helene Garde A, Hansen J. Diurnal urinary 6-sulfatoxymelatonin levels among healthy Danish nurses during work and leisure time. Chronobiol Int. 2006;23(6):1203–15. https://doi.org/10.1080/07420520601100955.

    Article  CAS  PubMed  Google Scholar 

  96. Papantoniou K, Pozo OJ, Espinosa A, Marcos J, Castano-Vinyals G, Basagana X, et al. Circadian variation of melatonin, light exposure, and diurnal preference in day and night shift workers of both sexes. Cancer Epidemiol Biomark Prev. 2014;23(7):1176–86. https://doi.org/10.1158/1055-9965.EPI-13-1271.

    Article  CAS  Google Scholar 

  97. Mirick DK, Bhatti P, Chen C, Nordt F, Stanczyk FZ, Davis S. Night shift work and levels of 6-sulfatoxymelatonin and cortisol in men. Cancer Epidemiol Biomark Prev. 2013;22(6):1079–87. https://doi.org/10.1158/1055-9965.EPI-12-1377.

    Article  CAS  Google Scholar 

  98. Riley LA, Esser KA. The role of the molecular clock in skeletal muscle and what it is teaching us about muscle-bone crosstalk. Current osteoporosis reports. 2017;15(3):222–30. https://doi.org/10.1007/s11914-017-0363-2.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kecklund G, Axelsson J. Health consequences of shift work and insufficient sleep. BMJ. 2016;355:i5210. https://doi.org/10.1136/bmj.i5210.

    Article  PubMed  Google Scholar 

  100. Stone KL, Blackwell TL, Ancoli-Israel S, Cauley JA, Redline S, Marshall LM, Ensrud KE, for the Osteoporotic Fractures in Men Study Group. Sleep disturbances and risk of falls in older community-dwelling men: the outcomes of Sleep Disorders in Older Men (MrOS Sleep) Study. J Am Geriatr Soc. 2014;62(2):299–305. https://doi.org/10.1111/jgs.12649.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Stone KL, Ewing SK, Lui LY, Ensrud KE, Ancoli-Israel S, Bauer DC, Cauley JA, Hillier TA, Cummings SR. Self-reported sleep and nap habits and risk of falls and fractures in older women: the study of osteoporotic fractures. J Am Geriatr Soc. 2006;54(8):1177–83. https://doi.org/10.1111/j.1532-5415.2006.00818.x.

    Article  PubMed  Google Scholar 

  102. Wu L, Sun D. Sleep duration and falls: a systemic review and meta-analysis of observational studies. J Sleep Res. 2017;26(3):293–301. https://doi.org/10.1111/jsr.12505.

    Article  PubMed  Google Scholar 

  103. Silverman SL. The clinical consequences of vertebral compression fracture. Bone. 1992;13(Suppl 2):S27–31.

    Article  Google Scholar 

  104. Foley D, Ancoli-Israel S, Britz P, Walsh J. Sleep disturbances and chronic disease in older adults: results of the 2003 National Sleep Foundation Sleep in America Survey. J Psychosom Res. 2004;56(5):497–502. https://doi.org/10.1016/j.jpsychores.2004.02.010.

    Article  PubMed  Google Scholar 

  105. Scane AC, Francis RM, Sutcliffe AM, Francis MJ, Rawlings DJ, Chapple CL. Case-control study of the pathogenesis and sequelae of symptomatic vertebral fractures in men. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 1999;9(1):91–7. https://doi.org/10.1007/s001980050120.

    Article  CAS  Google Scholar 

  106. Casazza K, Hanks LJ, Fernandez JR. Shorter sleep may be a risk factor for impaired bone mass accrual in childhood. J Clin Densitom. 2011;14(4):453–7. https://doi.org/10.1016/j.jocd.2011.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cheng L, Pohlabeln H, Ahrens W, Russo P, Veidebaum T, Hadjigeorgiou C, et al. Cross-sectional and longitudinal associations between sleep duration, sleep quality, and bone stiffness in European children and adolescents. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2021;32(5):853–63. https://doi.org/10.1007/s00198-020-05753-x.

    Article  CAS  Google Scholar 

  108. Dumuid D, Simm P, Wake M, Burgner D, Juonala M, Wu F, Magnussen CG, Olds T. The “Goldilocks Day” for children’s skeletal health: compositional data analysis of 24-hour activity behaviors. J Bone miner Res: the official journal of the American Society for Bone and Mineral Research. 2020;35(12):2393–403. https://doi.org/10.1002/jbmr.4143.

    Article  Google Scholar 

  109. Matlen LB, Whitney DG, Whibley D, Jansen EC, Chervin RD, Dunietz GL. Obstructive sleep apnea and fractures in children and adolescents. J Clin Sleep Med: JCSM: official publication of the American Academy of Sleep Medicine. 2021; https://doi.org/10.5664/jcsm.9318. This is the first study to suggest that sleep disruption (in this case obstructive sleep apnea) is associated with increased fracture risk in adolescents

  110. Aoki T, Fukuda K, Tanaka C, Kamikawa Y, Tsuji N, Kasanami R, Hara T, Miyazaki R, Tanaka H, Asai H, Yamamoto N, Oishi K, Ishii K. The relationship between sleep habits, lifestyle factors, and achieving guideline-recommended physical activity levels in ten-to-fourteen-year-old Japanese children: a cross-sectional study. PLoS One. 2020;15(11):e0242517. https://doi.org/10.1371/journal.pone.0242517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wheaton AG, Jones SE, Cooper AC, Croft JB. Short sleep duration among middle school and high school students - United States, 2015. MMWR Morb Mortal Wkly Rep. 2018;67(3):85–90. https://doi.org/10.15585/mmwr.mm6703a1.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O’Karma M, Wallace TC, Zemel BS. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2016;27(4):1281–386. https://doi.org/10.1007/s00198-015-3440-3.

    Article  CAS  Google Scholar 

  113. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, Hazen N, Herman J, Adams Hillard PJ, Katz ES, Kheirandish-Gozal L, Neubauer DN, O’Donnell AE, Ohayon M, Peever J, Rawding R, Sachdeva RC, Setters B, Vitiello MV, Ware JC. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health. 2015;1(4):233–43. https://doi.org/10.1016/j.sleh.2015.10.004.

    Article  PubMed  Google Scholar 

Download references

Funding

The author is supported by grant numbers K23AR070275, R03AR074509, R01HL151332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Swanson.

Ethics declarations

Conflict of Interest

None

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Epidemiology and Pathophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swanson, C. Sleep Disruption and Bone Health. Curr Osteoporos Rep 20, 202–212 (2022). https://doi.org/10.1007/s11914-022-00733-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-022-00733-y

Keywords

Navigation