Skip to main content
Log in

Weight Reduction for Obesity-Induced Heart Failure with Preserved Ejection Fraction

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure with preserved ejection fraction mainly affects the elderly. The obesity phenotype of heart failure with preserved ejection fraction reflects the coexistence of two highly prevalent conditions in the elderly. Obesity may also lead to heart failure with preserved ejection fraction in middle-aged persons, especially in African American women.

Recent Findings

Obesity is twice as common in middle-aged than in elderly persons with heart failure with preserved ejection fraction. Obese middle-aged persons with heart failure with preserved ejection fraction are less likely to be Caucasian and to have atrial fibrillation or chronic kidney disease as comorbidities than elderly patients with heart failure with preserved ejection fraction. Obesity-associated low-grade systemic inflammation may induce/heighten inflammatory activation of the coronary microvascular endothelium, leading to cardiomyocyte hypertrophy/ stiffness, myocardial fibrosis, and left ventricular diastolic dysfunction.

Summary

Both substantial weight reduction with bariatric surgery and lesser levels of weight reduction with caloric restriction are promising therapeutic approaches to obesity-induced heart failure with preserved ejection fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91. https://doi.org/10.1001/jama.2016.6458.

    Article  CAS  PubMed  Google Scholar 

  2. Jackson SE, Llewellyn CH, Smith L. The obesity epidemic - nature via nurture: a narrative review of high-income countries. SAGE Open Med. 2020;8:2050312120918265. https://doi.org/10.1177/2050312120918265.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Turer AT, Hill JA, Elmquist JK, Scherer PE. Adipose tissue biology and cardiomyopathy: translational implications. Circ Res. 2012;111(12):1565–77. https://doi.org/10.1161/CIRCRESAHA.111.262493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aurigemma GP, de Simone G, Fitzgibbons TP. Cardiac remodeling in obesity. Circ Cardiovasc Imaging. 2013;6(1):142–52. https://doi.org/10.1161/CIRCIMAGING.111.964627.

    Article  PubMed  Google Scholar 

  5. Szczepaniak LS, Victor RG, Orci L, Unger RH. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res. 2007;101(8):759–67. https://doi.org/10.1161/CIRCRESAHA.107.160457.

    Article  CAS  PubMed  Google Scholar 

  6. Turkbey EB, McClelland RL, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the multi-ethnic study of atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3(3):266–74. https://doi.org/10.1016/j.jcmg.2009.10.012.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tsao CW, Lyass A, Enserro D, Larson MG, Ho JE, Kizer JR, et al. Temporal trends in the incidence of and mortality associated with heart failure with preserved and reduced ejection fraction. JACC Heart Fail. 2018;6(8):678–85. https://doi.org/10.1016/j.jchf.2018.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  8. •• Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701–9. https://doi.org/10.1016/j.jchf.2018.05.018The data from 4 community-based cohorts clearly establishthat obesity is a risk for HFpEF especially in women.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gupta DK, Shah AM, Castagno D, Takeuchi M, Loehr LR, Fox ER, et al. Heart failure with preserved ejection fraction in African Americans: the ARIC (atherosclerosis risk in communities) study. JACC Heart Fail. 2013;1(2):156–63. https://doi.org/10.1016/j.jchf.2013.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aune D, Sen A, Norat T, Janszky I, Romundstad P, Tonstad S, et al. Body mass index, abdominal fatness, and heart failure incidence and mortality: a systematic review and dose-response meta-analysis of prospective studies. Circulation. 2016;133(7):639–49. https://doi.org/10.1161/CIRCULATIONAHA.115.016801.

    Article  PubMed  Google Scholar 

  11. Yan Y, Li S, Guo Y, Fernandez C, Bazzano L, He J, et al. Life-course cumulative burden of body mass index and blood pressure on progression of left ventricular mass and geometry in midlife: the Bogalusa heart study. Circ Res. 2020;126(5):633–43. https://doi.org/10.1161/CIRCRESAHA.119.316045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peterson LR, Waggoner AD, Schechtman KB, Meyer T, Gropler RJ, Barzilai B, et al. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J Am Coll Cardiol. 2004;43(8):1399–404. https://doi.org/10.1016/j.jacc.2003.10.062.

    Article  PubMed  Google Scholar 

  13. De Simone G, Devereux RB, Chinali M, Roman MJ, Barac A, Panza JA, et al. Sex differences in obesity-related changes in left ventricular morphology: the strong heart study. J Hypertens. 2011;29(7):1431–8. https://doi.org/10.1097/HJH.0b013e328347a093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Powell BD, Redfield MM, Bybee KA, Freeman WK, Rihal CS. Association of obesity with left ventricular remodeling and diastolic dysfunction in patients without coronary artery disease. Am J Cardiol. 2006;98(1):116–20. https://doi.org/10.1016/j.amjcard.2006.01.063.

    Article  PubMed  Google Scholar 

  15. Rozenbaum Z, Topilsky Y, Khoury S, Pereg D, Laufer-Perl M. Association of body mass index and diastolic function in metabolically healthy obese with preserved ejection fraction. Int J Cardiol. 2019;277:147–52. https://doi.org/10.1016/j.ijcard.2018.08.008.

    Article  PubMed  Google Scholar 

  16. Campbell DJ, Gong FF, Jelinek MV, Castro JM, Coller JM, McGrady M, et al. Threshold body mass index and sex-specific waist circumference for increased risk of heart failure with preserved ejection fraction. Eur J Prev Cardiol. 2019;26(15):1594–602. https://doi.org/10.1177/2047487319851298.

    Article  PubMed  Google Scholar 

  17. Russo C, Jin Z, Homma S, Rundek T, Elkind MS, Sacco RL, et al. Effect of obesity and overweight on left ventricular diastolic function: a community-based study in an elderly cohort. J Am Coll Cardiol. 2011;57(12):1368–74. https://doi.org/10.1016/j.jacc.2010.10.042.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012;126(1):65–75. https://doi.org/10.1161/CIRCULATIONAHA.111.080770.

    Article  PubMed  Google Scholar 

  19. •• Stolfo D, Uijl A, Vedin O, Strömberg A, Faxén UL, Rosano GMC, et al. Sex-Based Differences in Heart Failure Across the Ejection Fraction Spectrum: Phenotyping, and Prognostic and Therapeutic Implications. JACC Heart Fail. 2019;7(6):505–15. https://doi.org/10.1016/j.jchf.2019.03.011Recent data from the Swedish Heart Failure Registry confirm that in contrast to HFrEF HFpEF affect predominantly women.

    Article  PubMed  Google Scholar 

  20. Salton CJ, Chuang ML, O'Donnell CJ, Kupka MJ, Larson MG, Kissinger KV, et al. Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. J Am Coll Cardiol. 2002;39(6):1055–60. https://doi.org/10.1016/s0735-1097(02)01712-6.

    Article  PubMed  Google Scholar 

  21. Gori M, Lam CS, Gupta DK, Santos AB, Cheng S, Shah AM, et al. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(5):535–42. https://doi.org/10.1002/ejhf.67.

    Article  PubMed  Google Scholar 

  22. Pandey A, Omar W, Ayers C, LaMonte M, Klein L, Allen NB, et al. Sex and race differences in lifetime risk of heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Circulation. 2018;137(17):1814–23. https://doi.org/10.1161/CIRCULATIONAHA.117.031622.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14(10):591–602. https://doi.org/10.1038/nrcardio.2017.65.

    Article  PubMed  Google Scholar 

  24. Ho JE, Enserro D, Brouwers FP, Kizer JR, Shah SJ, Psaty BM, et al. Predicting heart failure with preserved and reduced ejection fraction: The International Collaboration on Heart Failure Subtypes. Circ Heart Fail. 2016;9(6). https://doi.org/10.1161/CIRCHEARTFAILURE.115.003116.

  25. Tadic M, Cuspidi C, Plein S, Belyavskiy E, Heinzel F, Galderisi M. Sex and heart failure with preserved ejection fraction: from pathophysiology to clinical studies. J Clin Med. 2019;8(6). https://doi.org/10.3390/jcm8060792.

  26. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492. https://doi.org/10.1161/CIR.0000000000000558.

    Article  PubMed  Google Scholar 

  27. Drazner MH, Dries DL, Peshock RM, Cooper RS, Klassen C, Kazi F, et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension. 2005;46(1):124–9. https://doi.org/10.1161/01.HYP.0000169972.96201.8e.

    Article  CAS  PubMed  Google Scholar 

  28. Morris AA, Patel RS, Binongo JN, Poole J, Al Mheid I, Ahmed Y, et al. Racial differences in arterial stiffness and microcirculatory function between Black and White Americans. J Am Heart Assoc. 2013;2(2):e002154. https://doi.org/10.1161/JAHA.112.002154.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krishnamoorthy A, Greiner MA, Bertoni AG, Eapen ZJ, O'Brien EC, Curtis LH, et al. The obesity and heart failure epidemics among African Americans: insights from the Jackson Heart Study. J Card Fail. 2016;22(8):589–97. https://doi.org/10.1016/j.cardfail.2016.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Buffington CK, Marema RT. Ethnic differences in obesity and surgical weight loss between African-American and Caucasian females. Obes Surg. 2006;16(2):159–65. https://doi.org/10.1381/096089206775565258.

    Article  PubMed  Google Scholar 

  31. Eaton CB, Pettinger M, Rossouw J, Martin LW, Foraker R, Quddus A, et al. Risk factors for incident hospitalized heart failure with preserved versus reduced ejection fraction in a multiracial cohort of postmenopausal women. Circ Heart Fail. 2016;9(10). https://doi.org/10.1161/CIRCHEARTFAILURE.115.002883.

  32. East MA, Peterson ED, Shaw LK, Gattis WA, O'Connor CM. Racial differences in the outcomes of patients with diastolic heart failure. Am Heart J. 2004;148(1):151–6. https://doi.org/10.1016/j.ahj.2004.01.017.

    Article  PubMed  Google Scholar 

  33. Lekavich CL, Barksdale DJ. A critical evaluation of the representation of black patients with heart failure and preserved ejection fraction in clinical trials: a literature review. J Cardiovasc Nurs. 2016;31(3):202–8. https://doi.org/10.1097/JCN.0000000000000237.

    Article  PubMed  Google Scholar 

  34. Goyal P, Paul T, Almarzooq ZI, Peterson JC, Krishnan U, Swaminathan RV, et al. Sex- and race-related differences in characteristics and outcomes of hospitalizations for heart failure with preserved ejection fraction. J Am Heart Assoc. 2017;6(4). https://doi.org/10.1161/JAHA.116.003330.

  35. Vivo RP, Krim SR, Liang L, Neely M, Hernandez AF, Eapen ZJ, et al. Short- and long-term rehospitalization and mortality for heart failure in 4 racial/ethnic populations. J Am Heart Assoc. 2014;3(5):e001134. https://doi.org/10.1161/JAHA.114.001134.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71. https://doi.org/10.1016/j.jacc.2013.02.092.

    Article  PubMed  Google Scholar 

  37. •• Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, et al. Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2016;4(4):312–24. https://doi.org/10.1016/j.jchf.2015.10.007Human and experimental data that link HFpEF to coronary microvascular endothelial activation and oxidative stress.

    Article  PubMed  Google Scholar 

  38. Després JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126(10):1301–13. https://doi.org/10.1161/CIRCULATIONAHA.111.067264.

    Article  PubMed  Google Scholar 

  39. Rubin R. Postmenopausal women with a “normal” BMI might be overweight or even obese. JAMA. 2018;319(12):1185–7. https://doi.org/10.1001/jama.2018.0423.

    Article  PubMed  Google Scholar 

  40. Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame JE, Das SR, et al. Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging. 2013;6(5):800–7. https://doi.org/10.1161/CIRCIMAGING.113.000532.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Abbasi SA, Hundley WG, Bluemke DA, Jerosch-Herold M, Blankstein R, Petersen SE, et al. Visceral adiposity and left ventricular remodeling: the multi-ethnic study of atherosclerosis. Nutr Metab Cardiovasc Dis. 2015;25(7):667–76. https://doi.org/10.1016/j.numecd.2015.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Simone G, Izzo R, De Luca N, Gerdts E. Left ventricular geometry in obesity: is it what we expect? Nutr Metab Cardiovasc Dis. 2013;23(10):905–12. https://doi.org/10.1016/j.numecd.2013.06.012.

    Article  PubMed  Google Scholar 

  43. Rao VN, Zhao D, Allison MA, Guallar E, Sharma K, Criqui MH, et al. Adiposity and incident heart failure and its subtypes: MESA (multi-ethnic study of atherosclerosis). JACC Heart Fail. 2018;6(12):999–1007. https://doi.org/10.1016/j.jchf.2018.07.009.

    Article  PubMed  PubMed Central  Google Scholar 

  44. •• Tsujimoto T, Kajio H. Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol. 2017;70(22):2739–49. https://doi.org/10.1016/j.jacc.2017.09.1111Analysis of TOPCAT indicates that the amount of abdominal obesity; i.e., visceral adipose tiissue plays an essential role in the clinical outcome of HFpEF.

    Article  PubMed  Google Scholar 

  45. Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–7. https://doi.org/10.1038/nature05488.

    Article  CAS  PubMed  Google Scholar 

  46. Blackburn P, Després JP, Lamarche B, Tremblay A, Bergeron J, Lemieux I, et al. Postprandial variations of plasma inflammatory markers in abdominally obese men. Obesity (Silver Spring). 2006;14(10):1747–54. https://doi.org/10.1038/oby.2006.201.

    Article  CAS  Google Scholar 

  47. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282(22):2131–5. https://doi.org/10.1001/jama.282.22.2131.

    Article  CAS  PubMed  Google Scholar 

  48. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116(11):1234–41. https://doi.org/10.1161/CIRCULATIONAHA.107.710509.

    Article  CAS  PubMed  Google Scholar 

  49. Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV, et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 2014;20(1):103–18. https://doi.org/10.1016/j.cmet.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  50. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84. https://doi.org/10.1172/JCI29881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13(11):633–43. https://doi.org/10.1038/nrendo.2017.90.

    Article  CAS  PubMed  Google Scholar 

  52. Lee YS, Wollam J, Olefsky JM. An integrated view of Immunometabolism. Cell. 2018;172(1–2):22–40. https://doi.org/10.1016/j.cell.2017.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 2014;19(1):162–71. https://doi.org/10.1016/j.cmet.2013.11.017.

    Article  CAS  PubMed  Google Scholar 

  54. Schlecht I, Fischer B, Behrens G, Leitzmann MF. Relations of visceral and abdominal subcutaneous adipose tissue, body mass index, and waist circumference to serum concentrations of parameters of chronic inflammation. Obes Facts. 2016;9(3):144–57. https://doi.org/10.1159/000443691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khera A, Vega GL, Das SR, Ayers C, McGuire DK, Grundy SM, et al. Sex differences in the relationship between C-reactive protein and body fat. J Clin Endocrinol Metab. 2009;94(9):3251–8. https://doi.org/10.1210/jc.2008-2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Denis GV, Sebastiani P, Bertrand KA, Strissel KJ, Tran AH, Slama J, et al. Inflammatory signatures distinguish metabolic health in African American women with obesity. PLoS One. 2018;13(5):e0196755. https://doi.org/10.1371/journal.pone.0196755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DeBerge M, Shah SJ, Wilsbacher L, Thorp EB. Macrophages in heart failure with reduced versus preserved ejection fraction. Trends Mol Med. 2019;25(4):328–40. https://doi.org/10.1016/j.molmed.2019.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paulus WJ. Unfolding discoveries in heart failure. N Engl J Med. 2020;382(7):679–82. https://doi.org/10.1056/NEJMcibr1913825.

    Article  PubMed  Google Scholar 

  59. Mohammed SF, Hussain I, AbouEzzeddine OF, Abou Ezzeddine OF, Takahama H, Kwon SH, et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 2014;130(25):2310–20. https://doi.org/10.1161/CIRCULATIONAHA.113.008461.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zeng H, Chen JX. Microvascular rarefaction and heart failure with preserved ejection fraction. Front Cardiovasc Med. 2019;6:15. https://doi.org/10.3389/fcvm.2019.00015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bajaj NS, Osborne MT, Gupta A, Tavakkoli A, Bravo PE, Vita T, et al. Coronary microvascular dysfunction and cardiovascular risk in obese patients. J Am Coll Cardiol. 2018;72(7):707–17. https://doi.org/10.1016/j.jacc.2018.05.049.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zylke JW, Bauchner H. The unrelenting challenge of obesity. JAMA. 2016;315(21):2277–8. https://doi.org/10.1001/jama.2016.6190.

    Article  CAS  PubMed  Google Scholar 

  63. •• Maslov PZ, Kim JK, Argulian E, Ahmadi A, Narula N, Singh M, et al. Is Cardiac Diastolic Dysfunction a Part of Post-Menopausal Syndrome? JACC Heart Fail. 2019;7(3):192–203. https://doi.org/10.1016/j.jchf.2018.12.018Post-menopausal women gain a lot of weight that, in addition to estrogen deficiency, leads to the development and progression of HFpEF.

    Article  PubMed  Google Scholar 

  64. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail. 2011;4(3):324–31. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959890.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Foppa M, Arora G, Gona P, Ashrafi A, Salton CJ, Yeon SB, et al. Right ventricular volumes and systolic function by cardiac magnetic resonance and the impact of sex, age, and obesity in a longitudinally followed cohort free of pulmonary and cardiovascular disease: the Framingham Heart Study. Circ Cardiovasc Imaging. 2016;9(3):e003810. https://doi.org/10.1161/CIRCIMAGING.115.003810.

    Article  PubMed  Google Scholar 

  66. McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 2001;104(23):2797–802. https://doi.org/10.1161/hc4801.100076.

    Article  CAS  PubMed  Google Scholar 

  67. Reddy YNV, Lewis GD, Shah SJ, Obokata M, Abou-Ezzedine OF, Fudim M, et al. Characterization of the obese phenotype of heart failure with preserved ejection fraction: a RELAX trial ancillary study. Mayo Clin Proc. 2019;94(7):1199–209. https://doi.org/10.1016/j.mayocp.2018.11.037.

    Article  PubMed  Google Scholar 

  68. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. •• Tromp J, MacDonald MR, Tay WT, Teng TK, Hung CL, Narasimhan C, et al. Heart failure with preserved ejection fraction in the young. Circulation. 2018;138(24):2763–73. https://doi.org/10.1161/CIRCULATIONAHA.118.034720The distinctive features of HFpEF in middle-aged patients are outlined for the first time. Middle-aged patients were twice more likely to be obese than elderly patients with HFpEF in the Asian sudden death in heart failure (ASIAN-HF) registry.

    Article  PubMed  Google Scholar 

  70. •• Tromp J, Shen L, Jhund PS, Anand IS, Carson PE, Desai AS, et al. Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. J Am Coll Cardiol. 2019;74(5):601–12. https://doi.org/10.1016/j.jacc.2019.05.052Younger patients with HFpEF were also more likely to be obese than elderly patients in the I-PRESERVE (Irbesartan in heart failure with preserved systolic function and CHARM (Candesartan cilexetil in heart failure assessment of reduction of mortality and morbidity) trials.

    Article  PubMed  Google Scholar 

  71. Powell-Wiley TM, Ngwa J, Kebede S, Lu D, Schulte PJ, Bhatt DL, et al. Impact of body mass index on heart failure by race/ethnicity from the get with the guidelines-heart failure (GWTG-HF) registry. JACC Heart Fail. 2018;6(3):233–42. https://doi.org/10.1016/j.jchf.2017.11.011.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York heart failure registry. J Am Coll Cardiol. 2004;43(8):1432–8. https://doi.org/10.1016/j.jacc.2003.11.040.

    Article  PubMed  Google Scholar 

  73. Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49(2):198–207. https://doi.org/10.1016/j.jacc.2006.08.050.

    Article  PubMed  Google Scholar 

  74. Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5(1). doi:https://doi.org/10.1161/JAHA.115.002477.

  75. Susmallian S, Raziel A, Barnea R, Paran H. Bariatric surgery in older adults: should there be an age limit? Medicine (Baltimore). 2019;98(3):e13824. https://doi.org/10.1097/MD.0000000000013824.

    Article  Google Scholar 

  76. Persson CE, Björck L, Lagergren J, Lappas G, Giang KW, Rosengren A. Risk of heart failure in obese patients with and without bariatric surgery in Sweden-a registry-based study. J Card Fail. 2017;23(7):530–7. https://doi.org/10.1016/j.cardfail.2017.05.005.

    Article  PubMed  Google Scholar 

  77. Sundström J, Bruze G, Ottosson J, Marcus C, Näslund I, Neovius M. Weight loss and heart failure: a nationwide study of gastric bypass surgery versus intensive lifestyle treatment. Circulation. 2017;135(17):1577–85. https://doi.org/10.1161/CIRCULATIONAHA.116.025629.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Benotti PN, Wood GC, Carey DJ, Mehra VC, Mirshahi T, Lent MR, et al. Gastric bypass surgery produces a durable reduction in cardiovascular disease risk factors and reduces the long-term risks of congestive heart failure. J Am Heart Assoc. 2017;6(5). https://doi.org/10.1161/JAHA.116.005126.

  79. Kindel TL, Strande JL. Bariatric surgery as a treatment for heart failure: review of the literature and potential mechanisms. Surg Obes Relat Dis. 2018;14(1):117–22. https://doi.org/10.1016/j.soard.2017.09.534.

    Article  PubMed  Google Scholar 

  80. Vest AR. Has the time come to be more aggressive with bariatric surgery in obese patients with chronic systolic heart failure? Curr Heart Fail Rep. 2018;15(3):171–80. https://doi.org/10.1007/s11897-018-0390-z.

    Article  CAS  PubMed  Google Scholar 

  81. de las Fuentes L, Waggoner AD, Mohammed BS, Stein RI, Miller BV, Foster GD, et al. Effect of moderate diet-induced weight loss and weight regain on cardiovascular structure and function. J Am Coll Cardiol. 2009;54(25):2376–81. https://doi.org/10.1016/j.jacc.2009.07.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rider OJ, Francis JM, Ali MK, Petersen SE, Robinson M, Robson MD, et al. Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity. J Am Coll Cardiol. 2009;54(8):718–26. https://doi.org/10.1016/j.jacc.2009.02.086.

    Article  PubMed  Google Scholar 

  83. Le Jemtel TH, Samson R, Jaiswal A, Lewine EB, Oparil S. Regression of left ventricular mass after bariatric surgery. Curr Hypertens Rep. 2017;19(9):68. https://doi.org/10.1007/s11906-017-0767-5.

    Article  PubMed  Google Scholar 

  84. Grapsa J, Tan TC, Paschou SA, Kalogeropoulos AS, Shimony A, Kaier T, et al. The effect of bariatric surgery on echocardiographic indices: a review of the literature. Eur J Clin Investig. 2013;43(11):1224–30. https://doi.org/10.1111/eci.12162.

    Article  Google Scholar 

  85. Alpert MA, Omran J, Mehra A, Ardhanari S. Impact of obesity and weight loss on cardiac performance and morphology in adults. Prog Cardiovasc Dis. 2014;56(4):391–400. https://doi.org/10.1016/j.pcad.2013.09.003.

    Article  PubMed  Google Scholar 

  86. Ashrafian H, le Roux CW, Darzi A, Athanasiou T. Effects of bariatric surgery on cardiovascular function. Circulation. 2008;118(20):2091–102. https://doi.org/10.1161/CIRCULATIONAHA.107.721027.

    Article  PubMed  Google Scholar 

  87. Kurnicka K, Domienik-Karłowicz J, Lichodziejewska B, Bielecki M, Kozłowska M, Goliszek S, et al. Improvement of left ventricular diastolic function and left heart morphology in young women with morbid obesity six months after bariatric surgery. Cardiol J. 2018;25(1):97–105. https://doi.org/10.5603/CJ.a2017.0059.

    Article  PubMed  Google Scholar 

  88. Leung M, Xie M, Durmush E, Leung DY, Wong VW. Weight loss with sleeve gastrectomy in obese type 2 diabetes mellitus: impact on cardiac function. Obes Surg. 2016;26(2):321–6. https://doi.org/10.1007/s11695-015-1748-x.

    Article  PubMed  Google Scholar 

  89. Owan T, Avelar E, Morley K, Jiji R, Hall N, Krezowski J, et al. Favorable changes in cardiac geometry and function following gastric bypass surgery: 2-year follow-up in the Utah obesity study. J Am Coll Cardiol. 2011;57(6):732–9. https://doi.org/10.1016/j.jacc.2010.10.017.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Aggarwal R, Harling L, Efthimiou E, Darzi A, Athanasiou T, Ashrafian H. The effects of bariatric surgery on cardiac structure and function: a systematic review of cardiac imaging outcomes. Obes Surg. 2016;26(5):1030–40. https://doi.org/10.1007/s11695-015-1866-5.

    Article  PubMed  Google Scholar 

  91. Cuspidi C, Rescaldani M, Tadic M, Sala C, Grassi G. Effects of bariatric surgery on cardiac structure and function: a systematic review and meta-analysis. Am J Hypertens. 2014;27(2):146–56. https://doi.org/10.1093/ajh/hpt215.

    Article  PubMed  Google Scholar 

  92. Garza CA, Pellikka PA, Somers VK, Sarr MG, Collazo-Clavell ML, Korenfeld Y, et al. Structural and functional changes in left and right ventricles after major weight loss following bariatric surgery for morbid obesity. Am J Cardiol. 2010;105(4):550–6. https://doi.org/10.1016/j.amjcard.2009.09.057.

    Article  PubMed  Google Scholar 

  93. Algahim MF, Lux TR, Leichman JG, Boyer AF, Miller CC, Laing ST, et al. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am J Med. 2010;123(6):549–55. https://doi.org/10.1016/j.amjmed.2009.11.020.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mikhalkova D, Holman SR, Jiang H, Saghir M, Novak E, Coggan AR, et al. Bariatric surgery-induced cardiac and lipidomic changes in obesity-related heart failure with preserved ejection fraction. Obesity (Silver Spring). 2018;26(2):284–90. https://doi.org/10.1002/oby.22038.

    Article  CAS  Google Scholar 

  95. Gaborit B, Jacquier A, Kober F, Abdesselam I, Cuisset T, Boullu-Ciocca S, et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol. 2012;60(15):1381–9. https://doi.org/10.1016/j.jacc.2012.06.016.

    Article  PubMed  Google Scholar 

  96. Lehmann S, Linder N, Retschlag U, Schaudinn A, Stange R, Garnov N, et al. MRI assessment of changes in adipose tissue parameters after bariatric surgery. PLoS One. 2018;13(11):e0206735. https://doi.org/10.1371/journal.pone.0206735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Otto M, Färber J, Haneder S, Michaely H, Kienle P, Hasenberg T. Postoperative changes in body composition--comparison of bioelectrical impedance analysis and magnetic resonance imaging in bariatric patients. Obes Surg. 2015;25(2):302–9. https://doi.org/10.1007/s11695-014-1382-z.

    Article  PubMed  Google Scholar 

  98. Meyer-Gerspach AC, Peterli R, Moor M, Madörin P, Schötzau A, Nabers D, et al. Quantification of liver, subcutaneous, and visceral adipose tissues by MRI before and after bariatric surgery. Obes Surg. 2019;29(9):2795–805. https://doi.org/10.1007/s11695-019-03897-2.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Toro-Ramos T, Goodpaster BH, Janumala I, Lin S, Strain GW, Thornton JC, et al. Continued loss in visceral and intermuscular adipose tissue in weight-stable women following bariatric surgery. Obesity (Silver Spring). 2015;23(1):62–9. https://doi.org/10.1002/oby.20932.

    Article  Google Scholar 

  100. Korner J, Punyanitya M, Taveras C, McMahon DJ, Kim HJ, Inabnet W, et al. Sex differences in visceral adipose tissue post-bariatric surgery compared to matched non-surgical controls. Int J Body Compos Res. 2008;6(3):93–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, Alcaraz-Tafalla MS, Aragón-Alonso A, Pascual-Díaz M, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5. https://doi.org/10.1007/s11695-012-0643-y.

    Article  PubMed  Google Scholar 

  102. Schmatz R, Bitencourt MR, Patias LD, Beck M, da C Alvarez G, Zanini D et al. Evaluation of the biochemical, inflammatory and oxidative profile of obese patients given clinical treatment and bariatric surgery. Clin Chim Acta 2017;465:72–79. doi:https://doi.org/10.1016/j.cca.2016.12.012.

  103. Williams DB, Hagedorn JC, Lawson EH, Galanko JA, Safadi BY, Curet MJ, et al. Gastric bypass reduces biochemical cardiac risk factors. Surg Obes Relat Dis. 2007;3(1):8–13. https://doi.org/10.1016/j.soard.2006.10.003.

    Article  PubMed  Google Scholar 

  104. Viana EC, Araujo-Dasilio KL, Miguel GP, Bressan J, Lemos EM, Moyses MR, et al. Gastric bypass and sleeve gastrectomy: the same impact on IL-6 and TNF-α. prospective clinical trial. Obes Surg. 2013;23(8):1252–61. https://doi.org/10.1007/s11695-013-0894-2.

    Article  PubMed  Google Scholar 

  105. Freitas WR, Oliveira LVF, Perez EA, Ilias EJ, Lottenberg CP, Silva AS, et al. Systemic inflammation in severe obese patients undergoing surgery for obesity and weight-related diseases. Obes Surg. 2018;28(7):1931–42. https://doi.org/10.1007/s11695-017-3104-9.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chiappetta S, Schaack HM, Wölnerhannsen B, Stier C, Squillante S, Weiner RA. The impact of obesity and metabolic surgery on chronic inflammation. Obes Surg. 2018;28(10):3028–40. https://doi.org/10.1007/s11695-018-3320-y.

    Article  PubMed  Google Scholar 

  107. Rao SR. Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm Res. 2012;61(8):789–807. https://doi.org/10.1007/s00011-012-0473-3.

    Article  CAS  PubMed  Google Scholar 

  108. Askarpour M, Khani D, Sheikhi A, Ghaedi E, Alizadeh S. Effect of bariatric surgery on serum inflammatory factors of obese patients: a systematic review and meta-analysis. Obes Surg. 2019;29(8):2631–47. https://doi.org/10.1007/s11695-019-03926-0.

    Article  PubMed  Google Scholar 

  109. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006;295(13):1539–48. https://doi.org/10.1001/jama.295.13.1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. •• Kraus WE, Bhapkar M, Huffman KM, Pieper CF, Krupa Das S, Redman LM, et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(9):673–83. https://doi.org/10.1016/S2213-8587(19)30151-2First demonstration of the beneficial effect of caloric restriction for 2 years on cardiometabolic risk factors in healthy, non-obese, young and middle-aged persons.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Romashkan SV, Das SK, Villareal DT, Ravussin E, Redman LM, Rochon J, et al. Safety of two-year caloric restriction in non-obese healthy individuals. Oncotarget. 2016;7(15):19124–33. https://doi.org/10.18632/oncotarget.8093.

    Article  PubMed  PubMed Central  Google Scholar 

  112. •• Redman LM, Smith SR, Burton JH, Martin CK, Il'yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018;27(4):805–15.e4. https://doi.org/10.1016/j.cmet.2018.02.019Sustained caloric restriction reduces oxidative damage and is thought to induce a slowing of energy metabolism that may delay aging and possibly increase life expectancy.

    Article  CAS  Google Scholar 

  113. Most J, Gilmore LA, Smith SR, Han H, Ravussin E, Redman LM. Significant improvement in cardiometabolic health in healthy nonobese individuals during caloric restriction-induced weight loss and weight loss maintenance. Am J Physiol Endocrinol Metab. 2018;314(4):E396–405. https://doi.org/10.1152/ajpendo.00261.2017.

    Article  CAS  PubMed  Google Scholar 

  114. Ard JD, Gower B, Hunter G, Ritchie CS, Roth DL, Goss A, et al. Effects of calorie restriction in obese older adults: the CROSSROADS randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2017;73(1):73–80. https://doi.org/10.1093/gerona/glw237.

    Article  PubMed  Google Scholar 

  115. Verheggen RJ, Maessen MF, Green DJ, Hermus AR, Hopman MT, Thijssen DH. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes Rev. 2016;17(8):664–90. https://doi.org/10.1111/obr.12406.

    Article  CAS  PubMed  Google Scholar 

  116. Ruiz JR, Lavie CJ, Ortega FB. Exercise versus pharmacological interventions for reducing visceral adiposity and improving health outcomes. Mayo Clin Proc. 2019;94(2):182–5. https://doi.org/10.1016/j.mayocp.2018.12.018.

    Article  PubMed  Google Scholar 

  117. Meyer TE, Kovács SJ, Ehsani AA, Klein S, Holloszy JO, Fontana L. Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol. 2006;47(2):398–402. https://doi.org/10.1016/j.jacc.2005.08.069.

    Article  CAS  PubMed  Google Scholar 

  118. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315(1):36–46. https://doi.org/10.1001/jama.2015.17346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry H. Le Jemtel.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclosures

The authors report no financial relationships or conflicts of interest regarding the content herein. No funding sources to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayinapudi, K., Samson, R., Le Jemtel, T.H. et al. Weight Reduction for Obesity-Induced Heart Failure with Preserved Ejection Fraction. Curr Hypertens Rep 22, 47 (2020). https://doi.org/10.1007/s11906-020-01074-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01074-w

Keywords

Navigation