Skip to main content
Log in

Arterial Distensibility, Physical Activity, and the Metabolic Syndrome

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metabolic syndrome (MetS), a cluster of risk factors including central obesity, metabolic abnormalities, and arterial hypertension, is a well-known determinant of arterial wall remodeling and stiffening. The mechanisms whereby MetS promotes arterial stiffening include increased sympathetic activity with the associated fast heart rate, enhanced activity of the renin-angiotensin-aldosterone system, increased production of inflammatory cytokines and reactive oxygen species, and reduction of nitric oxide availability. These adverse effects can explain why aerobic physical activity can retard the age-related decline in arterial elasticity in subjects with MetS.

Recent Findings

A large number of studies have shown that in patients with MetS, exercise can reduce body weight and blood pressure and improve the metabolic profile. In addition, regular exercise training can counterbalance the detrimental effects of MetS by reducing sympathetic activity and improving endothelial function with a beneficial effect on arterial elasticity. Indeed, the majority of published data have shown a favorable effect of aerobic exercise on pulse wave velocity, augmentation index, central blood pressure, and small artery compliance.

Summary

Special attention should be paid by clinicians to people with MetS in whom the adverse effect of metabolic disturbances on arterial structure and function can be offset by a program of physical training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

    Article  PubMed  CAS  Google Scholar 

  2. Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366:1059–62.

    Article  PubMed  Google Scholar 

  3. Ford ES, Giles WH. A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care. 2003;26:575–81.

    Article  PubMed  Google Scholar 

  4. Slivovskaja I, Ryliskyte L, Serpytis P, Navickas R, Badarienė J, Celutkiene J, et al. Aerobic training effect on arterial stiffness in metabolic syndrome. Am J Med. 2018;131:148–55.

    Article  PubMed  Google Scholar 

  5. Scuteri A, Najjar SS, Muller DC, Andres R, Hougaku H, Metter EJ, et al. Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness. J Am Coll Cardiol. 2004;43:1388–95.

    Article  PubMed  Google Scholar 

  6. Scuteri A, Cunha PG, Rosei EA, Badariere J, Bekaert S, Cockcroft JR, et al. Arterial stiffness and influences of the metabolic syndrome: a cross-countries study. Atherosclerosis. 2014;233:654–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. •• Lopes-Vicente WRP, Rodrigues S, Cepeda FX, et al. Arterial stiffness and its association with clustering of metabolic syndrome risk factors. Diabetol Metab Syndr. 2017;9:87. This study performed in subjects in the early stage of metabolic syndrome showed increased arterial stiffness in this condition. The risk was found to increase with increasing number of the components of the metabolic syndrome.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim M, Kim M, Yoo HJ, Lee SY, Lee SH, Lee JH. Age-specific determinants of pulse wave velocity among metabolic syndrome components, inflammatory markers, and oxidative stress. J Atheroscler Thromb. 2018;25:178–85.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Joo HJ, Cho SA, Cho JY, Lee S, Park JH, Yu CW, et al. Different relationship between physical activity, arterial stiffness, and metabolic status in obese subjects. J Phys Act Health. 2017;14:716–25.

    Article  PubMed  Google Scholar 

  10. •• Ashor AW, Lara J, Siervo M, et al. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PloS one. 2014;9:e110034. This meta-analysis of forty-two studies compared the effect of aerobic and resistance exercise lasting ≥4 weeks on arterial stiffness, demonstrating an improvement of PWV and AIx only with aerobic training.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. •• Mora-Rodriguez R, Ramirez-Jimenez M, Fernandez-Elias VE, et al. Effects of aerobic interval training on arterial stiffness and microvascular function in patients with metabolic syndrome. J Clin Hypertens. 2018;20:11–8. The authors determined the effect of high-intensity aerobic interval training on arterial stiffness and microvascular dysfunction in patients with metabolic syndrome demonstrating that 6 months of aerobic exercise were able to reduce both arterial stiffness and microvascular dysfunction.

    Article  CAS  Google Scholar 

  12. Donley DA, Fournier SB, Reger BL, DeVallance E, Bonner DE, Olfert IM, et al. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol. 2014;116:1396–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mancia G, De Backer G, Dominiczak A, et al. Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25:1105–87.

    Article  PubMed  CAS  Google Scholar 

  14. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  PubMed  CAS  Google Scholar 

  15. Whelton PK, Carey RM, Aronow WS, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2017.

  16. McEniery CM, Yasmin, Hall IR, et al. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46:1753–60.

    Article  PubMed  Google Scholar 

  17. Wilkinson IB, Mohammad NH, Tyrrell S, Hall IR, Webb DJ, Paul VE, et al. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens. 2002;15:24–30.

    Article  PubMed  Google Scholar 

  18. Vlachopoulos C, Aznaouridis K, O’Rourke MF, et al. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  PubMed  Google Scholar 

  19. Janner JH, Godtfredsen NS, Ladelund S, Vestbo J, Prescott E. High aortic augmentation index predicts mortality and cardiovascular events in men from a general population, but not in women. Eur J Prev Cardiol. 2013;20:1005–12.

    Article  PubMed  Google Scholar 

  20. Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  21. Nichols W, O’Rourke MF, editors. McDonalds’ blood flow in arteries: theoretical, experimental and clinical principles. 5th ed. Oxford: Oxford University Press; 2005.

    Google Scholar 

  22. Roman MJ, Okin PM, Kizer JR, Lee ET, Howard BV, Devereux RB. Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: the Strong Heart Study. J Hypertens. 2010;28:384–8.

    Article  PubMed  CAS  Google Scholar 

  23. Saladini F, Mos L, Casiglia E, Malipiero G, Mazzer A, Palatini P. Central blood pressure is an independent predictor of future hypertension in young to middle-aged stage 1 hypertensives. Blood Press. 2013;22:9–16.

    Article  PubMed  Google Scholar 

  24. Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Loster M, et al. Pulsatile but not steady component of blood pressure predicts cardiovascular events in coronary patients. Hypertension. 2008;51:848–55.

    Article  PubMed  CAS  Google Scholar 

  25. Cohen DL, Townsend RR. Central blood pressure and chronic kidney disease progression. Int J Nephrol. 2011;2011:407801.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens. 1998;16:2079–84.

    Article  PubMed  CAS  Google Scholar 

  27. Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, et al. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens. 2001;19:1037–44.

    Article  PubMed  Google Scholar 

  28. McEniery CM, Yasmin, Maki-Petaja KM, et al. The impact of cardiovascular risk factors on aortic stiffness and wave reflections depends on age: the Anglo-Cardiff collaborative trial (ACCT III). Hypertension. 2010;56:591–7.

    Article  PubMed  CAS  Google Scholar 

  29. • Terentes-Printzios D, Vlachopoulos C, Xaplanteris P, et al. Cardiovascular risk factors accelerate progression of vascular aging in the general population: results from the CRAVE Study (Cardiovascular Risk Factors Affecting Vascular Age). Hypertension. 2017;70:1057–64. In this general population study, the authors observed that numerous risk factors were associated with accelerated deterioration of specific indices of vascular aging, such as pulse wave velocity and augmentation index.

    Article  PubMed  CAS  Google Scholar 

  30. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54:1328–36.

    Article  PubMed  CAS  Google Scholar 

  31. Li H, Srinivasan SR, Berenson GS. Comparison of the measures of pulsatile arterial function between asymptomatic younger adult smokers and former smokers: the Bogalusa Heart Study. Am J Hypertens. 2006;19:897–901.

    Article  PubMed  Google Scholar 

  32. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure amplification. Hypertension. 2003;41:183–7.

    Article  PubMed  CAS  Google Scholar 

  33. Saladini F, Benetti E, Fania C, Mos L, Casiglia E, Palatini P. Effects of smoking on central blood pressure and pressure amplification in hypertension of the young. Vasc Med. 2016;21:422–8.

    Article  PubMed  Google Scholar 

  34. Schram MT, Henry RM, van Dijk RA, et al. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: the Hoorn Study. Hypertension. 2004;43:176–81.

    Article  PubMed  CAS  Google Scholar 

  35. Ho CT, Lin CC, Hsu HS, Liu CS, Davidson LE, Li TC, et al. Arterial stiffness is strongly associated with insulin resistance in Chinese; a population-based study (Taichung Community Health Study, TCHS). J Atheroscler Thromb. 2011;18:122–30.

    Article  PubMed  CAS  Google Scholar 

  36. Brillante DG, O’Sullivan AJ, Howes LG. Arterial stiffness in insulin resistance: the role of nitric oxide and angiotensin II receptors. Vasc Health Risk Manag. 2009;5:73–8.

    PubMed  PubMed Central  Google Scholar 

  37. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1998;318:1315–21.

    Google Scholar 

  38. Park S, Park JB, Lakatta EG. Association of central hemodynamics with estimated 24-h urinary sodium in patients with hypertension. J Hypertens. 2011;29:1502–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ni Z, Vaziri ND. Effect of salt loading on nitric oxide synthase expression in normotensive rats. Am J Hypertens. 2001;14:155–63.

    Article  PubMed  CAS  Google Scholar 

  40. • D’Elia L, Galletti F, La Fata E, et al. Effect of dietary sodium restriction on arterial stiffness: systematic review and meta-analysis of the randomized controlled trials. J Hypertens. 2018;36:734–43. In this meta-analysis the authors explored the effect of high sodium intake on arterial stiffness.

    Article  PubMed  CAS  Google Scholar 

  41. Todd AS, Macginley RJ, Schollum JB, et al. Dietary salt loading impairs arterial vascular reactivity. Am J Clin Nutr. 2010;91:557–64.

    Article  PubMed  CAS  Google Scholar 

  42. Jablonski KL, Fedorova OV, Racine ML, Geolfos CJ, Gates PE, Chonchol M, et al. Dietary sodium restriction and association with urinary marinobufagenin, blood pressure, and aortic stiffness. Clin J Am Soc Nephrol. 2013;8:1952–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nilsson PM. Arterial stiffness, the metabolic syndrome, and the brain. Am J Hypertens. 2017;31:24–6.

    Article  PubMed  Google Scholar 

  44. Scuteri A, Najjar SS, Orru’ M, Usala G, Piras MG, Ferrucci L, et al. The central arterial burden of the metabolic syndrome is similar in men and women: the SardiNIA Study. Eur Heart J. 2010;31:602–13.

    Article  PubMed  Google Scholar 

  45. •• Topouchian J, Labat C, Gautier S, et al. Effects of metabolic syndrome on arterial function in different age groups: the Advanced Approach to Arterial Stiffness study. J Hypertens. 2018;35:000–000. This large prospective multicentre study investigated the effects of age and of the different metabolic syndrome components on arterial stiffness.

  46. van den Munckhof ICL, Holewijn S, de Graaf J, Rutten JHW. Sex differences in fat distribution influence the association between BMI and arterial stiffness. J Hypertens. 2017;35:1219–25.

    Article  PubMed  CAS  Google Scholar 

  47. Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, et al. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the aerobics center longitudinal study. Circulation. 2011;124:2483–90.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O’Keefe JH, et al. Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J. 2013;77:281–92.

    Article  PubMed  Google Scholar 

  49. Franco OH, de Laet C, Peeters A, Jonker J, Mackenbach J, Nusselder W. Effects of physical activity on life expectancy with cardiovascular disease. Arch Intern Med. 2005;165:2355–60.

    Article  PubMed  Google Scholar 

  50. American Diabetes Association. Standards of Medical Care in Diabetes—2016. Diabetes Care. 2016;39(Suppl. 1):S1–S111.

    Google Scholar 

  51. Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;64:1929–49.

    Article  PubMed  Google Scholar 

  52. Palatini P, Graniero G, Mormino P, et al. Relation between physical training and ambulatory blood pressure in stage I hypertensive subjects. Results of the HARVEST trial. Circulation. 1994;90:2870–6.

    Article  PubMed  CAS  Google Scholar 

  53. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75.

    Article  PubMed  CAS  Google Scholar 

  54. Fagard RH. Exercise therapy in hypertensive cardiovascular disease. Prog Cardiovasc Dis. 2011;53:404–11.

    Article  PubMed  Google Scholar 

  55. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Theodore RF, Broadbent J, Nagin D, Ambler A, Hogan S, Ramrakha S, et al. Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension. 2015;66:1108–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Saladini F, Benetti E, Mos L, Mazzer A, Casiglia E, Palatini P. Regular physical activity is associated with improved small artery distensibility in young to middle-age stage 1 hypertensives. Vasc Med. 2014;19:458–64.

    Article  PubMed  Google Scholar 

  58. Tan I, Spronck B, Kiat H, Barin E, Reesink KD, Delhaas T, et al. Heart rate dependency of large artery stiffness. Hypertension. 2016;68:236–42.

    Article  PubMed  CAS  Google Scholar 

  59. Tomiyama H, Hashimoto H, Tanaka H, Matsumoto C, Odaira M, Yamada J, et al. Synergistic relationship between changes in the pulse wave velocity and changes in the heart rate in middle-aged Japanese adults: a prospective study. J Hypertens. 2010;28:687–94.

    Article  PubMed  CAS  Google Scholar 

  60. Benetos A, Adamopoulos C, Bureau JM, Temmar M, Labat C, Bean K, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002;105:1202–7.

    Article  PubMed  Google Scholar 

  61. Courand PY, Lantelme P. Significance, prognostic value and management of heart rate in hypertension. Arch Cardiovasc Dis. 2014;107:48–57.

    Article  PubMed  Google Scholar 

  62. Messerli FH, Rimoldi SF, Bangalore S, Bavishi C, Laurent S. When an increase in central systolic pressure overrides the benefits of heart rate lowering. J Am Coll Cardiol. 2016;68:754–62.

    Article  PubMed  Google Scholar 

  63. • Palatini P, Saladini F, Mos L, et al. Low night-time heart rate is longitudinally associated with lower augmentation index and central systolic blood pressure in hypertension. Eur J Appl Physiol. 2018;118:543–55. This study investigated the cross-sectional and longitudinal effect of heart rate on different arterial distensibility parameters.

    Article  PubMed  Google Scholar 

  64. Dao HH, McMartens F, Zaor A, de Champlain J, Moreau P. Role of endothelin in the hypertrophic remodeling of small arteries induced by exogenous norepinephrine. Arch Mal Coeur Vaiss. 1999;92:1059–62.

    PubMed  CAS  Google Scholar 

  65. Green DJ. Exercise training as vascular medicine: direct impacts on the vasculature in humans. Exerc Sport Sci Rev. 2009;37:196–202.

    PubMed  Google Scholar 

  66. Maeda S, Sugawara J, Yoshizawa M, Otsuki T, Shimojo N, Jesmin S, et al. Involvement of endothelin-1 in habitual exercise-induced increase in arterial compliance. Acta Physiol (Oxf). 2009;196:223–9.

    Article  CAS  Google Scholar 

  67. Tolezani EC, Costa-Hong V, Correia G, Mansur AJ, Drager LF, Bortolotto LA. Determinants of functional and structural properties of large arteries in healthy individuals. Arq Bras Cardiol. 2014;103:426–32.

    PubMed  PubMed Central  Google Scholar 

  68. Pasha EP, Birdsill AC, Oleson S, Haley AP, Tanaka H. Physical activity mitigates adverse effect of metabolic syndrome on vessels and brain. Brain Imaging Behav. 2018; https://doi.org/10.1007/s11682-018-9830-3.

  69. Bohn L, Ramoa A, Silva G, Silva N, Abreu SM, Ribeiro F, et al. Sedentary behavior and arterial stiffness in adults with and without metabolic syndrome. Int J Sports Med. 2017;38:396–401.

    Article  PubMed  Google Scholar 

  70. Koskinen J, Magnussen CG, Taittonen L, Rasanen L, Mikkila V, Laitinen T, et al. Arterial structure and function after recovery from the metabolic syndrome: the cardiovascular risk in Young Finns Study. Circulation. 2010;121:392–400.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Palatini.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saladini, F., Palatini, P. Arterial Distensibility, Physical Activity, and the Metabolic Syndrome. Curr Hypertens Rep 20, 39 (2018). https://doi.org/10.1007/s11906-018-0837-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0837-3

Keywords

Navigation