Skip to main content

Effects of Regular Exercise on Arterial Stiffness

  • Chapter
Effects of Exercise on Hypertension

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Cardiovascular disease is the number one cause of deaths in most industrialized countries. The most prominent change in the blood vessels that can contribute to the prevalence of cardiovascular disease is the stiffening or hardening of arteries. Regular physical activity has been recommended as a lifestyle modification for cardiovascular disease. Aerobic (endurance) exercise and resistance (strength) exercise training appear to exert distinct effects on the arterial elasticity. Regular aerobic exercise is effective in preventing and reversing arterial stiffening associated with aging. Endurance training-induced increases in arterial compliance are mediated, at least in part, through the removal of chronic restraint provided by vasoconstrictor tone, and multiple mechanisms are likely involved in the destiffening process. In contrast to the effects of aerobic exercise, an intervention incorporating strenuous resistance training increases, rather than decreases, arterial stiffness in young adults. However, the arterial stiffening effect appears to be absent when older adults with already increased arterial stiffness perform moderate resistance exercise programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHA:

American Heart Association

AI:

Augmentation index

CVD:

Cardiovascular disease

NOS:

Nitric oxide synthase

PWV:

Pulse wave velocity

References

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–220.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434–9.

    Article  CAS  PubMed  Google Scholar 

  3. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  CAS  PubMed  Google Scholar 

  4. Rajkumar C, Cameron JD, Christophidis N, Jennings GL, Dart AM. Reduced systemic arterial compliance is associated with left ventricular hypertrophy and diastolic dysfunction in older people. J Am Geriatr Soc. 1997;45:803–8.

    Article  CAS  PubMed  Google Scholar 

  5. Berry KL, Cameron JD, Dart AM, et al. Large-artery stiffness contributes to the greater prevalence of systolic hypertension in elderly women. J Am Geriatr Soc. 2004;52:368–73.

    Article  PubMed  Google Scholar 

  6. Kingwell BA, Waddell TK, Medley TL, Cameron JD, Dart AM. Large artery stiffness predicts ischemic threshold in patients with coronary artery disease. J Am Coll Cardiol. 2002;40:773–9.

    Article  PubMed  Google Scholar 

  7. Qiu H, Depre C, Ghosh K, et al. Mechanism of gender-specific differences in aortic stiffness with aging in nonhuman primates. Circulation. 2007;116:669–76.

    Article  PubMed  Google Scholar 

  8. Sugawara J, Komine H, Hayashi K, et al. Effect of systemic nitric oxide synthase inhibition on arterial stiffness in humans. Hypertens Res. 2007;30:411–5.

    Article  CAS  PubMed  Google Scholar 

  9. Nosaka T, Tanaka H, Watanabe I, Sato M, Matsuda M. Influence of regular exercise on age-related changes in arterial elasticity: mechanistic insights from wall compositions in rat aorta. Can J Appl Physiol. 2003;28:204–12.

    Article  PubMed  Google Scholar 

  10. Laurent S. Arterial wall hypertrophy and stiffness in essential hypertensive patients. Hypertension. 1995;26:355–62.

    Article  CAS  PubMed  Google Scholar 

  11. Avolio AP, Fa-Quan D, Wei-Qiang L, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation. 1985;71:202–10.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka H, DeSouza CA, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol. 1998;18:127–32.

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102:1270–5.

    Article  CAS  PubMed  Google Scholar 

  14. Vaitkevicious PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88:1456–62.

    Article  Google Scholar 

  15. Haidet GC, Wennberg PW, Finkelstein SM, Morgan DJ. Effects of aging per se on arterial stiffness: systemic and regional compliance in beagles. Am Heart J. 1996;132:319–27.

    Article  CAS  PubMed  Google Scholar 

  16. Kimoto E, Shoji T, Shinohara K, et al. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes. 2003;52:448–52.

    Article  CAS  PubMed  Google Scholar 

  17. Pearson TA, Blair SN, Daniels SR, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation. 2002;106:388–91.

    Article  PubMed  Google Scholar 

  18. Mazzeo RS, Tanaka H. Exercise prescription for the elderly: current recommendations. Sports Med. 2001;31:809–18.

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka H, Safar ME. Influence of lifestyle modification on arterial stiffness and wave reflections. Am J Hypertens. 2005;18:137–44.

    Article  PubMed  Google Scholar 

  20. Seals DR, Desouza CA, Donato AJ, Tanaka H. Habitual exercise and arterial aging. J Appl Physiol. 2008;105:1323–32.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  22. Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proc R Soc Lond. 1922;93:298–306.

    Article  Google Scholar 

  23. Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res. 1966;18:278–92.

    Article  CAS  PubMed  Google Scholar 

  24. Arnett DK, Evans GW, Riley WA. Arterial stiffness: a new cardiovascular risk factor? Am J Epidemiol. 1994;140:669–82.

    CAS  PubMed  Google Scholar 

  25. Sugawara J, Hayashi K, Yokoi T, et al. Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens. 2005;19:401–6.

    Article  CAS  PubMed  Google Scholar 

  26. Asmar R, Rudnichi A, Blacher J, London GM, Safar ME. Pulse pressure and aortic pulse wave are markers of cardiovascular risk in hypertensive populations. Am J Hypertens. 2001;14:91–7.

    Article  CAS  PubMed  Google Scholar 

  27. Kelly R, Hayward C, Avolio A, O’Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation. 1989;80:1652–9.

    Article  CAS  PubMed  Google Scholar 

  28. Moreau KL, Donato AJ, Seals DR, DeSouza CA, Tanaka H. Regular exercise, hormone replacement therapy and the age-related decline in carotid arterial compliance in healthy women. Cardiovasc Res. 2003;57:861–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sebban C, Berthaux P, Lenoir H, et al. Arterial compliance, systolic pressure and heart rate in elderly women at rest and on exercise. Gerontology. 1981;27:271–80.

    Article  CAS  PubMed  Google Scholar 

  30. Yin FCP, Weisfeldt ML, Milnor WB. Role of aortic input impedance in the decreased cardiovascular response to exercise with aging in dogs. J Clin Invest. 1981;68:28–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bassett Jr DR, Duey WJ, Walker AJ, Torok DJ, Howley ET, Tanaka H. Exaggerated blood pressure response to exercise: importance of resting blood pressure. Clin Physiol. 1998;18:457–62.

    Article  PubMed  Google Scholar 

  32. Kingwell BA, Berry KL, Cameron JD, Jennings GL, Dart AM. Arterial compliance increases after moderate-intensity cycling. Am J Physiol. 1997;273:H2186–91.

    CAS  PubMed  Google Scholar 

  33. Ikegami H, Satake M, Kurokawa T, Tan N, Sugiura T, Yamazaki Y. Effects of physical training on body composition, respiro-circulatory functions, blood constituents, and physical abilities. Part 1: men aged 30 years. J Phys Fitness Jpn. 1983;32:302–9.

    Google Scholar 

  34. Monahan KD, Tanaka H, Dinenno FA, Seals DR. Central arterial compliance is associated with age- and habitual exercise-related differences in cardiovagal baroreflex sensitivity. Circulation. 2001;104:1627–32.

    Article  CAS  PubMed  Google Scholar 

  35. Seals DR, Tanaka H, Clevenger CM, et al. Blood pressure reductions with exercise and sodium restriction in postmenopausal women with elevated systolic pressure: role of arterial stiffness. J Am Coll Cardiol. 2001;38:506–13.

    Article  CAS  PubMed  Google Scholar 

  36. Sugawara J, Otsuki T, Tanabe T, Hayashi K, Maeda S, Matsuda M. Physical activity duration, intensity, and arterial stiffening in postmenopausal women. Am J Hypertens. 2006;19:1032–6.

    Article  PubMed  Google Scholar 

  37. Tanaka H. Swimming exercise: impact of aquatic exercise on cardiovascular health. Sports Med. 2009;39:377–87.

    Article  PubMed  Google Scholar 

  38. Levy CM, Kolin E, Berson BL. Cross training: risk or benefit? an evaluation of injuries in four athlete populations. Sports Med Clin Forum. 1986;3:1–8.

    CAS  Google Scholar 

  39. Sheldahl LM, Buskirk ER, Loomis JL, Hodgson JL, Mendez J. Effects of exercise in cool water on body weight loss. Int J Obes. 1982;6:29–42.

    CAS  PubMed  Google Scholar 

  40. Nualnim N, Barnes JN, Tarumi T, Renzi CP, Tanaka H. Comparison of central artery elasticity in swimmers, runners, and the sedentary. Am J Cardiol. 2011;107:783–7.

    Article  PubMed  Google Scholar 

  41. Nualnim N, Parkhurst K, Dhindsa M, Tarumi T, Vavrek J, Tanaka H. Effects of swimming training on blood pressure and vascular function in adults >50 years of age. Am J Cardiol. 2012;109:1005–10.

    Article  PubMed  Google Scholar 

  42. Ferrier KE, Waddell TK, Gatzka CD, Cameron JD, Dart AM, Kingwell BA. Aerobic exercise training does not modify large-artery compliance in isolated systolic hypertension. Hypertension. 2001;38:222–6.

    Article  CAS  PubMed  Google Scholar 

  43. Aizawa K, Petrella RJ. Acute and chronic impact of dynamic exercise on arterial stiffness in older hypertensives. Open Cardiovasc Med J. 2008;2:3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parnell MM, Holst DP, Kaye DM. Exercise training increases arterial compliance in patients with congestive heart failure. Clin Sci (Lond). 2002;102:1–7.

    Article  Google Scholar 

  45. Loimaala A, Groundstroem K, Rinne M, et al. Effect of long-term endurance and strength training on metabolic control and arterial elasticity in patients with type 2 diabetes mellitus. Am J Cardiol. 2009;103:972–7.

    Article  PubMed  Google Scholar 

  46. Maeda S, Iemitsu M, Miyauchi T, Kuno S, Matsuda M, Tanaka H. Aortic stiffness and aerobic exercise: mechanistic insight from microarray analyses. Med Sci Sports Exerc. 2005;37:1710–6.

    Article  PubMed  Google Scholar 

  47. Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR. Arterial stiffening with ageing is associated with transforming growth factor-beta1-related changes in adventitial collagen: reversal by aerobic exercise. J Physiol. 2010;588:3971–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Failla M, Grappiolo A, Emanuelli G, et al. Sympathetic tone restrains arterial distensibility of healthy and atherosclerotic subjects. J Hypertens. 1999;17:1117–23.

    Article  CAS  PubMed  Google Scholar 

  49. Mangoni AA, Mircoli L, Giannattasio C, Mancia G, Ferrari AU. Effect of sympathectomy on mechanical properties of common carotid and femoral artery. Hypertension. 1997;30:1085–8.

    Article  CAS  PubMed  Google Scholar 

  50. Sugawara J, Komine H, Hayashi K, et al. Reduction in alpha-adrenergic receptor-mediated vascular tone contributes to improved arterial compliance with endurance training. Int J Cardiol. 2009;135:346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maeda S, Sugawara J, Yoshizawa M, et al. Involvement of endothelin-1 in habitual exercise-induced increase in arterial compliance. Acta Physiol (Oxf). 2009;196:223–9.

    Article  CAS  Google Scholar 

  52. MacDougall JD. Morphological changes in human skeletal muscle following strength training and immobilization. In: Jones NL, McCartney N, McComas AJ, editors. Human muscle power. Champaign: Human Kinetics; 1986. p. 269–85.

    Google Scholar 

  53. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians: effects on skeletal muscle. JAMA. 1990;263:3029–34.

    Article  CAS  PubMed  Google Scholar 

  54. Pollock ML, Franklin BA, Balady GJ, et al. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation. 2000;101:828–33.

    Article  CAS  PubMed  Google Scholar 

  55. Williams MA, Fleg JL, Ades PA, et al. Secondary prevention of coronary heart disease in the elderly (with emphasis on patients > or =75 years of age): an American Heart Association scientific statement from the Council on Clinical Cardiology Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation. 2002;105:1735–43.

    Article  PubMed  Google Scholar 

  56. Position Stand ACSM. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34:364–80.

    Article  Google Scholar 

  57. American Association of Cardiovascular and Pulmonary Rehabilitation. Guidelines for cardiac rehabilitation and secondary prevention programs. 3rd ed. Champaign: Human Kinetics; 1999.

    Google Scholar 

  58. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription, vol. 9. Baltimore: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  59. Feigenbaum MS, Pollock ML. Prescription of resistance training for health and disease. Med Sci Sports Exerc. 1999;31:38–45.

    Article  CAS  PubMed  Google Scholar 

  60. Position Stand ACSM. Exercise and physical activity for older adults. Med Sci Sports Exerc. 1998;30:992–1008.

    Article  Google Scholar 

  61. Nieman DC, Henson DA, Sampson CS, et al. The acute immune response to exhaustive resistance exercise. Int J Sports Med. 1995;16:322–8.

    Article  CAS  PubMed  Google Scholar 

  62. DeVan AE, Anton MM, Cook JN, Neidre DB, Cortez-Cooper MY, Tanaka H. Acute effects of resistance exercise on arterial compliance. J Appl Physiol. 2005;98:2287–91.

    Article  PubMed  Google Scholar 

  63. Bertovic DA, Waddell TK, Gatzka CD, Cameron JD, Dart AM, Kingwell BA. Muscular strength training is associated with low arterial compliance and high pulse pressure. Hypertension. 1999;33:1385–91.

    Article  CAS  PubMed  Google Scholar 

  64. Miyachi M, Donato AJ, Yamamoto K, et al. Greater age-related reductions in central arterial compliance in resistance-trained men. Hypertension. 2003;41:130–5.

    Article  CAS  PubMed  Google Scholar 

  65. Miyachi M, Kawano H, Sugawara J, et al. Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation. 2004;110:2858–63.

    Article  PubMed  Google Scholar 

  66. Cortez-Cooper MY, DeVan AE, Anton MM, et al. Effects of high intensity resistance training on arterial stiffness and wave reflection in women. Am J Hypertens. 2005;18:930–4.

    Article  PubMed  Google Scholar 

  67. Kawano H, Tanaka H, Miyachi M. Resistance training and arterial compliance: keeping the benefits while minimizing the stiffening. J Hypertens. 2006;24:1753–9.

    Article  CAS  PubMed  Google Scholar 

  68. Okamoto T, Masuhara M, Ikuta K. Upper but not lower limb resistance training increases arterial stiffness in humans. Eur J Appl Physiol. 2009;107:127–34.

    Article  PubMed  Google Scholar 

  69. Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2012;47(6):393–6.

    Article  PubMed  Google Scholar 

  70. Collier SR, Kanaley JA, Carhart Jr R, et al. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens. 2008;22:678–86.

    Article  CAS  PubMed  Google Scholar 

  71. MacDougall JD, McKelvie RS, Moroz DE, Sale DG, McCartney N, Buick F. Factors affecting blood pressure during heavy weight lifting and static contractions. J Appl Physiol. 1992;73:1590–7.

    CAS  PubMed  Google Scholar 

  72. Ragucci MV, Thistle HG. Weight lifting and type II aortic dissection: a case report. J Sports Med Phys Fitness. 2004;44:424–7.

    CAS  PubMed  Google Scholar 

  73. Hatzaras I, Tranquilli M, Coady M, Barrett PM, Bible J, Elefteriades JA. Weight lifting and aortic dissection: more evidence for a connection. Cardiology. 2007;107:103–6.

    Article  CAS  PubMed  Google Scholar 

  74. Leung DY, Glagov S, Mathews MB. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science. 1976;191:475–7.

    Article  CAS  PubMed  Google Scholar 

  75. Bruel A, Oxlund H. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis. 1996;127:155–65.

    Article  CAS  PubMed  Google Scholar 

  76. Maeda S, Otsuki T, Iemitsu M, et al. Effects of leg resistance training on arterial function in older men. Br J Sports Med. 2006;40:867–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Position Stand ACSM. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30:975–91.

    Article  Google Scholar 

  78. US Department of Health and Human Services. Physical activity and health: a report of the surgeon general. U.S. Department of Health and Human Services, Center for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Atlanta. 1996.

    Google Scholar 

  79. Cortez-Cooper MY, Anton MM, Devan AE, Neidre DB, Cook JN, Tanaka H. The effects of strength training on central arterial compliance in middle-aged and older adults. Eur J Cardiovasc Prev Rehabil. 2008;15:149–55.

    Article  PubMed  Google Scholar 

  80. Casey DP, Pierce GL, Howe KS, Mering MC, Braith RW. Effect of resistance training on arterial wave reflection and brachial artery reactivity in normotensive postmenopausal women. Eur J Appl Physiol. 2007;100:403–8.

    Article  PubMed  Google Scholar 

  81. Tanaka H, Swensen T. Impact of resistance training on endurance performance: a new form of cross-training? Sports Med. 1998;25:191–200.

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka H. Effects of cross-training. Transfer of training effects on VO2max between cycling, running and swimming. Sports Med. 1994;18:330–9.

    Article  CAS  PubMed  Google Scholar 

  83. Secher NH. Physiological and biomechanical aspects of rowing. Implications for training. Sports Med. 1993;15:24–42.

    Article  CAS  PubMed  Google Scholar 

  84. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: classification of sports. J Am Coll Cardiol. 2005;45:1364–7.

    Article  PubMed  Google Scholar 

  85. Yoshiga CC, Higuchi M, Oka J. Rowing prevents muscle wasting in older men. Eur J Appl Physiol. 2002;88:1–4.

    Article  PubMed  Google Scholar 

  86. Cook JN, DeVan AE, Schleifer JL, Anton MM, Cortez-Cooper MY, Tanaka H. Arterial compliance of rowers: implications for combined aerobic and strength training on arterial elasticity. Am J Physiol Heart Circ Physiol. 2006;290:H1596–600.

    Article  CAS  PubMed  Google Scholar 

  87. Figueroa A, Park SY, Seo DY, Sanchez-Gonzalez MA, Baek YH. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause. 2011;18:980–4.

    Article  PubMed  Google Scholar 

  88. Kannel WB, Vasan RS, Levy D. Is the relation of systolic blood pressure to risk of cardiovascular disease continuous and graded, or are there critical values? Hypertension. 2003;42:453–6.

    Article  CAS  PubMed  Google Scholar 

  89. Gates PE, Tanaka H, Graves J, Seals DR. Left ventricular structure and diastolic function with human ageing. Relation to habitual exercise and arterial stiffness. Eur Heart J. 2003;24:2213–20.

    Article  PubMed  Google Scholar 

  90. Eugene M, Vandewalle H, Bertholon JF, Teillac A. Arterial elasticity and physical working capacity in young men. J Appl Physiol. 1986;61:1720–3.

    CAS  PubMed  Google Scholar 

  91. Tanaka H, Dinenno FA, Hunt BE, Jones PP, DeSouza CA, Seals DR. Hemodynamic sequelae of age-related increases in arterial stiffness in healthy humans. Am J Cardiol. 1998;82:1152–5.

    Article  CAS  PubMed  Google Scholar 

  92. Chen CH, Nakayama M, Talbot M, et al. Verapamil acutely reduces ventricular-vascular stiffening and improves aerobic exercise performance in elderly individuals. J Am Coll Cardiol. 1999;33:1602–9.

    Article  CAS  PubMed  Google Scholar 

  93. Tanaka H, Seals DR. Age and gender interactions in physiological functional capacity: insight from swimming performance. J Appl Physiol. 1997;82:846–51.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Tanaka Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tanaka, H. (2015). Effects of Regular Exercise on Arterial Stiffness. In: Pescatello, L. (eds) Effects of Exercise on Hypertension. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-17076-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17076-3_8

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-17075-6

  • Online ISBN: 978-3-319-17076-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics