Skip to main content

Advertisement

Log in

Cerebral Haemodynamics: Effects of Systemic Arterial Pulsatile Function and Hypertension

  • Blood Pressure Monitoring and Management (J Cockcroft, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Concepts of pulsatile arterial haemodynamics, including relationships between oscillatory blood pressure and flow in systemic arteries, arterial stiffness and wave propagation phenomena have provided basic understanding of underlying haemodynamic mechanisms associated with elevated arterial blood pressure as a major factor of cardiovascular risk, particularly the deleterious effects of isolated systolic hypertension in the elderly. This topical review assesses the effects of pulsatility of blood pressure and flow in the systemic arteries on the brain. The review builds on the emerging notion of the “pulsating brain”, taking into account the high throughput of blood flow in the cerebral circulation in the presence of mechanisms involved in ensuring efficient and regulated cerebral perfusion.

Recent Findings

Recent studies have provided evidence of the relevance of pulsatility and hypertension in the following areas: (i) pressure and flow pulsatility and regulation of cerebral blood flow, (ii) cerebral and systemic haemodynamics, hypertension and brain pathologies (cognitive impairment, dementia, Alzheimer’s disease), (iii) stroke and cerebral small vessel disease, (iv) cerebral haemodynamics and noninvasive estimation of cerebral vascular impedance, (v) cerebral and systemic pulsatile haemodynamics and intracranial pressure, (iv) response of brain endothelial cells to cyclic mechanical stretch and increase in amyloid burden.

Summary

Studies to date, producing increasing epidemiological, clinical and experimental evidence, suggest a potentially significant role of systemic haemodynamic pulsatility on structure and function of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, et al. Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab. 2017;37(8):2848–56. https://doi.org/10.1177/0271678X16676826.

    Article  PubMed  Google Scholar 

  2. •• Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol. 2017;312(1):H1–H20. https://doi.org/10.1152/ajpheart.00581.2016. This detailed and highly informative review assesses the vascular contributions to cognitive impairment and dementia and examines the evidence for a causal role of cerebral microvascular dysregulation.

    Article  PubMed  Google Scholar 

  3. Fukasawa H. Hemodynamical studies of cerebral arteries by means of mathematical analysis of arterial casts. Tohoku J Exp Med. 1969;99(3):255–68. https://doi.org/10.1620/tjem.99.255.

    Article  CAS  PubMed  Google Scholar 

  4. Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, et al. Cell-cell signaling in the neurovascular unit. Neurochem Res. 2007;32(12):2032–45. https://doi.org/10.1007/s11064-007-9342-9.

    Article  CAS  PubMed  Google Scholar 

  5. Peterson EC, Wang Z, Britz G. Regulation of cerebral blood flow. Int J Vasc Med. 2011;2011:823525.

    PubMed  PubMed Central  Google Scholar 

  6. Roy B, Woo MA, Wang DJJ, Fonarow GC, Harper RM, Kumar R. Reduced regional cerebral blood flow in patients with heart failure. Eur J Heart Fail. 2017;19(10):1294–302. https://doi.org/10.1002/ejhf.874.

    Article  PubMed  Google Scholar 

  7. Kim MO, Adji A, O'Rourke MF, Avolio AP, Smielewski P, Pickard JD, et al. Change in pulsatile cerebral arterial pressure and flow waves as a therapeutic strategy? Acta Neurochir Suppl. 2016;122:167–70. https://doi.org/10.1007/978-3-319-22533-3_34.

    Article  PubMed  Google Scholar 

  8. Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989;10(3):187–217. https://doi.org/10.1088/0143-0815/10/3/001.

    Article  CAS  PubMed  Google Scholar 

  9. Granata A, Fiorini F, Andrulli S, Logias F, Gallieni M, Romano G, et al. Doppler ultrasound and renal artery stenosis: an overview. J Ultrasound. 2009;12(4):133–43. https://doi.org/10.1016/j.jus.2009.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bahlmann F, Fittschen M, Reinhard I, Wellek S, Puhl A. Blood flow velocity waveforms of the umbilical artery in a normal population: reference values from 18 weeks to 42 weeks of gestation. Ultraschall Med. 2012;33(7):E80–7. https://doi.org/10.1055/s-0031-1299294.

    Article  CAS  PubMed  Google Scholar 

  11. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66(1):8–17. https://doi.org/10.1161/01.RES.66.1.8.

    Article  CAS  PubMed  Google Scholar 

  12. Harper SL, Bohlen HG, Rubin MJ. Arterial and microvascular contributions to cerebral cortical autoregulation in rats. Am J Phys. 1984;246:H17–24.

    CAS  Google Scholar 

  13. •• Snyder, H.M., Corriveau, R.A., Craft, S., Faber, J.E., Greenberg, S.M., Knopman, D., Lamb, B.T., Montine, T.J., Nedergaard, M., Schaffer, C.B., et al. 2015. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement 11:710–717. This paper summarises the results of the meeting of experts convened by the Alzheimer’s Association, and National Institute of Neurological Disorders and Stroke and the National Heart, Lung and Blood Institute from the National Institutes of Health on the contribution of vascular factors to Alzheimer’s disease and related dementia.

  14. Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34(12):1887–97. https://doi.org/10.1038/jcbfm.2014.156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tzeng YC, MacRae BA, Ainslie PN, Chan GS. Fundamental relationships between blood pressure and cerebral blood flow in humans. J Appl Physiol (1985). 2014;117(9):1037–48. https://doi.org/10.1152/japplphysiol.00366.2014.

    Article  CAS  Google Scholar 

  16. Bateman GA. Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology. 2002;44(9):740–8. https://doi.org/10.1007/s00234-002-0812-0.

    Article  CAS  PubMed  Google Scholar 

  17. • Bateman GA. Pulse wave encephalopathy: a spectrum hypothesis incorporating Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus. Med Hypotheses. 2004;62(2):182–7. https://doi.org/10.1016/S0306-9877(03)00330-X. This is one of the first proposals of the concept of pulse wave encephalopathy as an underlying mechanism for a the broad range of cerebral dysfunction.

    Article  PubMed  Google Scholar 

  18. Henry Feugeas MC, De Marco G, Peretti II, Godon-Hardy S, Fredy D, Claeys ES. Age-related cerebral white matter changes and pulse-wave encephalopathy: observations with three-dimensional MRI. Magn Reson Imaging. 2005;23(9):929–37. https://doi.org/10.1016/j.mri.2005.09.002.

    Article  PubMed  Google Scholar 

  19. • Henry-Feugeas MC. Intracranial MR dynamics in clinically diagnosed Alzheimer’s disease: the emerging concept of “pulse wave encephalopathy”. Curr Alzheimer Res. 2009;6:488–502. This study examines the concept of pulse wave encephalopathy in the context of failure of damping of cerebral pulsatility.

    Article  CAS  PubMed  Google Scholar 

  20. Moore SM, Moorhead KT, Chase JG, David T, Fink J. One-dimensional and three-dimensional models of cerebrovascular flow. J Biomech Eng. 2005;127(3):440–9. https://doi.org/10.1115/1.1894350.

    Article  CAS  PubMed  Google Scholar 

  21. •• Blanco PJ, Müller LO, Spence JD 2017. Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol 0: e000087. This study provides quantitative data of pulsatility and pressure gradients in small vessels in the cerebral circulation by theoretical simulations in detailed realistic vascular models.

  22. Shapiro HM, Stromberg DD, Lee DR, Wiederhielm CA. Dynamic pressures in the pial arterial microcirculation. Am J Phys. 1971;221:279–83.

    CAS  Google Scholar 

  23. Gisolf J, Gisolf A, van Lieshout JJ, Karemaker JM. The siphon controversy: an integration of concepts and the brain as baffle. Am J Physiol Regul Integr Comp Physiol. 2005;289(2):R627–9. https://doi.org/10.1152/ajpregu.00709.2004.

    Article  CAS  PubMed  Google Scholar 

  24. Folkow B. Myogenic mechanisms in the control of systemic resistance. Introduction and historical background. J Hypertens Suppl. 1989;7:S1–4.

    CAS  PubMed  Google Scholar 

  25. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6. https://doi.org/10.1038/288373a0.

    Article  CAS  PubMed  Google Scholar 

  26. •• Koller A, Toth P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J Vasc Res. 2012;49:375–89. This review addresses effects of haemodynamic forces on vasomotor tone of cerebral vessels. It elucidates flow-dependent vasodilation and vasoconstriction mechanisms in different parts of the brain as potential contributors to vascular disorders.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bryan, R.M., Jr., Steenberg, M.L., and Marrelli, S.P. 2001. Role of endothelium in shear stress-induced constrictions in rat middle cerebral artery. Stroke 32:1394–1400, 6, DOI: https://doi.org/10.1161/01.STR.32.6.1394.

  28. Madden JA, Christman NJ. Integrin signaling, free radicals, and tyrosine kinase mediate flow constriction in isolated cerebral arteries. Am J Phys. 1999;277:H2264–71.

    CAS  Google Scholar 

  29. Toth P, Rozsa B, Springo Z, Doczi T, Koller A. Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors. J Cereb Blood Flow Metab. 2011;31(10):2096–105. https://doi.org/10.1038/jcbfm.2011.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. • Harder DR, Narayanan J, Gebremedhin D. Pressure-induced myogenic tone and role of 20-HETE in mediating autoregulation of cerebral blood flow. Am J Physiol Heart Circ Physiol. 2011;300(5):H1557–65. https://doi.org/10.1152/ajpheart.01097.2010. This review examines the pressure-induced myogenic constriction in cerebral arterial muscle related to the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid. Elevated intravascular pressure increases production of 20-HETE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dunn KM, Renic M, Flasch AK, Harder DR, Falck J, Roman RJ. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;295(6):H2455–65. https://doi.org/10.1152/ajpheart.00512.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan F, Geurts AM, Murphy SR, Pabbidi MR, Jacob HJ, Roman RJ. Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol. 2015;308(5):R379–90. https://doi.org/10.1152/ajpregu.00256.2014.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Roldan JL, Bevan JA. Augmentation of endothelium-independent flow constriction in pial arteries at high intravascular pressures. Hypertension. 1991;17(6_Pt_2):870–4. https://doi.org/10.1161/01.HYP.17.6.870.

    Article  CAS  PubMed  Google Scholar 

  34. Byrom FB. The calibre of the cerebral arteries in experimental hypertension. Proc R Soc Med. 1968;61(6):605–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar AJ, Hochwald GM, Kricheff I. An angiographic study of the carotid arterial and jugular venous systems in the cat. Am J Anat. 1976;145(3):357–69. https://doi.org/10.1002/aja.1001450305.

    Article  CAS  PubMed  Google Scholar 

  36. Karasawa J, Touho H, Ohnishi H, Kawaguchi M. Rete mirabile in humans—case report. Neurol Med Chir (Tokyo). 1997;37(2):188–92. https://doi.org/10.2176/nmc.37.188.

    Article  CAS  Google Scholar 

  37. • de la Torre JC. Cerebral hemodynamics and vascular risk factors: setting the stage for Alzheimer’s disease. J Alzheimers Dis. 2012;32:553–67. Supporting evidence for association of vascular factors in cerebral disorders.

    PubMed  Google Scholar 

  38. •• Claassen JA. Cognitive decline and dementia: are we getting to the vascular heart of the matter? Hypertension. 2015;65(3):505–6. Editorial comment on a study examining the associations of systolic blood pressure variation and mean heart rate with cognitive dysfunction in patients with high cardiovascular risk.

    Article  CAS  PubMed  Google Scholar 

  39. Selkoe DJ. Preventing Alzheimer’s disease. Science. 2012;337(6101):1488–92. https://doi.org/10.1126/science.1228541.

    Article  CAS  PubMed  Google Scholar 

  40. •• Matthews FE, Arthur A, Barnes LE, Bond J, Jagger C, Robinson L, et al. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet. 2013;382(9902):1405–12. https://doi.org/10.1016/S0140-6736(13)61570-6. A large population study over a prolonged period highlighting the beneficial long-term effects of early treatment of cardiovascular risk factors in reducing or delaying development of dementia.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Meel-van den Abeelen AS, Lagro J, Gommer ED, Reulen JP, Claassen JA. Baroreflex function is reduced in Alzheimer’s disease: a candidate biomarker? Neurobiol Aging. 2013;34(4):1170–6. https://doi.org/10.1016/j.neurobiolaging.2012.10.010.

    Article  PubMed  Google Scholar 

  42. • Pase MP, Himali JJ, Mitchell GF, Beiser A, Maillard P, Tsao C, et al. Association of aortic stiffness with cognition and brain aging in young and middle-aged adults: the Framingham Third Generation Cohort Study. Hypertension. 2016;67:513–9. A study showing that aortic stiffness is associated with lateral ventricular volume in young adults (30–45 years), but with white matter injury and cognition in midlife (45–65 years).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jennings, J.R., Heim, A.F., Sheu, L.K., Muldoon, M.F., Ryan, C., Gach, H.M., Schirda, C., and Gianaros, P.J. 2017. Brain regional blood flow and working memory performance predict change in blood pressure over 2 years. Hypertension.

  44. • Wagshul ME, Eide PK, Madsen JR. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 2011;8(1):5. https://doi.org/10.1186/2045-8118-8-5. This review examines intracranial pulsatility assessed with transcranial Doppler and phase contrast MRI and presents experimental and clinical evidence on the associations of pulsatility and brain function in health and disease.

    Article  PubMed  PubMed Central  Google Scholar 

  45. •• Stone J, Johnstone DM, Mitrofanis J, O'Rourke M. The mechanical cause of age-related dementia (Alzheimer’s disease): the brain is destroyed by the pulse. J Alzheimers Dis. 2015;44:355–73. Examination of the effects of cerebral pulsatility on microbleeds and increase in amyloid burden.

    PubMed  Google Scholar 

  46. • Gorelick, P.B., Scuteri, A., Black, S.E., Decarli, C., Greenberg, S.M., Iadecola, C., Launer, L.J., Laurent, S., Lopez, O.L., Nyenhuis, D., et al. 2011. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:2672–2713. This AHA statement highlights the need for prospective and quantitative neuroimaging studies to address the association between vascular factors and Alzheimer disease pathologies. It advocates the use of long-term vascular risk marker interventional studies beginning as early as midlife to prevent or postpone the onset of dementia-related syndromes.

  47. Avolio AP, Deng FQ, Li WQ, Luo YF, Huang ZD, Xing LF, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation. 1985;71(2):202–10. https://doi.org/10.1161/01.CIR.71.2.202.

    Article  CAS  PubMed  Google Scholar 

  48. O'Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50(1):1–13. https://doi.org/10.1016/j.jacc.2006.12.050.

    Article  PubMed  Google Scholar 

  49. Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham heart study. Circulation. 1999;100(4):354–60. https://doi.org/10.1161/01.CIR.100.4.354.

    Article  CAS  PubMed  Google Scholar 

  50. Fok H, Jiang B, Clapp B, Chowienczyk P. Regulation of vascular tone and pulse wave velocity in human muscular conduit arteries: selective effects of nitric oxide donors to dilate muscular arteries relative to resistance vessels. Hypertension. 2012;60(5):1220–5. https://doi.org/10.1161/HYPERTENSIONAHA.112.198788.

    Article  CAS  PubMed  Google Scholar 

  51. Kelly RP, Gibbs HH, O'Rourke MF, Daley JE, Mang K, Morgan JJ, et al. Nitroglycerin has more favourable effects on left ventricular afterload than apparent from measurement of pressure in a peripheral artery. Eur Heart J. 1990;11(2):138–44. https://doi.org/10.1093/oxfordjournals.eurheartj.a059669.

    Article  CAS  PubMed  Google Scholar 

  52. O'Rourke MF, Kelly RP, Avolio AP, Hayward C. Effects of arterial dilator agents on central aortic systolic pressure and on left ventricular hydraulic load. Am J Cardiol. 1989;63(19):38I–44I. https://doi.org/10.1016/0002-9149(89)90127-6.

    Article  PubMed  Google Scholar 

  53. Mitchell GF. Arterial stiffness: insights from Framingham and Iceland. Curr Opin Nephrol Hypertens. 2015;24(1):1–7. https://doi.org/10.1097/MNH.0000000000000092.

    Article  PubMed  Google Scholar 

  54. Fortier C, Mac-Way F, Desmeules S, Marquis K, De Serres SA, Lebel M, et al. Aortic-brachial stiffness mismatch and mortality in dialysis population. Hypertension. 2015;65(2):378–84. https://doi.org/10.1161/HYPERTENSIONAHA.114.04587.

    Article  CAS  PubMed  Google Scholar 

  55. • O'Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4. This highly cited opinion piece builds the context for pulsatile haemodynamics and end-organ damage.

    Article  PubMed  Google Scholar 

  56. • Cifuentes D, Poittevin M, Dere E, Broqueres-You D, Bonnin P, Benessiano J, et al. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease. Hypertension. 2015;65:218–24. Robust experimental evidence of relationship between high blood pressure and cerebral pathology related to Alzheimer’s disease.

    Article  CAS  PubMed  Google Scholar 

  57. •• Tarumi T, Ayaz Khan M, Liu J, Tseng BY, Parker R, Riley J, et al. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab. 2014;34:971–8. A study showing age-related increase pulsatility of cerebral blood flow being associated with greater total volume of white matter hyperintensities.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tarumi T, de Jong DL, Zhu DC, Tseng BY, Liu J, Hill C, et al. Central artery stiffness, baroreflex sensitivity, and brain white matter neuronal fiber integrity in older adults. NeuroImage. 2015;110:162–70. https://doi.org/10.1016/j.neuroimage.2015.01.041.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xing CY, Tarumi T, Meijers RL, Turner M, Repshas J, Xiong L, et al. Arterial pressure, heart rate, and cerebral hemodynamics across the adult life span. Hypertension. 2017;69(4):712–20. https://doi.org/10.1161/HYPERTENSIONAHA.116.08986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Torjesen A, Cooper LL, Rong J, Larson MG, Hamburg NM, Levy D, et al. Relations of arterial stiffness with postural change in mean arterial pressure in middle-aged adults: the Framingham Heart Study. Hypertension. 2017;69(4):685–90. https://doi.org/10.1161/HYPERTENSIONAHA.116.08116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. •• Beishon L, Haunton VJ, Panerai RB, Robinson TG. Cerebral hemodynamics in mild cognitive impairment: a systematic review. J Alzheimers Dis. 2017;59:369–85. A comprehensive review on the use of cerebral haemodynamics and oxygenation as a biomarker for mild cognitive impairment, with emphasis on transcranial Doppler ultrasonography and near-infrared spectroscopy.

    Article  CAS  PubMed  Google Scholar 

  62. • Scuteri A, Nilsson PM, Tzourio C, Redon J, Laurent S. Microvascular brain damage with aging and hypertension: pathophysiological consideration and clinical implications. J Hypertens. 2011;29(8):1469–77. https://doi.org/10.1097/HJH.0b013e328347cc17. This review addresses the association of large artery function and microvascular brain disease and to cognitive decline with age. It argues for further confirmatory evidence of the beneficial effects of antihypertensive treatment on brain function.

    Article  CAS  PubMed  Google Scholar 

  63. •• Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I, Laloux B, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–6. An early study showing, for the first time, the important role of aortic stiffness as an independent prdictor of cerebrovascular pathologies.

    Article  PubMed  Google Scholar 

  64. •• Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113(5):657–63. https://doi.org/10.1161/CIRCULATIONAHA.105.555235. An important epidemiological study showing the association of arterial stiffness and heart and brain pathologies.

    Article  PubMed  Google Scholar 

  65. Lee YB, Park JH, Kim E, Kang CK, Park HM. Arterial stiffness and functional outcome in acute ischemic stroke. J Cerebrovasc Endovasc Neurosurg. 2014;16(1):11–9. https://doi.org/10.7461/jcen.2014.16.1.11.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Panerai RB, Jara JL, Saeed NP, Horsfield MA, Robinson TG. Dynamic cerebral autoregulation following acute ischaemic stroke: comparison of transcranial Doppler and magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 2016;36(12):2194–202. https://doi.org/10.1177/0271678X15615874.

    Article  CAS  PubMed  Google Scholar 

  67. Brisset M, Boutouyrie P, Pico F, Zhu Y, Zureik M, Schilling S, et al. Large-vessel correlates of cerebral small-vessel disease. Neurology. 2013;80(7):662–9. https://doi.org/10.1212/WNL.0b013e318281ccc2.

    Article  PubMed  PubMed Central  Google Scholar 

  68. • Maillard P, Mitchell GF, Himali JJ, Beiser A, Fletcher E, Tsao CW, et al. Aortic stiffness, increased white matter free water, and altered microstructural integrity: a continuum of injury. Stroke. 2017;48:1567–73. This study examines free water, fractional anisotropy and white matter hyperintensities in relation to arterial stiffness among subjects of the Framingham Offspring and Third-Generation cohorts.

    Article  PubMed  Google Scholar 

  69. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–38. https://doi.org/10.1016/S1474-4422(13)70124-8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. https://doi.org/10.1016/S1474-4422(10)70104-6.

    Article  PubMed  Google Scholar 

  71. Biessels GJ, Zwanenburg JJ, Visser F, Frijns CJ, Luijten PR. Hypertensive cerebral hemorrhage: imaging the leak with 7-T MRI. Neurology. 2010;75(6):572–3. https://doi.org/10.1212/WNL.0b013e3181ec7f99.

    Article  CAS  PubMed  Google Scholar 

  72. •• Bouvy WH, Geurts LJ, Kuijf HJ, Luijten PR, Kappelle LJ, Biessels GJ, et al. Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI. NMR Biomed. 2016;29:1295–304. This study shows the use of 7-T MRI to register pulsatility in small cerebral vessels.

    Article  CAS  PubMed  Google Scholar 

  73. Zwanenburg JJM, van Osch MJP. Targeting cerebral small vessel disease with MRI. Stroke. 2017;48(11):3175–82. https://doi.org/10.1161/STROKEAHA.117.016996.

    Article  PubMed  Google Scholar 

  74. Chen Y, Shen F, Liu J, Yang GY. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke. Stroke Vasc Neurol. 2017;2(2):65–72. https://doi.org/10.1136/svn-2016-000045.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sadekova N, Vallerand D, Guevara E, Lesage F, Girouard H. Carotid calcification in mice: a new model to study the effects of arterial stiffness on the brain. J Am Heart Assoc. 2013;2:e000224.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guan Y, Wang Y, Yuan F, Lu H, Ren Y, Xiao T, et al. Effect of suture properties on stability of middle cerebral artery occlusion evaluated by synchrotron radiation angiography. Stroke. 2012;43(3):888–91. https://doi.org/10.1161/STROKEAHA.111.636456.

    Article  PubMed  Google Scholar 

  77. Kim MO, O'Rourke MF, Adji A, Avolio AP. Central pulsatile pressure and flow relationship in the time and frequency domain to characterise hydraulic input to the brain and cerebral vascular impedance. Acta Neurochir Suppl. 2016;122:307–11. https://doi.org/10.1007/978-3-319-22533-3_61.

    Article  PubMed  Google Scholar 

  78. Netlyukh AM, Shevaga VM, Yakovenko LM, Payenok AV, Salo VM, Kobyletskiy OJ. Invasive intracranial arterial pressure monitoring during endovascular cerebral aneurysms embolization for cerebral perfusion evaluation. Acta Neurochir Suppl. 2015;120:177–81. https://doi.org/10.1007/978-3-319-04981-6_30.

    PubMed  Google Scholar 

  79. Sugawara J, Tomoto T, Imai T, Maeda S, Ogoh S. Impact of mild orthostatic stress on aortic-cerebral hemodynamic transmission: insight from the frequency domain. Am J Physiol Heart Circ Physiol. 2017;312(5):H1076–84. https://doi.org/10.1152/ajpheart.00802.2016.

    Article  PubMed  Google Scholar 

  80. •• Kim MO, Li Y, Wei F, Wang J, O'Rourke MF, Adji A, et al. Normal cerebral vascular pulsations in humans: changes with age and implications for microvascular disease. J Hypertens. 2017;35:2245–56. This study characterises cerebral flow pulsatility in four cerebral vascular territories by transcranial Doppler of 1020 apparently normal patients.

    Article  CAS  PubMed  Google Scholar 

  81. Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56(12):1746–8. https://doi.org/10.1212/WNL.56.12.1746.

    Article  CAS  PubMed  Google Scholar 

  82. Kim MO, Eide PK, O'Rourke MF, Adji A, Avolio AP. Intracranial pressure waveforms are more closely related to central aortic than radial pressure waveforms: implications for pathophysiology and therapy. Acta Neurochir Suppl. 2016;122:61–4. https://doi.org/10.1007/978-3-319-22533-3_12.

    Article  PubMed  Google Scholar 

  83. •• Kim MO, Adji A, O'Rourke MF, Avolio AP, Smielewski P, Pickard JD, et al. Principles of cerebral hemodynamics when intracranial pressure is raised: lessons from the peripheral circulation. J Hypertens. 2015;33:1233–41. This study quantifies systemic and cerebral pulsatility in eight patients with head trauma showing elevated intra-cranial pressure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmidt B, Czosnyka M, Klingelhofer J. Clinical applications of a non-invasive ICP monitoring method. Eur J Ultrasound. 2002;16(1-2):37–45. https://doi.org/10.1016/S0929-8266(02)00044-7.

    Article  PubMed  Google Scholar 

  85. Eide PK. Cardiac output in idiopathic normal pressure hydrocephalus: association with arterial blood pressure and intracranial pressure wave amplitudes and outcome of shunt surgery. Fluids Barriers CNS. 2011;8(1):11. https://doi.org/10.1186/2045-8118-8-11.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32:737–41. discussion 741-732

    Article  CAS  PubMed  Google Scholar 

  87. • Tian Y, Gawlak G, O'Donnell JJ 3rd, Mambetsariev I, Birukova AA. Modulation of endothelial inflammation by low and high magnitude cyclic stretch. PLoS One. 2016;11:e0153387. Study showing the inflammatory response of pulmonary endothelial cells subjected to cyclic mechanical stretch.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ziegler T, Silacci P, Harrison VJ, Hayoz D. Nitric oxide synthase expression in endothelial cells exposed to mechanical forces. Hypertension. 1998;32(2):351–5. https://doi.org/10.1161/01.HYP.32.2.351.

    Article  CAS  PubMed  Google Scholar 

  89. Wang DS, Proffit D, Tsao PS. Mechanotransduction of endothelial oxidative stress induced by cyclic strain. Endothelium. 2001;8(4):283–91. https://doi.org/10.3109/10623320109090806.

    Article  CAS  PubMed  Google Scholar 

  90. Jufri NF, Mohamedali A, Avolio A, Baker MS. Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell. 2015;7(1):8. https://doi.org/10.1186/s13221-015-0033-z.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jufri NF, Mohamedali A, Ahn S, Avolio A, Baker A. Effects of acute and chronic biomechanical strain on human cerebral endothelial cells in altering their proteome profile. Currebt Proteomics. 2017;14:214–23.

    CAS  Google Scholar 

  92. •• Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ Res. 2010;107:1498–502. A seminal study elucidating the association of the nitric oxide/cyclic GMP pathway and amyloid beta in relation to cognitive impairment and Alzheimer’s disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. •• Gangoda SVS, Avadhanam B, Jufri NF, Sohn EH, Butlin M, Gupta V, Chung R, Avolio AP. Pulsatile stretch as a novel modulator of amyloid precursor protein processing and associated inflammatory markers in human cerebral endothelial cells. Sci Rep 2018 (In Press:www.nature.com/articles/s41598-018-20117-6. Study showing, for the first time, that human brain endothelial cells subjected to cyclic mechanical stretch upregulate amyloid beta precursor protein, increase deposition of amyloid beta42, reduce phosphorylation of endothelial nitric oxide synthase and increase inflammatory markers.

  94. Cifuentes D, Poittevin M, Bonnin P, Ngkelo A, Kubis N, Merkulova-Rainon T, Levy BI. Inactivation of nitric oxide synthesis exacerbates the development of Alzheimer disease pathology in APPPS1 mice (amyloid precursor protein/presenilin-1). Hypertension. 2017.

  95. • Golzan SM, Goozee K, Georgevsky D, Avolio A, Chatterjee P, Shen K, et al. Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimers Res Ther. 2017;9:13. Study showing increased retinal pulsatility associated with increased amyloid burden as detected by positron emission tomography (PET).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. NeuroImage. 2011;54(Suppl 1):S204–17. https://doi.org/10.1016/j.neuroimage.2010.06.020.

    Article  CAS  PubMed  Google Scholar 

  97. Gupta V, Gupta VB, Chitranshi N, Gangoda S, Vander Wall R, Abbasi M, et al. One protein, multiple pathologies: multifaceted involvement of amyloid beta in neurodegenerative disorders of the brain and retina. Cell Mol Life Sci. 2016;73(22):4279–97. https://doi.org/10.1007/s00018-016-2295-x.

    Article  CAS  PubMed  Google Scholar 

  98. Koller A. Signaling pathways of mechanotransduction in arteriolar endothelium and smooth muscle cells in hypertension. Microcirculation. 2002;9(4):277–94. https://doi.org/10.1038/sj.mn.7800142.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Australian Research Council Linkage Grant (LP150100614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Avolio.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Blood Pressure Monitoring and Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avolio, A., Kim, M.O., Adji, A. et al. Cerebral Haemodynamics: Effects of Systemic Arterial Pulsatile Function and Hypertension. Curr Hypertens Rep 20, 20 (2018). https://doi.org/10.1007/s11906-018-0822-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0822-x

Keywords

Navigation