Skip to main content
Log in

Renal Denervation in the Treatment of Hypertension

  • Secondary Hypertension: Adrenal and Nervous System Mechanisms (S Oparil, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Despite advances in nonpharmacologic and pharmacologic therapy, blood pressure control rates in hypertension are low. About 10 % of patients with hypertension fulfill the criteria of therapy resistance, which is defined as noncontrolled blood pressure despite treatment with ≥3 antihypertensive drugs of different classes, including a diuretic, at optimal or maximal tolerated doses. Although the pathogenesis of resistant hypertension is multifactorial, an interaction between renal afferent and efferent sympathetic nerves and the central nervous system plays a key role, leading to increased renal and central sympathetic activity. Catheter-based renal sympathetic denervation (RDN) is a novel therapeutic technique for the treatment of resistant hypertension. Clinical trials of RDN have shown a significant and sustained reduction of blood pressure as well as renal and central sympathetic activity. In clinical practice, appropriate patient selection is crucial to ensure successful and safe treatment. Beyond hypertension, RDN was associated with reduction of heart rate, regression of left ventricular mass, and improvements in glucose metabolism and severity of sleep apnea. Further studies addressing open questions in the treatment of resistant hypertension and evaluating potential new indications such as metabolic syndrome or heart failure (RE-ADAPT-HF) are necessary to prove effectiveness and safety of RDN in these patients. By modulating sympathetic activity, RDN has the potential to provide benefit in a variety of diseases, but these concepts have to be evaluated in well-designed prospective controlled clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.

    Article  PubMed  CAS  Google Scholar 

  2. Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125(13):1635–42.

    Article  PubMed  Google Scholar 

  3. DiBona GF. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol. 2005;289(3):R633–41.

    Article  PubMed  CAS  Google Scholar 

  4. Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Böhm M, Krum H. Sympatho-renal axis in chronic disease. Clin Res Cardiol. 2011;100(12):1049–57.

    Article  PubMed  Google Scholar 

  5. Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13(6 Pt 2):99S–105S.

    Article  PubMed  CAS  Google Scholar 

  6. Investigators SH-. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911–7.

    Article  Google Scholar 

  7. •• The Symplicity HTN-2 Investigators, Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9. Landmark trial investigating the effects of renal denervation on blood pressure in resistant hypertension in a randomized controlled study design.

    Article  PubMed  Google Scholar 

  8. DiBona GF. Sympathetic nervous system and the kidney in hypertension. Curr Opin Nephrol Hypertens. 2002;11(2):197–200.

    Article  PubMed  Google Scholar 

  9. DiBona GF. Neural control of the kidney: past, present, and future. Hypertension. 2003;41(3 Pt 2):621–4.

    Article  PubMed  CAS  Google Scholar 

  10. Converse Jr RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8.

    Article  PubMed  Google Scholar 

  11. O'Hagan KP, Thomas GD, Zambraski EJ. Renal denervation decreases blood pressure in DOCA-treated miniature swine with established hypertension. Am J Hypertens. 1990;3(1):62–4.

    PubMed  Google Scholar 

  12. Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension. 1995;25(4 Pt 2):893–7.

    Article  PubMed  CAS  Google Scholar 

  13. Mancia G, Bousquet P, Elghozi JL, Esler M, Grassi G, Julius S, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25(5):909–20.

    Article  PubMed  CAS  Google Scholar 

  14. Norman Jr RA, Murphy WR, Dzielak DJ, Khraibi AA, Carroll RG. Role of the renal nerves in one-kidney, one clip hypertension in rats. Hypertension. 1984;6(5):622–6.

    Article  PubMed  Google Scholar 

  15. Page IH, Heuer GJ. The effect of renal denervation on the level of arterial blood pressure and renal function in essential hypertension. J Clin Invest. 1935;14(1):27–30.

    Article  PubMed  CAS  Google Scholar 

  16. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152(16):1501–4.

    Article  PubMed  CAS  Google Scholar 

  17. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

    Article  PubMed  Google Scholar 

  18. Krum H, Schlaich M, Sobotka P, Esler M, Mahfoud F, Böhm M, et al. TCT-12 long-term follow-up of catheter-based renal denervation for resistant hypertension confirms durable blood pressure reduction. J Am Coll Cardiol. 2012. doi:10.1016/j.jacc.2012.08.017.

  19. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4.

    Article  PubMed  CAS  Google Scholar 

  20. Esler MD, Krum H, Schlaich M, Schmieder RE, Böhm M, Sobotka PA, et al. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126(25):2976–82.

    Article  PubMed  CAS  Google Scholar 

  21. Ukena C, Cremers B, Ewen S, Böhm M, Mahfoud F. Non-response after renal denervation: Who is the ideal candidate? EuroIntervention 2013. doi:10.4244/EIJV9SRA0.

  22. Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60(2):419–24.

    Article  PubMed  CAS  Google Scholar 

  23. Vonend O, Antoch G, Rump LC, Blondin D. Secondary rise in blood pressure after renal denervation. Lancet. 2012;380(9843):778.

    Article  PubMed  Google Scholar 

  24. Kaltenbach B, Id D, Franke JC, Sievert H, Hennersdorf M, Maier J, et al. Renal artery stenosis after renal sympathetic denervation. J Am Coll Cardiol. 2012;60(25):2694–5.

    Article  PubMed  Google Scholar 

  25. • Persu A, Renkin J, Thijs L, Staessen JA. Renal denervation: ultima ratio or standard in treatment-resistant hypertension. Hypertension. 2012;60(3):596–606. Critical review of the current data and open questions in renal denervation.

    Article  PubMed  CAS  Google Scholar 

  26. Mancia G, Parati G. Office compared with ambulatory blood pressure in assessing response to antihypertensive treatment: a meta-analysis. J Hypertens. 2004;22(3):435–45.

    Article  PubMed  CAS  Google Scholar 

  27. Vaclavik J, Sedlak R, Plachy M, Navratil K, Plasek J, Jarkovsky J, et al. Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. Hypertension. 2011;57(6):1069–75.

    Article  PubMed  CAS  Google Scholar 

  28. Kandzari DE, Bhatt DL, Sobotka PA, O'Neill WW, Esler M, Flack JM, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol. 2012;35(9):528–35.

    Article  PubMed  Google Scholar 

  29. Mahfoud F, Vonend O, Bruck H, Clasen W, Eckert S, Frye B, et al. Expert consensus statement on interventional renal sympathetic denervation for hypertension treatment. Dtsch Med Wochenschr. 2011;136(47):2418.

    Article  PubMed  CAS  Google Scholar 

  30. Schmieder RE, Redon J, Grassi G, Kjeldsen SE, Mancia G, Narkiewicz K, et al. ESH position paper: renal denervation - an interventional therapy of resistant hypertension. J Hypertens. 2012;30(5):837–41.

    Article  PubMed  CAS  Google Scholar 

  31. Pathak A, Girerd X, Azizi M, Benamer H, Halimi JM, Lantelme P, et al. Expert consensus: Renal denervation for the treatment of hypertension. Diagn Interv Imaging. 2012;93(5):386–94.

    Article  PubMed  Google Scholar 

  32. •• Mahfoud F, Lüscher T, Andersson B, Baumgartner I, Cifkova R, Dimario C, et al. Expert consensus document from the European Society of Cardiology on catheter-based renal denervation. Eur Heart J 2013. doi:10.1093/eurheartj/eht154. Recommendations on the use of renal denervation by the European Society of Cardiology.

  33. Kaltenbach B, Franke J, Bertog SC, Steinberg DH, Hofmann I, Sievert H. Renal sympathetic denervation as second-line therapy in mild resistant hypertension: a pilot study. Catheter Cardiovasc Interv. 2013;81(2):335–9.

    Article  PubMed  Google Scholar 

  34. Ukena C, Mahfoud F, Spies A, Kindermann I, Linz D, Cremers B, et al. Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension. Int J Cardiol 2012. doi:10.1016/j.ijcard.2012.07.027.

  35. Ukena C, Mahfoud F, Kindermann I, Barth C, Lenski M, Kindermann M, et al. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2011;58(11):1176–82.

    Article  PubMed  Google Scholar 

  36. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60(13):1163–70.

    Article  PubMed  Google Scholar 

  37. Vollmann D, Sossalla S, Schroeter MR, Zabel M. Renal artery ablation instead of pulmonary vein ablation in a hypertensive patient with symptomatic, drug-resistant, persistent atrial fibrillation. Clin Res Cardiol. 2013;102(4):315–8.

    Article  PubMed  Google Scholar 

  38. Ahmed H, Miller MA, Dukkipati SR, Cammack S, Koruth JS, Gangireddy S, et al. Adjunctive renal sympathetic denervation to modify hypertension as upstream therapy in the treatment of atrial fibrillation (H-FIB) study: Clinical Background and Study Design. J Cardiovasc Electrophysiol. 2013. doi:10.1111/jce.12095.

  39. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60(1):172–8.

    Article  PubMed  CAS  Google Scholar 

  40. Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR, et al. Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension. 2013;61(1):225–31.

    Article  PubMed  CAS  Google Scholar 

  41. • Witkowski A, Prejbisz A, Florczak E, Kadziela J, Sliwinski P, Bielen P, et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58(4):559–65. First study investigating the effects of renal denervation on the severity of obstructive sleep apnea.

    Article  PubMed  CAS  Google Scholar 

  42. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DA. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108(25):3097–101.

    Article  PubMed  CAS  Google Scholar 

  43. •• Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940–6. By describing improvements of glucose metablolism Mahfoud et al. were the first to report non–blood pressure related effects after renal denervation.

    Article  PubMed  CAS  Google Scholar 

  44. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73(4):615–21.

    Article  PubMed  CAS  Google Scholar 

  45. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54(5):375–85.

    Article  PubMed  CAS  Google Scholar 

  46. Gheorghiade M, Colucci WS, Swedberg K. Beta-blockers in chronic heart failure. Circulation. 2003;107(12):1570–5.

    Article  PubMed  Google Scholar 

  47. Udelson JE. Ventricular remodeling in heart failure and the effect of beta-blockade. Am J Cardiol. 2004;93(9A):43B–8B.

    Article  PubMed  CAS  Google Scholar 

  48. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9.

    Article  PubMed  Google Scholar 

  49. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847.

    Article  PubMed  Google Scholar 

  50. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162(3):189–92.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Christian Ukena, Felix Mahfoud, and Michael Böhm are supported by the Ministry of Science and Economy of the Saarland. All authors are supported by the Deutsche Forschungsgemeinschaft (KFO 196). Felix Mahfoud and Sebastian Ewen are supported by Deutsche Hochdruckliga und Deutsche Gesellschaft für Kardiologie.

Conflict of Interest

Christian Ukena, Felix Mahfoud, and Michael Böhm have received speaker honoraria from Medtronic/Ardian, St. Jude Medical, and/or Cordis.

Ulrich Laufs and Bodo Cremers have received speaker honorarium from Medtronic.

Sebastian Ewen declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Ukena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ukena, C., Mahfoud, F., Ewen, S. et al. Renal Denervation in the Treatment of Hypertension. Curr Hypertens Rep 15, 363–369 (2013). https://doi.org/10.1007/s11906-013-0363-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0363-2

Keywords

Navigation