Skip to main content

Diabetes and Metabolic Syndrome

  • Chapter
  • First Online:
Renal Denervation

Abstract

Catheter-based renal denervation (RDN) reduces sympathetic nerve activity and blood pressure in patients with resistant hypertension [13]. Increased central sympathetic activity is a main contributor to the pathophysiology of several important chronic cardiovascular diseases, including diabetes and the metabolic syndrome. A body of preclinical and clinical evidence indicates the profound relationship between sympathetic overactivity and metabolic disorders. Indeed several recently published pilot studies and case reports suggest beneficial effects of RDN on glucose metabolism in patients with resistant hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DA. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108(25):3097–101.

    Article  CAS  PubMed  Google Scholar 

  2. Vollenweider P, Tappy L, Randin D, Schneiter P, Jequier E, Nicod P, Scherrer U. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest. 1993;92(1):147–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mancia G, Bousquet P, Elghozi JL, Esler M, Grassi G, Julius S, Reid J, Van Zwieten PA. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25(5):909–20.

    Article  CAS  PubMed  Google Scholar 

  4. Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA. 1996;275(20):1571–6.

    Article  CAS  PubMed  Google Scholar 

  5. Lima NK, Abbasi F, Lamendola C, Reaven GM. Prevalence of insulin resistance and related risk factors for cardiovascular disease in patients with essential hypertension. Am J Hypertens. 2009;22(1):106–11.

    Article  CAS  PubMed  Google Scholar 

  6. Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet. 1980;1(8183):1373–6.

    Article  CAS  PubMed  Google Scholar 

  7. Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med. 2004;164(19):2147–55.

    Article  PubMed  Google Scholar 

  8. The Emerging Risk Factors C. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  Google Scholar 

  9. Gerstein HC. More insights on the dysglycaemia-cardiovascular connection. Lancet. 2010;375(9733):2195–6.

    Article  PubMed  Google Scholar 

  10. Brand-Miller J, Dickinson S, Barclay A, Celermajer D. The glycemic index and cardiovascular disease risk. Curr Atheroscler Rep. 2007;9(6):479–85.

    Article  PubMed  Google Scholar 

  11. Hall JL, Matter CM, Wang X, Gibbons GH. Hyperglycemia inhibits vascular smooth muscle cell apoptosis through a protein kinase C-dependent pathway. Circ Res. 2000;87(7):574–80.

    Article  CAS  PubMed  Google Scholar 

  12. de la Sierra A, Segura J, Banegas JR, Gorostidi M, de la Cruz JJ, Armario P, Oliveras A, Ruilope LM. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension. 2011;57(5):898–902.

    Article  PubMed  Google Scholar 

  13. Grassi G, Dell’Oro R, Facchini A, Quarti Trevano F, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22(12):2363–9.

    Article  CAS  PubMed  Google Scholar 

  14. Grassi G, Seravalle G, Quarti-Trevano F, Scopelliti F, Dell’Oro R, Bolla G, Mancia G. Excessive sympathetic activation in heart failure with obesity and metabolic syndrome: characteristics and mechanisms. Hypertension. 2007;49(3):535–41.

    Article  CAS  PubMed  Google Scholar 

  15. Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension. 1993;21(5):618–23.

    Article  CAS  PubMed  Google Scholar 

  16. Julius S, Gudbrandsson T, Jamerson K, Tariq Shahab S, Andersson O. The hemodynamic link between insulin resistance and hypertension. J Hypertens. 1991;9(11):983–6.

    Article  CAS  PubMed  Google Scholar 

  17. Schlaich MP, Hering D, Sobotka P, Krum H, Lambert GW, Lambert E, Esler MD. Effects of renal denervation on sympathetic activation, blood pressure, and glucose metabolism in patients with resistant hypertension. Front Physiol. 2012;3:10.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation. 1997;96(11):4104–13.

    Article  CAS  PubMed  Google Scholar 

  19. Bardgett ME, McCarthy JJ, Stocker SD. Glutamatergic receptor activation in the rostral ventrolateral medulla mediates the sympathoexcitatory response to hyperinsulinemia. Hypertension. 2010;55(2):284–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.

    Article  CAS  PubMed  Google Scholar 

  21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Sullivan G, Yue LQ, Katz A, Quon MJ. QUICKI is a useful index of insulin sensitivity in subjects with hypertension. Am J Physiol Endocrinol Metab. 2003;284(4):E804–12.

    CAS  PubMed  Google Scholar 

  23. Yakubu-Madus FE, Johnson WT, Zimmerman KM, Dananberg J, Steinberg MI. Metabolic and hemodynamic effects of moxonidine in the Zucker diabetic fatty rat model of type 2 diabetes. Diabetes. 1999;48(5):1093–100.

    Article  CAS  PubMed  Google Scholar 

  24. Rocchini AP, Mao HZ, Babu K, Marker P, Rocchini AJ. Clonidine prevents insulin resistance and hypertension in obese dogs. Hypertension. 1999;33(1 Pt 2):548–53.

    Article  CAS  PubMed  Google Scholar 

  25. Prichard BN, Jager BA, Luszick JH, Kuster LJ, Verboom CN, Hughes PR, Sauermann W, Kuppers HE. Placebo-controlled comparison of the efficacy and tolerability of once-daily moxonidine and enalapril in mild to moderate essential hypertension. Blood Press. 2002;11(3):166–72.

    Article  CAS  PubMed  Google Scholar 

  26. Lenski M, Mahfoud F, Razouk A, Ukena C, Lenski D, Barth C, Linz D, Laufs U, Kindermann I, Böhm M. Orthostatic function after renal sympathetic denervation in patients with resistant hypertension. Int J Cardiol 2013;169:418–24.

    Article  PubMed  Google Scholar 

  27. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–64.

    Article  CAS  PubMed  Google Scholar 

  28. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, Hoppe UC, Vonend O, Rump LC, Sobotka PA, Krum H, Esler M, Böhm M. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940–6.

    Article  CAS  PubMed  Google Scholar 

  29. Schlaich MP, Straznicky N, Grima M, Ika-Sari C, Dawood T, Mahfoud F, Lambert E, Chopra R, Socratous F, Hennebry S, Eikelis N, Böhm M, Krum H, Lambert G, Esler MD, Sobotka PA. Renal denervation: a potential new treatment modality for polycystic ovary syndrome? J Hypertens. 2011;29(5):991–6.

    Article  CAS  PubMed  Google Scholar 

  30. Luippold G, Beilharz M, Muhlbauer B. Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. NDT. 2004;19(2):342–7.

    PubMed  Google Scholar 

  31. Strojek K, Grzeszczak W, Gorska J, Leschinger MI, Ritz E. Lowering of microalbuminuria in diabetic patients by a sympathicoplegic agent: novel approach to prevent progression of diabetic nephropathy? J Am Soc Nephrol. 2001;12(3):602–5.

    CAS  PubMed  Google Scholar 

  32. Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, Sobotka PA, Krum H, Scheller B, Schlaich M, Laufs U, Böhm M. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60(2):419–24.

    Article  CAS  PubMed  Google Scholar 

  33. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation. 1998;98(8):772–6.

    Article  CAS  PubMed  Google Scholar 

  34. Witkowski A, Prejbisz A, Florczak E, Kadziela J, Sliwinski P, Bielen P, Michalowska I, Kabat M, Warchol E, Januszewicz M, Narkiewicz K, Somers VK, Sobotka PA, Januszewicz A. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58(4):559–65.

    Article  CAS  PubMed  Google Scholar 

  35. Krum H, Barman N, Schlaich M, Sobotka P, Esler M, Mahfoud F, Böhm M, Dunlap M. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911–7.

    Article  CAS  Google Scholar 

  36. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9.

    Article  PubMed  Google Scholar 

  37. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Mahfoud MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Mahfoud, F., Ewen, S., Böhm, M. (2015). Diabetes and Metabolic Syndrome. In: Heuser, R., Schlaich, M., Sievert, H. (eds) Renal Denervation. Springer, London. https://doi.org/10.1007/978-1-4471-5223-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5223-1_23

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5222-4

  • Online ISBN: 978-1-4471-5223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics