Skip to main content

Advertisement

Log in

Soluble Biomarkers of Cognition and Depression in Adults with HIV Infection in the Combination Therapy Era

  • Central Nervous System and Cognition (S Spudich, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cognitive impairment and depression continue to be common among people with HIV (PWH) in the combination antiretroviral therapy (ART) era. A better understanding of the biological mechanisms that may underpin these disorders is needed. The purpose of this review is to describe published findings on soluble biomarkers from blood and cerebrospinal fluid (CSF) that have been associated with either cognition or depression among PWH in the setting of ART.

Recent Findings

Several biomarkers, including those that reflect viral persistence, monocyte/macrophage activation, and other processes, are associated with cognition and depressive symptoms. Some but not all results have been consistent across multiple studies. More research has been published on biomarkers of cognition relative to biomarkers of depression (particularly from CSF).

Summary

More studies are needed that investigate multiple biomarkers to understand the role of distinct but additive pathways in these disorders and to guide the development of new therapies. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have beenhighlighted as:• Of importance

  1. Heaton RK, Clifford DB, Franklin DR Jr, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75:2087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sacktor N, Skolasky RL, Seaberg E, et al. Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology. 2016;86:334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Liu M, Lu Q, et al. Global prevalence and burden of HIV-associated neurocognitive disorder: a meta-analysis. Neurology. 2020;95:e2610–21.

    Article  CAS  PubMed  Google Scholar 

  4. Wei J, Hou J, Su B, et al. The prevalence of Frascati-criteria-based HIV-associated neurocognitive disorder (HAND) in HIV-infected adults: a systematic review and meta-analysis. Front Neurol. 2020;11:581346.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ettenhofer ML, Foley J, Castellon SA, Hinkin CH. Reciprocal prediction of medication adherence and neurocognition in HIV/AIDS. Neurology. 2010;74:1217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cohen MS, Chen YQ, McCauley M, et al. Antiretroviral therapy for the prevention of HIV-1 transmission. N Engl J Med. 2016;375:830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strategies for Management of Antiretroviral Therapy Study G, El-Sadr WM, Lundgren J, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006; 355:2283–96.

  8. Tozzi V, Balestra P, Galgani S, et al. Neurocognitive performance and quality of life in patients with HIV infection. AIDS Res Hum Retroviruses. 2003;19:643–52.

    Article  PubMed  Google Scholar 

  9. Saylor D, Nakigozi G, Nakasujja N, et al. HIV associated neurocognitive disorder leads to death. Abstract 425. 2019 Conference on Retroviruses and Opportunistic Infections, Seattle, Washington, March 4–7; 2019.

  10. Tozzi V, Balestra P, Serraino D, et al. Neurocognitive impairment and survival in a cohort of HIV-infected patients treated with HAART. AIDS Res Hum Retroviruses. 2005;21:706–13.

    Article  PubMed  Google Scholar 

  11. Bing EG, Burnam MA, Longshore D, et al. Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Arch Gen Psychiatry. 2001;58:721–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ciesla JA, Roberts JE. Meta-analysis of the relationship between HIV infection and risk for depressive disorders. Am J Psychiatry. 2001;158:725–30.

    Article  CAS  PubMed  Google Scholar 

  13. Cook JA, Burke-Miller JK, Steigman PJ, et al. Prevalence, comorbidity, and correlates of psychiatric and substance use disorders and associations with HIV risk behaviors in a multisite cohort of women living with HIV. AIDS Behav. 2018;22:3141–54.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubin LH, Maki PM. HIV, depression, and cognitive impairment in the era of effective antiretroviral therapy. Curr HIV/AIDS Rep. 2019;16:82–95.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Do AN, Rosenberg ES, Sullivan PS, et al. Excess burden of depression among HIV-infected persons receiving medical care in the united states: data from the medical monitoring project and the behavioral risk factor surveillance system. PloS one. 2014;9:e92842.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Horberg MA, Silverberg MJ, Hurley LB, et al. Effects of depression and selective serotonin reuptake inhibitor use on adherence to highly active antiretroviral therapy and on clinical outcomes in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;47:384–90.

    Article  CAS  PubMed  Google Scholar 

  17. Kacanek D, Jacobson DL, Spiegelman D, Wanke C, Isaac R, Wilson IB. Incident depression symptoms are associated with poorer HAART adherence: a longitudinal analysis from the Nutrition for Healthy Living study. J Acquir Immune Defic Syndr. 2010;53:266–72.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ickovics JR, Hamburger ME, Vlahov D, et al. Mortality, CD4 cell count decline, and depressive symptoms among HIV-seropositive women: longitudinal analysis from the HIV Epidemiology Research Study. JAMA, J Am Med Assoc. 2001;285:1466–74.

    Article  CAS  Google Scholar 

  19. Paul R, Apornpong T, Prasitsuebsai W, et al. Cognition, emotional health, and immunological markers in children with long-term nonprogressive HIV. J Acquir Immune Defic Syndr. 2018;77:417–26.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ndung’u T, McCune JM, Deeks SG. Why and where an HIV cure is needed and how it might be achieved. Nature. 2019;576:397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shiramizu B, Gartner S, Williams A, et al. Circulating proviral HIV DNA and HIV-associated dementia. AIDS. 2005;19:45–52.

    Article  PubMed  Google Scholar 

  22. Shiramizu B, Williams AE, Shikuma C, Valcour V. Amount of HIV DNA in peripheral blood mononuclear cells is proportional to the severity of HIV-1-associated neurocognitive disorders. J Neuropsychiatry Clin Neurosci. 2009;21:68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Valcour VG, Shiramizu BT, Sithinamsuwan P, et al. HIV DNA and cognition in a Thai longitudinal HAART initiation cohort: the SEARCH 001 Cohort Study. Neurology. 2009;72:992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spudich S, Robertson KR, Bosch RJ, et al. Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J Clin Invest. 2019;129:3339–46.

  25. Cysique LA, Hey-Cunningham WJ, Dermody N, Chan P, Brew BJ, Koelsch KK. Peripheral blood mononuclear cells HIV DNA levels impact intermittently on neurocognition. PloS one. 2015;10:e0120488.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Besson GJ, Lalama CM, Bosch RJ, et al. HIV-1 DNA decay dynamics in blood during more than a decade of suppressive antiretroviral therapy. Clin Infect Dis. 2014;59:1312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruhanya V, Jacobs GB, Nyandoro G, et al. Peripheral blood lymphocyte proviral DNA predicts neurocognitive impairment in clade C HIV. J Neurovirol. 2020;26:920–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson AM, Munoz-Moreno JA, McClernon DR, et al. Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis. 2017;215:105–13.

    Article  CAS  PubMed  Google Scholar 

  29. Hughes MD, Johnson VA, Hirsch MS, et al. Monitoring plasma HIV-1 RNA levels in addition to CD4+ lymphocyte count improves assessment of antiretroviral therapeutic response. ACTG 241 Protocol Virology Substudy Team. Ann Intern Med. 1997;126:929–38.

    Article  CAS  PubMed  Google Scholar 

  30. Henderson LJ, Johnson TP, Smith BR, et al. Presence of Tat and transactivation response element in spinal fluid despite antiretroviral therapy. AIDS. 2019;33(Suppl 2):S145–57.

    Article  CAS  PubMed  Google Scholar 

  31. Anderson AM, Tyor WR, Mulligan MJ, Waldrop-Valverde D, Lennox JL, Letendre SL. HIV p24 antigen is quantifiable at low concentrations in human cerebrospinal fluid with digital ELISA and is associated with decreased neuropsychological performance. Clin Infect Dis. 2018.

  32. Letendre S, Bharti A, Perez-Valero I, et al. Higher anti-cytomegalovirus immunoglobulin G concentrations are associated with worse neurocognitive performance during suppressive antiretroviral therapy. Clin Infect Dis. 2018;67:770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bharti AR, McCutchan A, Deutsch R, et al. Latent Toxoplasma infection and higher Toxoplasma gondii immunoglobulin G levels are associated with worse neurocognitive functioning in HIV-infected adults. Clin Infect Dis. 2016;63:1655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349:692–5.

    Article  CAS  PubMed  Google Scholar 

  35. Nockher WA, Bergmann L, Scherberich JE. Increased soluble CD14 serum levels and altered CD14 expression of peripheral blood monocytes in HIV-infected patients. Clin Exp Immunol. 1994;98:369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cauwels A, Frei K, Sansano S, et al. The origin and function of soluble CD14 in experimental bacterial meningitis. J Immunol. 1999;162:4762–72.

    Article  CAS  PubMed  Google Scholar 

  37. Lyons JL, Uno H, Ancuta P, et al. Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. J Acquir Immune Defic Syndr. 2011;57:371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamat A, Lyons JL, Misra V, et al. Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr. 2012;60:234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Imp BM, Rubin LH, Tien PC, et al. Monocyte activation is associated with worse cognitive performance in HIV-infected women with virologic suppression. J Infect Dis. 2017;215:114–21.

    Article  CAS  PubMed  Google Scholar 

  40. Manner IW, Baekken M, Kvale D, et al. Markers of microbial translocation predict hypertension in HIV-infected individuals. HIV Med. 2013;14:354–61.

    Article  CAS  PubMed  Google Scholar 

  41. Hagberg L, Cinque P, Gisslen M, et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther. 2010;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yilmaz A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslen M. Persistent intrathecal immune activation in HIV-1-infected individuals on antiretroviral therapy. J Acquir Immune Defic Syndr. 2008;47:168–73.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Eden A, Marcotte TD, Heaton RK, et al. Increased intrathecal immune activation in virally suppressed HIV-1 infected patients with neurocognitive impairment. PloS one. 2016;11:e0157160.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC. Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS. 2013;27:1387–95.

    Article  CAS  PubMed  Google Scholar 

  45. Krebs SJ, Slike BM, Sithinamsuwan P, et al. Sex differences in soluble markers vary before and after the initiation of antiretroviral therapy in chronically HIV-infected individuals. AIDS. 2016;30:1533–42.

    Article  CAS  PubMed  Google Scholar 

  46. Kuehne LK, Reiber H, Bechter K, Hagberg L, Fuchs D. Cerebrospinal fluid neopterin is brain-derived and not associated with blood-CSF barrier dysfunction in non-inflammatory affective and schizophrenic spectrum disorders. J Psychiatr Res. 2013;47:1417–22.

    Article  PubMed  Google Scholar 

  47. Wada NI, Jacobson LP, Margolick JB, et al. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS. 2015;29:463–71.

    Article  CAS  PubMed  Google Scholar 

  48. Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol. 1988;23:339–46.

    Article  CAS  PubMed  Google Scholar 

  49. Burlacu R, Umlauf A, Marcotte TD, et al. Plasma CXCL10 correlates with HAND in HIV-infected women. J Neurovirol. 2020;26:23–31.

    Article  CAS  PubMed  Google Scholar 

  50. Sevigny JJ, Albert SM, McDermott MP, et al. Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology. 2004;63:2084–90.

    Article  CAS  PubMed  Google Scholar 

  51. Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59:371–8.

    Article  CAS  PubMed  Google Scholar 

  52. Sas AR, Bimonte-Nelson H, Smothers CT, Woodward J, Tyor WR. Interferon-alpha causes neuronal dysfunction in encephalitis. J Neurosci. 2009;29:3948–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fritz-French C, Tyor W. Interferon-alpha (IFNalpha) neurotoxicity. Cytokine Growth Factor Rev. 2012;23:7–14.

    Article  CAS  PubMed  Google Scholar 

  54. Anderson AM, Fennema-Notestine C, Umlauf A, et al. CSF biomarkers of monocyte activation and chemotaxis correlate with magnetic resonance spectroscopy metabolites during chronic HIV disease. J Neurovirol. 2015;21:559–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rho MB, Wesselingh S, Glass JD, et al. A potential role for interferon-alpha in the pathogenesis of HIV-associated dementia. Brain Behav Immun. 1995;9:366–77.

    Article  CAS  PubMed  Google Scholar 

  56. Lehmann C, Taubert D, Jung N, et al. Preferential upregulation of interferon-alpha subtype 2 expression in HIV-1 patients. AIDS Res Hum Retroviruses. 2009;25:577–81.

    Article  CAS  PubMed  Google Scholar 

  57. Cassol E, Misra V, Morgello S, Gabuzda D. Applications and limitations of inflammatory biomarkers for studies on neurocognitive impairment in HIV infection. J Neuroimmune Pharmacol. 2013;8:1087–97.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rubin LH, Benning L, Keating SM, et al. Variability in C-reactive protein is associated with cognitive impairment in women living with and without HIV: a longitudinal study. J Neurovirol. 2018;24:41–51.

    Article  CAS  PubMed  Google Scholar 

  59. Gonzalez E, Rovin BH, Sen L, et al. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci USA. 2002;99:13795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Agsalda-Garcia MA, Sithinamsuwan P, Valcour VG, et al. Brief Report: CD14+ enriched peripheral cells secrete cytokines unique to HIV-associated neurocognitive disorders. J Acquir Immune Defic Syndr. 2017;74:454–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Majumder S, Zhou LZ, Ransohoff RM. Transcriptional regulation of chemokine gene expression in astrocytes. J Neurosci Res. 1996;45:758–69.

    Article  CAS  PubMed  Google Scholar 

  62. Stacey AR, Norris PJ, Qin L, et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol. 2009;83:3719–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fabbiani M, Muscatello A, Perseghin P, et al. Brief Report: Peripheral monocyte/macrophage phenotypes associated with the evolution of cognitive performance in HIV-infected patients. J Acquir Immune Defic Syndr. 2017;76:219–24.

    Article  CAS  PubMed  Google Scholar 

  64. Robertson K, Landay A, Miyahara S, et al. Limited correlation between systemic biomarkers and neurocognitive performance before and during HIV treatment. J Neurovirol. 2020;26:107–13.

    Article  CAS  PubMed  Google Scholar 

  65. Grauer OM, Reichelt D, Gruneberg U, et al. Neurocognitive decline in HIV patients is associated with ongoing T-cell activation in the cerebrospinal fluid. Ann Clin Transl Neurol. 2015;2:906–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schrier RD, Hong S, Crescini M, et al. Cerebrospinal fluid (CSF) CD8+ T-cells that express interferon-gamma contribute to HIV associated neurocognitive disorders (HAND). PloS one. 2015;10:e0116526.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Van Geel WJ, Rosengren LE, Verbeek MM. An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods. 2005;296:179–85.

    Article  PubMed  Google Scholar 

  68. Yilmaz A, Blennow K, Hagberg L, et al. Neurofilament light chain protein as a marker of neuronal injury: review of its use in HIV-1 infection and reference values for HIV-negative controls. Expert Rev Mol Diagn. 2017;17:761–70.

    Article  CAS  PubMed  Google Scholar 

  69. Abdulle S, Mellgren A, Brew BJ, et al. CSF neurofilament protein (NFL) – a marker of active HIV-related neurodegeneration. J Neurol. 2007;254:1026–32.

    Article  CAS  PubMed  Google Scholar 

  70. Guha D, Mukerji SS, Chettimada S, et al. CSF extracellular vesicles and neurofilament light protein as biomarkers of CNS injury in HIV-infected patients on antiretroviral therapy. AIDS. 2018.

  71. Gisslen M, Price RW, Andreasson U, et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine. 2016;3:135–40.

    Article  PubMed  Google Scholar 

  72. Anderson AM, Easley KA, Kasher N, et al. Neurofilament light chain in blood is negatively associated with neuropsychological performance in HIV-infected adults and declines with initiation of antiretroviral therapy. J Neurovirol. 2018;24:695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol. 2019;25:702–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun B, Fernandes N, Pulliam L. Profile of neuronal exosomes in HIV cognitive impairment exposes sex differences. AIDS. 2019;33:1683–92.

    Article  PubMed  Google Scholar 

  75. Lasser M, Tiber J, Lowery LA. The role of the microtubule cytoskeleton in neurodevelopmental disorders. Front Cell Neurosci. 2018;12:165.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shiomura Y, Hirokawa N. Colocalization of microtubule-associated protein 1A and microtubule-associated protein 2 on neuronal microtubules in situ revealed with double-label immunoelectron microscopy. J Cell Biol. 1987;104:1575–8.

    Article  CAS  PubMed  Google Scholar 

  77. Shiomura Y, Hirokawa N. The molecular structure of microtubule-associated protein 1A (MAP1A) in vivo and in vitro. An immunoelectron microscopy and quick-freeze, deep-etch study. J Neurosci. 1987;7:1461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Avdoshina V, Mahoney M, Gilmore SF, et al. HIV influences microtubule associated protein-2: potential marker of HIV-associated neurocognitive disorders. AIDS. 2020;34:979–88.

    Article  CAS  PubMed  Google Scholar 

  79. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–71.

    Article  CAS  PubMed  Google Scholar 

  80. Hoenigl M, de Oliveira MF, Perez-Santiago J, et al. (1–>3)-beta-D-glucan levels correlate with neurocognitive functioning in HIV-infected persons on suppressive antiretroviral therapy: a cohort study. Medicine. 2016;95:e3162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Munoz-Nevarez LA, Imp BM, Eller MA, et al. Monocyte activation, HIV, and cognitive performance in East Africa. J Neurovirol. 2020;26:52–9.

    Article  CAS  PubMed  Google Scholar 

  82. Campbell JD, Moore D, Degerman R, et al. HIV-infected ugandan adults taking antiretroviral therapy with CD4 counts >200 cells/muL who discontinue cotrimoxazole prophylaxis have increased risk of malaria and diarrhea. Clin Infect Dis. 2012;54:1204–11.

    Article  CAS  PubMed  Google Scholar 

  83. Liang T, Ma C, Wang T, et al. Galectin-9 promotes neuronal restoration via binding TLR-4 in a rat intracerebral hemorrhage model. Neuromolecular Med. 2020.

  84. Premeaux TA, D’Antoni ML, Abdel-Mohsen M, et al. Elevated cerebrospinal fluid Galectin-9 is associated with central nervous system immune activation and poor cognitive performance in older HIV-infected individuals. J Neurovirol. 2019;25:150–61.

    Article  CAS  PubMed  Google Scholar 

  85. Bandaru VV, Mielke MM, Sacktor N, et al. A lipid storage-like disorder contributes to cognitive decline in HIV-infected subjects. Neurology. 2013;81:1492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bora A, Ubaida Mohien C, Chaerkady R, et al. Identification of putative biomarkers for HIV-associated neurocognitive impairment in the CSF of HIV-infected patients under cART therapy determined by mass spectrometry. J Neurovirol. 2014;20:457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS. 2014.

  88. Cysique LA, Brew BJ. Vascular cognitive impairment and HIV-associated neurocognitive disorder: a new paradigm. J Neurovirol. 2019;25:710–21.

    Article  PubMed  Google Scholar 

  89. Kallianpur AR, Gittleman H, Letendre S, et al. Cerebrospinal fluid ceruloplasmin, haptoglobin, and vascular endothelial growth factor are associated with neurocognitive impairment in adults with HIV infection. Mol Neurobiol. 2019;56:3808–18.

    Article  CAS  PubMed  Google Scholar 

  90. Montoya JL, Iudicello J, Fazeli PL, et al. Elevated markers of vascular remodeling and arterial stiffness are associated with neurocognitive function in older HIV+ adults on suppressive antiretroviral therapy. J Acquir Immune Defic Syndr. 2017;74:134–41.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cantres-Rosario Y, Plaud-Valentin M, Gerena Y, Skolasky RL, Wojna V, Melendez LM. Cathepsin B and cystatin B in HIV-seropositive women are associated with infection and HIV-1-associated neurocognitive disorders. AIDS. 2013;27:347–56.

    Article  CAS  PubMed  Google Scholar 

  92. Hileman CO, Azzam S, Schlatzer D, et al. Plasma citrate and succinate are associated with neurocognitive impairment in older people with HIV. Clin Infect Dis. 2021.

  93. Kalayjian RC, Robertson KR, Albert JM, et al. Plasma cystatin C associates with HIV-associated neurocognitive disorder but is a poor diagnostic marker in antiretroviral therapy-treated individuals. J Acquir Immune Defic Syndr. 2019;81:e49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marcotte TD, Deutsch R, Michael BD, et al. A concise panel of biomarkers identifies neurocognitive functioning changes in HIV-infected individuals. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacol. 2013.

  95. Rubin LH, Xu Y, Norris PJ, et al. Early inflammatory signatures predict subsequent cognition in long-term virally suppressed women with HIV. Front Integr Neurosci. 2020;14:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hammond ER, Crum RM, Treisman GJ, et al. Persistent CSF but not plasma HIV RNA is associated with increased risk of new-onset moderate-to-severe depressive symptoms; a prospective cohort study. J Neurovirol. 2016;22:479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zuniga JA, Harrison ML, Henneghan A, Garcia AA, Kesler S. Biomarkers panels can predict fatigue, depression and pain in persons living with HIV: a pilot study. Appl Nurs Res. 2020;52:151224.

    Article  PubMed  Google Scholar 

  98. Rivera-Rivera Y, Garcia Y, Toro V, et al. Depression correlates with increased plasma levels of inflammatory cytokines and a dysregulated oxidant/antioxidant balance in HIV-1-infected subjects undergoing antiretroviral therapy. J Clin Cell Immunol .2014; 5.

  99. Norcini Pala A, Steca P, Bagrodia R, et al. Subtypes of depressive symptoms and inflammatory biomarkers: an exploratory study on a sample of HIV-positive patients. Brain Behav Immun. 2016;56:105–13.

    Article  CAS  PubMed  Google Scholar 

  100. Musinguzi K, Obuku A, Nakasujja N, et al. Association between major depressive disorder and pro-inflammatory cytokines and acute phase proteins among HIV-1 positive patients in Uganda. BMC Immunol. 2018;19:1.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Poudel-Tandukar K, Bertone-Johnson ER, Palmer PH, Poudel KC. C-reactive protein and depression in persons with human immunodeficiency virus infection: the Positive Living with HIV (POLH) Study. Brain Behav Immun. 2014;42:89–95.

    Article  CAS  PubMed  Google Scholar 

  102. Lu H, Surkan PJ, Irwin MR, et al. Inflammation and risk of depression in HIV: prospective findings from the Multicenter AIDS Cohort Study. Am J Epidemiol. 2019;188:1994–2003.

  103. Stewart JC, Polanka BM, So-Armah KA, et al. Associations of total, cognitive/affective, and somatic depressive symptoms and antidepressant use with cardiovascular disease-relevant biomarkers in HIV: Veterans Aging Cohort Study. Psychosom Med. 2020;82:461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saloner R, Cherner M, Grelotti DJ, et al. Lower CSF homovanillic acid relates to higher burden of neuroinflammation and depression in people with HIV disease. Brain Behav Immun. 2020;90:353–63.

  105. Ellis R. Higher levels of plasma inflammation biomarkers are associated with depressed mood and quality of life in aging, virally suppressed men, but not women, with HIV. Brain Behav Immun. 2020.

  106. Saloner R, Paolillo EW, Heaton RK, et al. Chronically elevated depressive symptoms interact with acute increases in inflammation to predict worse neurocognition among people with HIV. J Neurovirol. 2021;27:160–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors also gratefully acknowledge funding from the following sources: R21 MH118092, R01 AG062387 (Principal Investigator: A. Anderson) and P30AI050409 (Emory Center for AIDS Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert M. Anderson.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Central Nervous System and Cognition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, A.M., Ma, Q., Letendre, S.L. et al. Soluble Biomarkers of Cognition and Depression in Adults with HIV Infection in the Combination Therapy Era. Curr HIV/AIDS Rep 18, 558–568 (2021). https://doi.org/10.1007/s11904-021-00581-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-021-00581-y

Keywords

Navigation