Skip to main content

Advertisement

Log in

CSF neurofilament protein (NFL) — a marker of active HIV-related neurodegeneration

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background and methods

The light subunit of the neurofilament protein (NFL), a major structural component of myelinated axons, is a sensitive indicator of axonal injury in the central nervous system (CNS) in a variety of neurodegenerative disorders. Cerebrospinal fluid (CSF) NFL concentrations were measured by ELISA (normal < 250 ng/l) in archived samples from 210 HIV-infected patients not taking antiretroviral treatment: 55 with AIDS dementia complex (ADC), 44 with various CNS opportunistic infections/tumours (CNS OIs), 95 without neurological symptoms or signs, and 16 with primary HIV infection (PHI). The effect of highly active antiretroviral treatment (HAART) was studied by repeated CSF sampling in four of the ADC patients initiating treatment.

Results

CSF NFL concentrations were significantly higher in patients with ADC (median 2590 ng/l, IQR 780–7360) and CNS OIs (2315 ng/l, 985–7390 ng/l) than in neuroasymptomatic patients (<250 ng/l, <250–300) or PHI (<250 ng/l, <250–280), p < 0.001. Among patients with ADC, those with more severe disease (stage 2–4) had higher levels than those with milder disease (stage 0.5–1), p < 0.01. CSF NFL declined during HAART to the limit of detection in parallel with virological response and neurological improvement in ADC.CSF NFL concentrations were higher in neuroasymptomatic patients with lower CD4-cell strata than higher, p < 0.001. This increase was less marked than in the ADC patients and noted in 26/58 neuroasymptomatic patients with CD4 counts <200/μl compared to 1/37 with CD4-cells ≥200/μl.

Conclusions

The findings of this study support the value of CSF NFL as a useful marker of ongoing CNS damage in HIV infection. Markedly elevated CSF NFL concentrations in patients without CNS OIs are associated with ADC, follow the grade of severity, and decrease after initiation of effective antiretroviral treatment. Nearly all previously suggested CSF markers of ADC relate to immune activation or HIV viral load that do not directly indicate brain injury. By contrast NFL is a sensitive marker of such injury, and should prove useful in evaluating the presence and activity of ongoing CNS injury in HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacellar H, Munoz A, Miller EN, Cohen BA, Besley D, Selnes OA, Becker JT, McArthur JC (1994) Temporal trends in the incidence of HIV-1-related neurologic diseases: multicenter AIDS cohort study, 1985–992. Neurology 44:1892–900

    PubMed  CAS  Google Scholar 

  2. Dore GJ, McDonald A, Li Y, Kaldor JM, Brew BJ (2003) Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. Aids 17:1539–545

    Article  PubMed  Google Scholar 

  3. Price RW (1995) Management of AIDS dementia complex and HIV-1 infection of the nervous system. Aids 9(Suppl A):S221–36

    PubMed  Google Scholar 

  4. Schacker T, Collier AC, Hughes J, Shea T, Corey L (1996) Clinical and epidemiologic features of primary HIV infection. Ann Intern Med 125:257–64

    PubMed  CAS  Google Scholar 

  5. Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, Abramson I, Atkinson JH, Grant I, McCutchan JA (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Ann Neurol 42:679–88

    Article  PubMed  CAS  Google Scholar 

  6. Gisslen M, Fuchs D, Svennerholm B, Hagberg L (1999) Cerebrospinal fluid viral load, intrathecal immunoactivation, and cerebrospinal fluid monocytic cell count in HIV-1 infection. J Acquir Immune Defic Syndr 21:271–76

    PubMed  CAS  Google Scholar 

  7. McArthur JC, McClernon DR, Cronin MF, Nance-Sproson TE, Saah AJ, St Clair M, Lanier ER (1997) Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42:689–98

    Article  PubMed  CAS  Google Scholar 

  8. Spudich SS, Nilsson AC, Lollo ND, Liegler TJ, Petropoulos CJ, Deeks SG, Paxinos EE, Price RW (2005) Cerebrospinal fluid HIV infection and pleocytosis: Relation to systemic infection and antiretroviral treatment. BMC Infect Dis 5:98

    Article  PubMed  Google Scholar 

  9. Brew BJ, Bhalla RB, Paul M, Gallardo H, McArthur JC, Schwartz MK, Price RW (1990) Cerebrospinal fluid neopterin in human immunodeficiency virus type 1 infection. Ann Neurol 28:556–60

    Article  PubMed  CAS  Google Scholar 

  10. Brew BJ, Pemberton L, Cunningham P, Law MG (1997) Levels of human immunodeficiency virus type 1 RNA in cerebrospinal fluid correlate with AIDS dementia stage. J Infect Dis 175:963–66

    Article  PubMed  CAS  Google Scholar 

  11. Sjogren M, Blomberg M, Jonsson M, Wahlund LO, Edman A, Lind K, Rosengren L, Blennow K, Wallin A (2001) Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res 66:510–16

    Article  PubMed  CAS  Google Scholar 

  12. Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61:1720–725

    PubMed  CAS  Google Scholar 

  13. Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C (1996) Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 67:2013–018

    Article  PubMed  CAS  Google Scholar 

  14. Hagberg L, Fuchs D, Rosengren L, Gisslen M (2000) Intrathecal immune activation is associated with cerebrospinal fluid markers of neuronal destruction in AIDS patients. J Neuroimmunol 102:51–5

    Article  PubMed  CAS  Google Scholar 

  15. Gisslen M, Rosengren L, Hagberg L, Deeks SG, Price RW (2005) Cerebrospinal fluid signs of neuronal damage after antiretroviral treatment interruption in HIV-1 infection. AIDS Res Ther 2:6

    Article  PubMed  CAS  Google Scholar 

  16. (1992) 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep 41:1–9

  17. (1991) Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a Working Group of the American Academy of Neurology AIDS Task Force. Neurology 41:778–85

  18. Cinque P, Cleator GM, Weber T, Monteyne P, Sindic C, Gerna G, van Loon AM, Klapper PE (1998) Diagnosis and clinical management of neurological disorders caused by cytomegalovirus in AIDS patients. European Union Concerted Action on Virus Meningitis and Encephalitis. J Neurovirol 4:120–32

    Article  PubMed  CAS  Google Scholar 

  19. Weber T, Klapper PE, Cleator GM, Bodemer M, Luke W, Knowles W, Cinque P, Van Loon AM, Grandien M, Hammarin AL, Ciardi M, Bogdanovic G (1997) Polymerase chain reaction for detection of JC virus DNA in cerebrospinal fluid: a quality control study. European Union concerted action on viral meningitis and encephalitis. J Virol Methods 69:231–37

    Article  PubMed  CAS  Google Scholar 

  20. Price RW, Brew BJ (1988) The AIDS dementia complex. J Infect Dis 158:1079–083

    PubMed  CAS  Google Scholar 

  21. Hagberg L, Andersson L-M, Abdulle S, Gisslen M (2004) Clinical application of cerebrospinal fluid neopterin concentrations in HIV infection. Pteridines 15:102–06

    CAS  Google Scholar 

  22. Price RW, Yiannoutsos CT, Clifford DB, Zaborski L, Tselis A, Sidtis JJ, Cohen B, Hall CD, Erice A, Henry K (1999) Neurological outcomes in late HIV infection: adverse impact of neurological impairment on survival and protective effect of antiviral therapy. AIDS Clinical Trial Group and Neurological AIDS Research Consortium study team. Aids 13:1677–685

    Article  PubMed  CAS  Google Scholar 

  23. Brew BJ, Rosenblum M, Cronin K, Price RW (1995) AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations. Ann Neurol 38:563–70

    Article  PubMed  CAS  Google Scholar 

  24. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517–24

    Article  PubMed  CAS  Google Scholar 

  25. Williams KC, Hickey WF (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25:537–62

    Article  PubMed  CAS  Google Scholar 

  26. d'Arminio Monforte A, Cinque P, Mocroft A, Goebel FD, Antunes F, Katlama C, Justesen US, Vella S, Kirk O, Lundgren J (2004) Changing incidence of central nervous system diseases in the EuroSIDA cohort. Ann Neurol 55:320–28

    Article  PubMed  Google Scholar 

  27. Cysique LA, Maruff P, Brew BJ (2004) Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol 10:350–57

    Article  PubMed  Google Scholar 

  28. Tozzi V, Balestra P, Serraino D, Bellagamba R, Corpolongo A, Piselli P, Lorenzini P, Visco-Comandini U, Vlassi C, Quartuccio ME, Giulianelli M, Noto P, Galgani S, Ippolito G, Antinori A, Narciso P (2005) Neurocognitive impairment and survival in a cohort of HIV-infected patients treated with HAART. AIDS Res Hum Retroviruses 21:706–13

    Article  PubMed  Google Scholar 

  29. Brew BJ (2004) Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. Aids 18(Suppl 1):S75–8

    Article  PubMed  CAS  Google Scholar 

  30. Cinque P, Vago L, Mengozzi M, Torri V, Ceresa D, Vicenzi E, Transidico P, Vagani A, Sozzani S, Mantovani A, Lazzarin A, Poli G (1998) Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. Aids 12:1327–332

    Article  PubMed  CAS  Google Scholar 

  31. Bossi P, Dupin N, Coutellier A, Bricaire F, Lubetzki C, Katlama C, Calvez V (1998) The level of human immunodeficiency virus (HIV) type 1 RNA in cerebrospinal fluid as a marker of HIV encephalitis. Clin Infect Dis 26:1072–073

    Article  PubMed  CAS  Google Scholar 

  32. Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 84:3472–476

    Article  PubMed  CAS  Google Scholar 

  33. Blennow M, Savman K, Ilves P, Thoresen M, Rosengren L (2001) Brainspecific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 90:1171–175

    Article  PubMed  CAS  Google Scholar 

  34. Rosen H, Karlsson JE, Rosengren L (2004) CSF levels of neurofilament is a valuable predictor of long-term outcome after cardiac arrest. J Neurol Sci 221:19–4

    Article  PubMed  CAS  Google Scholar 

  35. Norgren N, Sundstrom P, Svenningsson A, Rosengren L, Stigbrand T, Gunnarsson M (2004) Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63:1586–590

    PubMed  CAS  Google Scholar 

  36. Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A (1999) Neurofilament protein levels in CSF are increased in dementia. Neurology 52:1090–093

    PubMed  CAS  Google Scholar 

  37. Norgren N, Karlsson JE, Rosengren L, Stigbrand T (2002) Monoclonal antibodies selective for low molecular weight neurofilaments. Hybrid Hybridomics 21:53–9

    Article  PubMed  CAS  Google Scholar 

  38. Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in neurological diseases. Brain Res 987:25–1

    Article  PubMed  CAS  Google Scholar 

  39. Van Geel WJ, Rosengren LE, Verbeek MM (2005) An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods 296:179–85

    Article  PubMed  CAS  Google Scholar 

  40. Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niederwieser D, Reibnegger G, Swetly P, Troppmair J, Wachter H (1984) Immune responseassociated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J Exp Med 160:310–16

    Article  PubMed  CAS  Google Scholar 

  41. Harrington PR, Haas DW, Ritola K, Swanstrom R (2005) Compartmentalized human immunodeficiency virus type 1 present in cerebrospinal fluid is produced by short-lived cells. J Virol 79:7959–966

    Article  PubMed  CAS  Google Scholar 

  42. Price RW, Staprans S (1997) Measuring the “viral load–in cerebrospinal fluid in human immunodeficiency virus infection: window into brain infection? Ann Neurol 42:675–78

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Gisslén MD, PhD.

Additional information

Drs. Abdulle and Mellgren contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulle, S., Mellgren, Å., Brew, B.J. et al. CSF neurofilament protein (NFL) — a marker of active HIV-related neurodegeneration. J Neurol 254, 1026–1032 (2007). https://doi.org/10.1007/s00415-006-0481-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0481-8

Key words

Navigation