Skip to main content
Log in

The Basic Metabolic Profile in Heart Failure—Marker and Modifier

  • Biomarkers of Heart Failure (W.H.W. Tang and J.L. Grodin, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The physiologic determinants of each of the components of the basic metabolic profile in patients with heart failure will be explored. Additionally, the review will discuss the prognostic value of alterations in the basic metabolic profile as well as their effects on management.

Recent Findings

Abnormalities in the basic metabolic profile have significant correlation with clinical outcomes and can modify treatment in heart failure. Hypochloremia has recently received increased attention for these reasons.

Summary

Elevated creatinine, increased blood urea nitrogen, hyponatremia, and hypochloremia correlate with worse mortality and diuretic resistance in heart failure. Hypokalemia, even when mild, has proven to be a worse clinical indicator than modest elevations in serum potassium. Hypochloremia is mechanistically linked to hyponatremia and metabolic alkalosis, but recent compelling data suggests that it can provide more discriminating prognostic information. Knowledge of the physiologic basis for each of these alterations informs their management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Pysiol Rev. 2000;80(3):1107–213.

    CAS  Google Scholar 

  2. Kula AJ, Hanberg JS, Wilson FP, Brisco MA, Bellumkonda L, Jacoby D, et al. Influence of titration of neurohormonal antagonists and blood pressure reduction on renal function and decongestion in decompensated heart failure. Circ heart Failure. 2016;9(1):e002333.

    Article  CAS  PubMed  Google Scholar 

  3. Forman DE, Butler J, Wang Y, Abraham WT, O’Connor CM, Gottlieb SS, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll of Cardiol. 2004;43:61–7.

    Article  Google Scholar 

  4. Damman K, Valente MAE, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;7:455–69.

    Article  Google Scholar 

  5. McAlister FA, Ezekowitz J, Tarantini L, Squire I, Komajda M, Bayes-Genis A, et al. Renal dysfunction in patients with preserved versus reduced ejection fraction: impact of the new chronic kidney disease-epidemiology collaboration group formula. Circ Heart Failure. 2012;5(3):309–14.

    Article  PubMed  Google Scholar 

  6. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13(6):422–30.

    Article  PubMed  Google Scholar 

  7. Testani JM, Brisco MA, Turner JM, Spatz ES, Bellumkonda L, Parikh CR, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7(2):261–770.

    Article  CAS  PubMed  Google Scholar 

  8. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circ. 2010;122(3):265–72.

    Article  Google Scholar 

  9. Greene SJ, Gheorghiade M, Vaduganathan M, Ambrosy AP, Mentz RJ, Subacius H, et al. Haemoconcentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: insights from the Everest Trial. Eur J of Heart Fail. 2013;15(12):1401–11.

    Article  CAS  Google Scholar 

  10. Oh J, Kang S-M, Hong N, Youn J-C, Han S, Jeon E-S, et al. Hemoconcentration is a good prognostic predictor for clinical outcomes in acute heart failure: data from the Korean Heart Failure (KorHF) Registry. Int J of Cardiol. 2013;168(5):4739–43.

    Article  Google Scholar 

  11. • Van DM, Postmus D, Ponikowski P, Cleland JG, O’Connor CM, Cotter G, et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol. 2013;61(19):1973–81. The above study performs a post hoc analysis of a large randomized controlled trial and reveals improved overall outcome with aggressive decongestion despite slight worsening in renal function with such a strategy.

    Article  Google Scholar 

  12. Sands JM, Blount MA, Klein JD. Regulation of renal urea transport by vasopressin. Trans Am Clin Climatol Assoc. 2011;122:82–92.

    PubMed  PubMed Central  Google Scholar 

  13. Konstam MA, Gheorghiade M, Burnett JC, Grinfeld L, Maggioni AP, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.

    Article  CAS  PubMed  Google Scholar 

  14. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290(19):2581–7.

    Article  CAS  PubMed  Google Scholar 

  15. Filippatos G, Rossi J, Lloyd-Jones DM, Stough WG, Ouyang J, Shin DD, et al. Prognostic value of blood urea nitrogen in patients hospitalized with worsening heart failure: insights from the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Chronic Heart Failure (ACTIV in CHF) study. J Card Fail. 2007 Jun;13(5):360–4.

    Article  PubMed  Google Scholar 

  16. Klein L, Massie BM, Leimberger JD, O’Connor CM, Piña IL, Adams KF, et al. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the Outcomes of a prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail. 2008 May;1(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  17. Testani JM, Cappola TP, Brensinger CM, Shannon RP, Kimmel SE. Interaction between loop diuretic-associated mortality and blood urea nitrogen concentration in chronic heart failure. J Am Coll Cardiol. 2011;58(4):375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edelman IS, Leibman J, O’meara MP, Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest. 1958;37(9):1236–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Verbrugge FH, Steels P, Grieten L, Nijst P, Tang WHW, Mullens W. Hyponatremia in acute decompensated heart failure: depletion versus dilution. J Am Coll Cardiol. 2015;65(5):480–92.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen MK, Kurtz I. Role of potassium in hypokalemia-induced hyponatremia: lessons learned from the Edelman equation. Clin Exp Nephrol. 2004;8(2):98–102.

    Article  CAS  PubMed  Google Scholar 

  21. Gheorghiade M, Abraham WT, Albert NM, Gattis Stough W, Greenberg BH, O’Connor CM, et al. Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIMIZE-HF registry. Eur Heart J. 2007;28(8):980–8.

    Article  CAS  PubMed  Google Scholar 

  22. Klein L, O’Connor CM, Leimberger JD, Gattis-Stough W, Piña IL, Felker GM, et al. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) study. Circulation. 2005;111(19):2454–60.

    Article  CAS  PubMed  Google Scholar 

  23. Gandhi S, Mosleh W, Myers RBH. Hypertonic saline with furosemide for the treatment of acute congestive heart failure: a systematic review and meta-analysis. Int J Cardiol. 2014;173(2):139–45.

    Article  PubMed  Google Scholar 

  24. Hayes CP, McLeod ME, Robinson RR. An extrarenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans Assoc Am Phys. 1967;80:207–16.

    PubMed  Google Scholar 

  25. Vardeny O, Claggett B, Anand I, Rossignol P, Desai AS, Zannad F, et al. Incidence, predictors, and outcomes related to hypo- and hyperkalemia in patients with severe heart failure treated with a mineralocorticoid receptor antagonist. Circ Heart Fail. 2014;7(4):573–9.

    Article  CAS  PubMed  Google Scholar 

  26. Huang C-L, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18(10):2649–52.

    Article  PubMed  Google Scholar 

  27. Hoss S, Elizur Y, Luria D, Keren A, Lotan C, Gotsman I. Serum potassium levels and outcome in patients with chronic heart failure. Am J Cardiol. 2016;118(12):1868–74.

    Article  CAS  PubMed  Google Scholar 

  28. Salah K, Pinto YM, Eurlings LW, Metra M, Stienen S, Lombardi C, et al. Serum potassium decline during hospitalization for acute decompensated heart failure is a predictor of 6-month mortality, independent of N-terminal pro-B-type natriuretic peptide levels: an individual patient data analysis. Am Heart J. 2015;170(3):531–42.

    Article  CAS  PubMed  Google Scholar 

  29. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98(15):1510–6.

    Article  CAS  PubMed  Google Scholar 

  30. WWEIA Data Tables: USDA ARS. [Internet]. [cited 2017Apr24]. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweia-data-tables/.

  31. Pitt B, Anker SD, Bushinsky DA, Kitzman DW, Zannad F, Huang I-Z, et al. Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur Heart J. 2011;32(7):820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pitt B, Bakris GL, Bushinsky DA, Garza D, Mayo MR, Stasiv Y, et al. Effect of patiromer on reducing serum potassium and preventing recurrent hyperkalaemia in patients with heart failure and chronic kidney disease on RAAS inhibitors. Eur J Heart Fail. 2015;17(10):1057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Hanberg JS, Rao V, Ter Maaten JM, Laur O, Brisco MA, Perry Wilson F, et al. Hypochloremia and diuretic resistance in heart failure: mechanistic insights. Circ Heart Fail. 2016; 9(8). The above analysis provides the most complete description to date of the hypochloremic heart failure patient phenotype.

  34. Gomez H, Kellum JA. Understanding acid base disorders. Crit Care Clin. 2015;31(4):849–60.

    Article  PubMed  Google Scholar 

  35. Grodin JL, Simon J, Hachamovitch R, Wu Y, Jackson G, Halkar M, et al. Prognostic role of serum chloride levels in acute decompensated heart failure. J Am Coll Cardiol. 2015;66(6):659–66.

    Article  CAS  PubMed  Google Scholar 

  36. Grodin JL, Verbrugge FH, Ellis SG, Mullens W, Testani JM, Tang WHW. Importance of abnormal chloride homeostasis in stable chronic heart failure. Circ Heart Fail. 2016;9(1):e002453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ter Maaten JM, Damman K, Hanberg JS, Givertz MM, Metra M, O’Connor CM, et al. Hypochloremia, diuretic resistance, and outcome in patients with acute heart failure. Circ Heart Fail. 2016; 9(8).

  38. Testani JM, Hanberg JS, Arroyo JP, Brisco MA, Ter Maaten JM, Wilson FP, et al. Hypochloraemia is strongly and independently associated with mortality in patients with chronic heart failure. Eur J Heart Fail. 2016;18(6):660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grodin JL, Sun J-L, Anstrom KJ, Chen HH, Starling RC, Testani JM, et al. Implications of serum chloride homeostasis in acute heart failure (from ROSE-AHF). Am J Cardiol. 2017;119(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  40. Ponce-Coria J, San-Cristobal P, Kahle KT, Vazquez N, Pacheco-Alvarez D, de Los HP, et al. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc Natl Acad Sci U S A. 2008;105(24):8458–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bazúa-Valenti S, Chávez-Canales M, Rojas-Vega L, González-Rodríguez X, Vázquez N, Rodríguez-Gama A, et al. The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol. 2015;26(8):1781–6.

    Article  PubMed  Google Scholar 

  42. Galla JH, Bonduris DN, Luke RG. Effects of chloride and extracellular fluid volume on bicarbonate reabsorption along the nephron in metabolic alkalosis in the rat. Reassessment of the classical hypothesis of the pathogenesis of metabolic alkalosis. J Clin Invest. 1987;80(1):41–50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalanathan K. Sambandam.

Ethics declarations

Conflict of Interest

Ahmed Elfar and Kamalanathan K. Sambandam declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfar, A., Sambandam, K.K. The Basic Metabolic Profile in Heart Failure—Marker and Modifier. Curr Heart Fail Rep 14, 311–320 (2017). https://doi.org/10.1007/s11897-017-0344-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0344-x

Keywords

Navigation