Skip to main content

Advertisement

Log in

Novel Biomarkers in Acute Heart Failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure goes beyond mechanical dysfunction and involves an interplay of multiple pathophysiologic mechanisms, including inflammation, tissue remodeling, neurohormonal and endocrine signaling, and interactions with the renal and nervous systems. This article highlights some novel biomarkers that may aid in diagnosis, treatment, and prognosis of acute heart failure, specifically focusing on ST2, endoglin, galectin-3, cystatin C, neutrophil gelatinase–associated lipocalin, midregional pro-adrenomedullin, chromogranin A, adiponectin, resistin, and leptin and their emerging clinical roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:•Of importance ••Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209.

    Google Scholar 

  2. Koelling TM, Chen RS, Lubwama RN, et al. The expanding national burden of heart failure in the United States: the influence of heart failure in women. Am Heart J. 2004;147:74–8.

    Article  PubMed  CAS  Google Scholar 

  3. Haldeman GA, Croft JB, Giles WH, et al. Hospitalization of patients with heart failure: National Hospital Discharge Survey, 1985 to 1995. Am Heart J. 1999;137:352–60.

    Article  PubMed  CAS  Google Scholar 

  4. Palazzuoli A, Gallotta M, Quatrini I, et al. Natriuretic peptides (BNP and NT-proBNP): measurement and relevance in heart failure. Vasc Health Risk Manag. 2010;6:411–8.

    Article  PubMed  CAS  Google Scholar 

  5. • Braunwald E: Biomarkers in heart failure. N Engl J Med. 2008;358:2148-59. This is a key review article about some of the more traditional biomarkers and an overview of their roles in the pathophysiology of heart failure.

    Article  PubMed  CAS  Google Scholar 

  6. Weinberg EO, Shimpo M, De Keulenaer GW, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106:2961–6.

    Article  PubMed  CAS  Google Scholar 

  7. Weinberg EO, Shimpo M, Hurwitz S, et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107:721–6.

    Article  PubMed  Google Scholar 

  8. Sanada S, Hakuno D, Higgins LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–49.

    Article  PubMed  CAS  Google Scholar 

  9. Januzzi JL Jr, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea:results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.

    Article  PubMed  CAS  Google Scholar 

  10. •• Manzano-Fernández S, Mueller T, Pascual-Figal D: Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107:259–67. This prospective study of 447 patients with ADHF demonstrated that soluble ST2 (sST2) levels were higher in patients with decreased left ventricular ejection fraction as compared to those with HFPEF. However, sST2 is an independent mortality predictor regardless of the ejection fraction.

    Article  PubMed  Google Scholar 

  11. Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52:1458–65.

    Article  PubMed  CAS  Google Scholar 

  12. Cheifetz S, Bellón T, Calés C, et al. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 1992;267:19027–30.

    PubMed  CAS  Google Scholar 

  13. •• Kapur NK, Heffernan KS, Yunis AA, et al. Usefulness of soluble endoglin as a noninvasive measure of left ventricular filling pressure in heart failure. Am J Cardiol. 2010;106:1770–6. In this study of 82 consecutive patients referred for evaluation of LV filling pressures, endoglin levels correlated positively with severity of NYHA functional class and LVEDP, suggesting a potential role for endoglin levels for evaluation of LV filling pressures.

    Article  PubMed  CAS  Google Scholar 

  14. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    Article  PubMed  CAS  Google Scholar 

  15. van Kimmenade RR, Januzzi JL Jr, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217–24.

    Article  PubMed  Google Scholar 

  16. de Boer RA, Lok DJA, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60–8.

    Article  PubMed  Google Scholar 

  17. Shah RV, Chen-Tournoux AA, Picard MH, et al. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010;12:826–32.

    Article  PubMed  CAS  Google Scholar 

  18. de Boer RA, Voors AA, Muntendam P, et al. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11:811–7.

    Article  PubMed  Google Scholar 

  19. Shah RV, Givertz MM. Managing acute renal failure in patients with acute decompensated heart failure: the cardiorenal syndrome. Curr Heart Fail Rep. 2009;6:176–81.

    Article  PubMed  Google Scholar 

  20. Ix JH, Shlipak MG, Chertow GM, et al. Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study. Circulation. 2007;115:173–9.

    Article  PubMed  CAS  Google Scholar 

  21. Shlipak MG, Katz R, Fried LF, et al. Cystatin-C and mortality in elderly persons with heart failure. J Am Coll Cardiol. 2005;45:268–71.

    Article  PubMed  CAS  Google Scholar 

  22. Lassus J, Harjola VP, Sund R, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28:1841–7.

    Article  PubMed  CAS  Google Scholar 

  23. Alehagen U, Dahlström U, Lindahl TL. Cystatin C and NT-proBNP, a powerful combination of biomarkers for predicting cardiovascular mortality in elderly patients with heart failure: results from a 10-year study in primary care. Eur J Heart Fail. 2009;11:354–60.

    Article  PubMed  CAS  Google Scholar 

  24. •• Manzano-Fernández S, Januzzi JL Jr, Boronat-Garcia M, et al. β-Trace protein and cystatin C as predictors of long-term outcomes in patients with acute heart failure. J Am Coll Cardiol. 2011;57:849–858. This study of BTP and cystatin C in 220 consecutive patients with ADHF showed that both of these novel biomarkers are predictors of death and heart failure hospitalization, and are better for this purpose than creatinine, eGFR, and BUN.

    Article  PubMed  Google Scholar 

  25. Yndestad A, Landro L, Ueland T, et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009;10:1229–36.

    Article  Google Scholar 

  26. Aghel A, Shrestha K, Mullens W, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail. 2010;16:49–54.

    Article  PubMed  CAS  Google Scholar 

  27. Iwanaga Y, Miyazaki S. Heart failure, chronic kidney disease, and biomarkers. Circ J. 2010;74:1274–82.

    Article  PubMed  CAS  Google Scholar 

  28. Potocki M, Breidthardt T, Reichlin T, et al. Midregional pro-adrenomedullin in addition to b-type natriuretic peptides in the risk stratification of patients with acute dyspnea: an observational study. Crit Care. 2009;13:R122. Epub 2009 Jul 23.

    Article  PubMed  Google Scholar 

  29. Adlbrecht C, Hulsmann M, Strunk G, et al. Prognostic value of plasma midregional proadrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. Eur J Heart Fail. 2009;11:361–6.

    Article  PubMed  CAS  Google Scholar 

  30. •• Maisel A, Mueller C, Nowak R, et al.: Mid-region prohormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart failure) trial. J Am Coll Cardiol. 2010;55:2062–76. The BACH trial was a prospective, 15-center, international study of 1641 patients presenting to the emergency department with dyspnea. This analysis of BACH data showed that MR-proADM was not inferior to BNP for diagnosis of ADHF in dyspneic patients and provided additional prognostic information about 90-day mortality in this patient population.

    Article  PubMed  CAS  Google Scholar 

  31. Pieroni M, Corti A, Tota B, et al. Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J. 2007;28:1117–27.

    Article  PubMed  CAS  Google Scholar 

  32. Gupta S, Drazner M, de Lemos J. Newer biomarkers in heart failure. Heart Fail Clin. 2009;5:579–88.

    Article  PubMed  Google Scholar 

  33. Dieplinger B, Gegenhuber A, Struck J, et al. Chromogranin A and C-terminal endothelin-1 precursor fragment add independent prognostic information to amino-terminal proBNP in patients with acute destabilized heart failure. Clin Chim Acta. 2009;400:91–6.

    Article  PubMed  CAS  Google Scholar 

  34. Jansson A, Røsjø H, Omland T. Prognostic value of circulating chromogranin A levels in acute coronary syndromes. Eur Heart J. 2009;30:25–32.

    Article  PubMed  Google Scholar 

  35. Dieplinger B, Gegenhuber A, Kaar G, et al. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin Biochem. 2010;43:714–9.

    Article  PubMed  CAS  Google Scholar 

  36. Kistorp C, Faber J, Galatius S, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation. 2005;112:1756–62.

    Article  PubMed  CAS  Google Scholar 

  37. Matsumoto M, Lee-Kawabata M, Tsujino T, et al. Decrease in serum adiponectin levels in response to treatment predicts good prognosis in acute decompensated heart failure. J Clin Hypertens (Greenwich). 2010;12:900–4.

    Article  Google Scholar 

  38. McGaffin K, Witham W, Yester K, et al. Cardiac-specific leptin receptor deletion exacerbates ischaemic heart failure in mice. Cardiovasc Res. 2011;89:60–71.

    Article  PubMed  CAS  Google Scholar 

  39. McGaffin K, Moravec C, McTiernan C. Leptin signaling in the failing and mechanically unloaded human heart. Circ Heart Fail. 2009;2:676–83.

    Article  PubMed  CAS  Google Scholar 

  40. Lieb W, Sullivan L, Harris T, et al. Plasma leptin levels and incidence of heart failure, cardiovascular disease, and total mortality in elderly individuals. Diabetes Care. 2009;32:612–6.

    Article  PubMed  CAS  Google Scholar 

  41. Murdoch DR, Rooney E, Dargie HJ, et al. Inappropriately low plasma leptin concentration in the cachexia associated with chronic heart failure. Heart. 1999;82:352–6.

    PubMed  CAS  Google Scholar 

  42. Takeishi Y, Niizeki T, Arimoto T, et al. Serum resistin is associated with high risk in patients with congestive heart failure- A novel link between metabolic signals and heart failure. Circ J. 2007;71:460–4.

    Article  PubMed  CAS  Google Scholar 

  43. Butler J, Kalogeropoulos A, Georgiopoulou V, et al. Serum resistin concentrations and risk of new onset heart failure in older persons: The Health, Aging, and Body Composition (Health ABC) study. Arterioscler Thromb Vasc Biol. 2009;29:1144–9.

    Article  PubMed  CAS  Google Scholar 

  44. • Zhang MH, Na B, Schiller NB, Whooley MA. Association of resistin with heart failure and mortality in patients with stable coronary heart disease: data from the heart and soul study. J Card Fail. 2011;17:24–30. This study of 980 patients with CAD showed that resistin levels do not provide prognostic information about mortality and heart failure exacerbation beyond their association with traditional biomarkers of cardiovascular risk.

  45. O’Donoghue M, Braunwald E. Natriuretic peptides in heart failure: should therapy be guided by BNP levels? Nat Rev Cardiol. 2010;7:13–20.

    Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Givertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanavitski, M., Givertz, M.M. Novel Biomarkers in Acute Heart Failure. Curr Heart Fail Rep 8, 206–211 (2011). https://doi.org/10.1007/s11897-011-0065-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-011-0065-5

Keywords

Navigation