Skip to main content

Advertisement

Log in

The Current and Potential Clinical Relevance of Heart Failure Biomarkers

  • Biomarkers of Heart Failure (W.H.W. Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure is a growing epidemic, and our understanding of the intricacies of its pathophysiology continues to evolve. Over the last decade, biomarkers of heart failure have been extensively investigated, particularly for diagnosis and risk stratification. While the natriuretic peptides remain the gold standard heart failure biomarker, they are plagued by their non-specific nature; furthermore, the strategy of natriuretic peptide-guided care remains elusive. Multiple candidate markers indicative of other physiologic aspects of heart failure have been identified and studied, including soluble ST2, galectin-3, and high-sensitivity cardiac troponins. Each of these biomarkers has the potential to provide unique therapeutically relevant information. Ultimately, a multi-marker approach may be applied to improve care of patients with heart failure. Definitive clinical trials and the use of advanced statistical analytic techniques are needed to truly determine the optimal strategy of biomarker-assisted diagnosis, prognostication, and management of patients who suffer from this devastating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Katz AM. The "modern" view of heart failure: how did we get here? Circ Heart Fail. 2008;1:63–71.

    Article  CAS  PubMed  Google Scholar 

  2. Mozaffarian D et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322. doi:10.1161/CIR.0000000000000152.

    Article  PubMed  Google Scholar 

  3. Yancy CW et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:e240–327. doi:10.1161/CIR.0b013e31829e8776.

    Article  PubMed  Google Scholar 

  4. Ahmad T et al. Charting a roadmap for heart failure biomarker studies. JACC Heart Fail. 2014;2:477–88. doi:10.1016/j.jchf.2014.02.005. This reference outlines the current state of biomarker research and provides a guide for how to design trials to appropriately study biomarkers going forward.

    Article  PubMed  Google Scholar 

  5. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115:949–52. doi:10.1161/CIRCULATIONAHA.106.683110.

    Article  PubMed  Google Scholar 

  6. van Kimmenade RR, Januzzi Jr JL. Emerging biomarkers in heart failure. Clin Chem. 2012;58:127–38. doi:10.1373/clinchem.2011.165720. This paper delineates the criteria for a useful biomarker in heart failure and describes some important candidate markers.

    Article  PubMed  Google Scholar 

  7. Munagala VK, Burnett Jr JC, Redfield MM. The natriuretic peptides in cardiovascular medicine. Curr Probl Cardiol. 2004;29:707–69. doi:10.1016/j.cpcardiol.2004.07.002.

    Article  PubMed  Google Scholar 

  8. Januzzi Jr JL et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948–54. doi:10.1016/j.amjcard.2004.12.032.

    Article  CAS  PubMed  Google Scholar 

  9. Maisel AS et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7. doi:10.1056/NEJMoa020233.

    Article  CAS  PubMed  Google Scholar 

  10. Costello-Boerrigter LC et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2006;47:345–53. doi:10.1016/j.jacc.2005.09.025.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Weinberg EO et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107:721–6.

    Article  PubMed  Google Scholar 

  12. Sanada S et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Weinberg EO et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106:2961–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Seki K et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009;2:684–91.

    Article  CAS  PubMed  Google Scholar 

  15. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008;7:827–40. doi:10.1038/nrd2660.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Januzzi Jr JL et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–13.

    Article  CAS  PubMed  Google Scholar 

  17. Ky B et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4:180–7. doi:10.1161/CIRCHEARTFAILURE.110.958223.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gaggin HK et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2:65–72. doi:10.1016/j.jchf.2013.10.005.

    Article  PubMed  Google Scholar 

  19. Jougasaki M, Burnett Jr JC. Adrenomedullin: potential in physiology and pathophysiology. Life Sci. 2000;66:855–72.

    Article  CAS  PubMed  Google Scholar 

  20. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin Chem. 2005;51:1823–9. doi:10.1373/clinchem.2005.051110.

    Article  CAS  PubMed  Google Scholar 

  21. Peacock WF et al. Short-term mortality risk in emergency department acute heart failure. Acad Emerg Med. 2011;18:947–58. doi:10.1111/j.1553-2712.2011.01150.x.

    Article  PubMed  Google Scholar 

  22. von Haehling S et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010;12:484–91. doi:10.1093/eurjhf/hfq031.

    Article  Google Scholar 

  23. Ahmad T, Felker GM. Subcutaneous B-type natriuretic peptide for treatment of heart failure: a dying therapy reborn? J Am Coll Cardiol. 2012;60:2313–5. doi:10.1016/j.jacc.2012.08.991.

    Article  CAS  PubMed  Google Scholar 

  24. McMurray JJ et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. doi:10.1056/NEJMoa1409077.

    Article  PubMed  Google Scholar 

  25. Vardeny O, Miller R, Solomon SD. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail. 2014;2:663–70. doi:10.1016/j.jchf.2014.09.001.

    Article  PubMed  Google Scholar 

  26. Packer M et al. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015;131:54–61. doi:10.1161/CIRCULATIONAHA.114.013748.

    Article  CAS  PubMed  Google Scholar 

  27. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi Jr JL. Soluble concentrations of the interleukin receptor family member ST2 and beta-blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6:1206–13. doi:10.1161/CIRCHEARTFAILURE.113.000457.

    Article  CAS  PubMed  Google Scholar 

  28. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the Valsartan Heart Failure Trial. Circ Heart Fail. 2014;7:418–26. doi:10.1161/CIRCHEARTFAILURE.113.001036.

    Article  CAS  PubMed  Google Scholar 

  29. Maisel A et al. Effect of spironolactone on 30-day death and heart failure rehospitalization (from the COACH Study). Am J Cardiol. 2014;114:737–42. doi:10.1016/j.amjcard.2014.05.062.

    Article  CAS  PubMed  Google Scholar 

  30. Peacock WF. Novel biomarkers in acute heart failure: MR-pro-adrenomedullin. Clin Chem Lab Med. 2014;52:1433–5. doi:10.1515/cclm-2014-0222.

    CAS  PubMed  Google Scholar 

  31. Braunwald E. Heart failure. JACC Heart Fail. 2013;1:1–20. doi:10.1016/j.jchf.2012.10.002. This paper is an outstanding review of the current state of research and understanding of heart failure.

    Article  PubMed  Google Scholar 

  32. Januzzi Jr JL, Filippatos G, Nieminen M, Gheorghiade M. Troponin elevation in patients with heart failure: on behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur Heart J. 2012;33:2265–71. doi:10.1093/eurheartj/ehs191. This paper explains the use of troponin in heart failure and discusses the various etiologies of troponin release in heart failure.

    Article  CAS  PubMed  Google Scholar 

  33. Peacock WFt et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26. doi:10.1056/NEJMoa0706824.

    Article  CAS  PubMed  Google Scholar 

  34. Latini R et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation. 2007;116:1242–9. doi:10.1161/CIRCULATIONAHA.106.655076.

    Article  CAS  PubMed  Google Scholar 

  35. Motiwala SR et al. Concentrations of highly sensitive cardiac troponin-I predict poor cardiovascular outcomes and adverse remodeling in chronic heart failure. J Cardiovasc Transl Res. 2015;8:164–72. doi:10.1007/s12265-015-9618-4.

    Article  PubMed  Google Scholar 

  36. Metra M et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol. 2013;61:196–206. doi:10.1016/j.jacc.2012.11.005.

    Article  CAS  PubMed  Google Scholar 

  37. Anand IS et al. C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation. 2005;112:1428–34. doi:10.1161/CIRCULATIONAHA.104.508465.

    Article  CAS  PubMed  Google Scholar 

  38. Rauchhaus M et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000;102:3060–7.

    Article  CAS  PubMed  Google Scholar 

  39. Chung ES et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107:3133–40. doi:10.1161/01.CIR.0000077913.60364.D2.

    Article  CAS  PubMed  Google Scholar 

  40. Mann DL et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109:1594–602. doi:10.1161/01.CIR.0000124490.27666.B2.

    Article  CAS  PubMed  Google Scholar 

  41. Petersen JW, Felker GM. Inflammatory biomarkers in heart failure. Congest Heart Fail. 2006;12:324–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kempf T et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1054–60.

    Article  CAS  PubMed  Google Scholar 

  43. Anand IS et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122:1387–95. doi:10.1161/CIRCULATIONAHA.109.928846.

    Article  CAS  PubMed  Google Scholar 

  44. Papaspyridonos M et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008;28:433–40. doi:10.1161/ATVBAHA.107.159160.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma UC et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    Article  CAS  PubMed  Google Scholar 

  46. van Kimmenade RR et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217–24.

    Article  PubMed  Google Scholar 

  47. Felker GM et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012;5:72–8. doi:10.1161/CIRCHEARTFAILURE.111.963637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Gullestad L et al. Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Eur Heart J. 2012;33:2290–6. doi:10.1093/eurheartj/ehs077.

    Article  CAS  PubMed  Google Scholar 

  49. Anand IS et al. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013;15:511–8. doi:10.1093/eurjhf/hfs205.

    Article  CAS  PubMed  Google Scholar 

  50. Calvier L et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33:67–75. doi:10.1161/ATVBAHA.112.300569.

    Article  CAS  PubMed  Google Scholar 

  51. Fiuzat M et al. Relationship between galectin-3 levels and mineralocorticoid receptor antagonist use in heart failure: analysis from HF-ACTION. J Card Fail. 2014;20:38–44. doi:10.1016/j.cardfail.2013.11.011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Gandhi PU et al. Galectin-3 and mineralocorticoid receptor antagonist use in patients with chronic heart failure due to left ventricular systolic dysfunction. Am Heart J. 2015;169:404–411 e403. doi:10.1016/j.ahj.2014.12.012.

    Article  CAS  PubMed  Google Scholar 

  53. Ahmad T et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC Heart Fail. 2014;2:260–8. doi:10.1016/j.jchf.2013.12.004.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Yu L et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6:107–17. doi:10.1161/CIRCHEARTFAILURE.112.971168.

    Article  CAS  PubMed  Google Scholar 

  55. Stead Jr EA. Edema of heart failure. Bull N Y Acad Med. 1948;24:607–14.

    PubMed Central  PubMed  Google Scholar 

  56. Damman K, Tang WH, Testani JM, McMurray JJ. Terminology and definition of changes renal function in heart failure. Eur Heart J. 2014;35:3413–6. doi:10.1093/eurheartj/ehu320.

    Article  PubMed  Google Scholar 

  57. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36:1437–44. doi:10.1093/eurheartj/ehv010. This paper provides a comprehensive overview of the intricate relationship between the heart and kidney in heart failure.

    Article  PubMed  Google Scholar 

  58. Konstam MA. Renal function and heart failure treatment: when is a loss really a gain? Circ Heart Fail. 2011;4:677–9. doi:10.1161/CIRCHEARTFAILURE.111.964874.

    Article  PubMed  Google Scholar 

  59. Ahmad T, O'Connor CM. Therapeutic implications of biomarkers in chronic heart failure. Clin Pharmacol Ther. 2013;94:468–79. doi:10.1038/clpt.2013.139.

    Article  CAS  PubMed  Google Scholar 

  60. Brisco MA, Testani JM. Novel renal biomarkers to assess cardiorenal syndrome. Current Heart Fail Rep. 2014;11:485–99. doi:10.1007/s11897-014-0226-4.

    Article  CAS  Google Scholar 

  61. 61 Damman, K., Voors, A. A., Navis, G., van Veldhuisen, D. J. & Hillege, H. L. Current and novel renal biomarkers in heart failure. Heart Fail Rev.

  62. Troughton RW, Richards AM, Nicholls MG. Individualized treatment of heart failure. Intern Med J. 2001;31:138–41.

    Article  CAS  PubMed  Google Scholar 

  63. Troughton R, Michael Felker G, Januzzi Jr JL. Natriuretic peptide-guided heart failure management. Eur Heart J. 2014;35:16–24. doi:10.1093/eurheartj/eht463.

    Article  CAS  PubMed  Google Scholar 

  64. Felker GM et al. Rationale and design of the GUIDE-IT study: Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure. JACC Heart Fail. 2014;2:457–65. doi:10.1016/j.jchf.2014.05.007.

    Article  PubMed  Google Scholar 

  65. Pitt B et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92. doi:10.1056/NEJMoa1313731.

    Article  CAS  PubMed  Google Scholar 

  66. Allen LA. Use of multiple biomarkers in heart failure. Curr Cardiol Rep. 2010;12:230–6. doi:10.1007/s11886-010-0109-6.

    Article  PubMed  Google Scholar 

  67. Ky B et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail. 2012;5:183–90. doi:10.1161/CIRCHEARTFAILURE.111.965020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff. 2014;33:1163–70. doi:10.1377/hlthaff.2014.0053.

    Article  Google Scholar 

  69. Januzzi Jr JL, Felker GM. Surfing the biomarker tsunami at JACC: heart failure. JACC Heart Fail. 2013;1:213–5. doi:10.1016/j.jchf.2013.03.007.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Parul U. Gandhi and Dr. Jeffrey M. Testani have no disclosures. Dr. Tariq Ahmad has served as a consultant for Roche Diagnostics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Ahmad.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, P.U., Testani, J.M. & Ahmad, T. The Current and Potential Clinical Relevance of Heart Failure Biomarkers. Curr Heart Fail Rep 12, 318–327 (2015). https://doi.org/10.1007/s11897-015-0268-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-015-0268-2

Keywords

Navigation