Skip to main content
Log in

Imaging Atherosclerosis in Diabetes: Current State

  • Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Cardiovascular events, including myocardial infarction and stroke, are the primary causes of mortality in both type 1 and type 2 diabetes. Affected patients frequently have asymptomatic coronary artery disease. Studies have shown heterogeneity in cardiovascular risk among patients with diabetes. Imaging can help categorize risk of future cardiovascular events by identifying those patients with atherosclerosis, rather than relying on risk prediction based on population-based studies. In this article, we will review the evidence regarding use of atherosclerosis imaging in patients with diabetes to predict risk of coronary heart disease and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Narayan KM et al. Impact of recent increase in incidence on future diabetes burden: U.S., 2005-2050. Diabetes Care. 2006;29(9):2114–6.

    Article  PubMed  Google Scholar 

  2. Wilson PW. Diabetes mellitus and coronary heart disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S89–100.

    Article  CAS  PubMed  Google Scholar 

  3. Giri S et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation. 2002;105(1):32–40.

    Article  PubMed  Google Scholar 

  4. Emerging Risk Factors Collaboration et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  Google Scholar 

  5. Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care. 1979;2(2):120–6.

    Article  CAS  PubMed  Google Scholar 

  6. Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971-1993. Diabetes Care. 1998;21(7):1138–45.

    Article  CAS  PubMed  Google Scholar 

  7. Cabin HS, Roberts WC. Quantitative comparison of extent of coronary narrowing and size of healed myocardial infarct in 33 necropsy patients with clinically recognized and in 28 with clinically unrecognized ("silent") previous acute myocardial infarction. Am J Cardiol. 1982;50(4):677–81.

    Article  CAS  PubMed  Google Scholar 

  8. Wackers FJ et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27(8):1954–61.

    Article  PubMed  Google Scholar 

  9. Miller TD et al. Yield of stress single-photon emission computed tomography in asymptomatic patients with diabetes. Am Heart J. 2004;147(5):890–6.

    Article  PubMed  Google Scholar 

  10. Haffner SM et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  11. Lotufo PA et al. DIabetes and all-cause and coronary heart disease mortality among us male physicians. Arch Intern Med. 2001;161(2):242–7.

    Article  CAS  PubMed  Google Scholar 

  12. Vaccaro O et al. Impact of diabetes and previous myocardial infarction on long-term survival: 25-year mortality follow-up of primary screenees of the multiple risk factor intervention trial. Arch Intern Med. 2004;164(13):1438–43.

    Article  PubMed  Google Scholar 

  13. Evans JM, Wang J, Morris AD. Comparison of cardiovascular risk between patients with type 2 diabetes and those who had had a myocardial infarction: cross sectional and cohort studies. BMJ. 2002;324(7343):939–42.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bulugahapitiya U et al. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med. 2009;26(2):142–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ardehali R et al. Screening patients for subclinical atherosclerosis with non-contrast cardiac CT. Atherosclerosis. 2007;192(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  16. Rumberger JA et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92(8):2157–62.

    Article  CAS  PubMed  Google Scholar 

  17. Detrano R et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  18. Budoff MJ et al. A comparison of outcomes with coronary artery calcium scanning in unselected populations: the Multi-Ethnic Study of Atherosclerosis (MESA) and Heinz Nixdorf RECALL study (HNR). J Cardiovasc Comput Tomogr. 2013;7(3):182–91. This article evaluates role of CAC across 2 culturally diverse populations.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berman DS et al. Noninvasive imaging in assessment of the asymptomatic diabetic patient: is it of value? J Nucl Cardiol. 2016;23(1):37–41.

    Article  PubMed  Google Scholar 

  20. van den Hoogen IJ et al. Prognostic value of coronary computed tomography angiography in diabetic patients without chest pain syndrome. J Nucl Cardiol. 2016;23(1):24–36.

    Article  PubMed  Google Scholar 

  21. Malik S, et al. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes. The Multi-Ethnic Study of Atherosclerosis. Diabetes Care. 2011;34(10):2285–90.

  22. Moebus S et al. Association of impaired fasting glucose and coronary artery calcification as a marker of subclinical atherosclerosis in a population-based cohort—results of the Heinz Nixdorf Recall Study. Diabetologia. 2009;52(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  23. Mielke CH, Shields JP, Broemeling LD. Coronary artery calcium, coronary artery disease, and diabetes. Diabetes Res Clin Pract. 2001;53(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  24. Qu W et al. Value of coronary artery calcium scanning by computed tomography for predicting coronary heart disease in diabetic subjects. Diabetes Care. 2003;26(3):905–10.

    Article  PubMed  Google Scholar 

  25. Raggi P et al. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663–9.

    Article  CAS  PubMed  Google Scholar 

  26. Schurgin S, Rich S, Mazzone T. Increased prevalence of significant coronary artery calcification in patients with diabetes. Diabetes Care. 2001;24(2):335–8.

    Article  CAS  PubMed  Google Scholar 

  27. Starkman HS et al. Delineation of prevalence and risk factors for early coronary artery disease by electron beam computed tomography in young adults with type 1 diabetes. Diabetes Care. 2003;26(2):433–6.

    Article  PubMed  Google Scholar 

  28. Dabelea D, et al. Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes. 2003;52(11):2833–9.

  29. Wong ND et al. Metabolic syndrome and diabetes are associated with an increased likelihood of inducible myocardial ischemia among patients with subclinical atherosclerosis. Diabetes Care. 2005;28(6):1445–50.

    Article  PubMed  Google Scholar 

  30. Anand DV et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27(6):713–21.

    Article  PubMed  Google Scholar 

  31. Elkeles RS et al. Coronary calcium measurement improves prediction of cardiovascular events in asymptomatic patients with type 2 diabetes: the PREDICT study. Eur Heart J. 2008;29(18):2244–51.

    Article  CAS  PubMed  Google Scholar 

  32. Yeboah J et al. Development of a new diabetes risk prediction tool for incident coronary heart disease events: the Multi-Ethnic Study of Atherosclerosis and the Heinz Nixdorf Recall Study. Atherosclerosis. 2014;236(2):411–7. This article evaluates role of CAC in patients with diabetes across 2 culturally diverse populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Silverman MG et al. Potential implications of coronary artery calcium testing for guiding aspirin use among asymptomatic individuals with diabetes. Diabetes Care. 2012;35(3):624–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Min JK et al. Incremental prognostic value of coronary computed tomographic angiography over coronary artery calcium score for risk prediction of major adverse cardiac events in asymptomatic diabetic individuals. Atherosclerosis. 2014;232(2):298–304. This article discusses role of CTA in risk prediction, discrimination and reclassification in patients with diabetes.

    Article  CAS  PubMed  Google Scholar 

  35. Hendel RC et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: a Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009;53(23):2201–29.

    Article  PubMed  Google Scholar 

  36. Gibbons RJ et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002;40(8):1531–40.

    Article  PubMed  Google Scholar 

  37. Taylor AJ et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for Cardiac Computed Tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2010;122(21):e525–55.

    Article  PubMed  Google Scholar 

  38. Greenland P et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56(25):e50–103.

    Article  PubMed  Google Scholar 

  39. Valenti V et al. Absence of coronary artery calcium identifies asymptomatic diabetic individuals at low near-term but not long-term risk of mortality: a 15-year follow-up study of 9715 patients. Circulation. 2016;9(2), e003528.

    PubMed  Google Scholar 

  40. Budoff MJ, Raggi P. Coronary artery disease progression assessed by electron-beam computed tomography. Am J Cardiol. 2001;88(2A):46E–50.

    Article  CAS  PubMed  Google Scholar 

  41. Budoff MJ et al. Progression of coronary artery calcium predicts all-cause mortality. J Am Coll Cardiol Img. 2010;3(12):1229–36.

    Article  Google Scholar 

  42. Budoff MJ et al. Progression of coronary calcium and incident coronary heart disease events: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;61(12):1231–9. This paper, published in 2013, showed progression of CAC is associated with an increased risk for future hard and total CHD events in a large multicenter study with long follow-up time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Budoff MJ et al. Diabetes and progression of coronary calcium under the influence of statin therapy. Am Heart J. 2005;149(4):695–700.

    Article  CAS  PubMed  Google Scholar 

  44. Saremi A et al. Rates and determinants of coronary and abdominal aortic artery calcium progression in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care. 2010;33(12):2642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gassett AJ et al. Risk factors for long-term coronary artery calcium progression in the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2015;4(8), e001726. This paper, published in 2015, showed progression of CAC is associated with an increased risk for future cardiovascular events in a large multicenter study with long follow-up time.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wong ND et al. Metabolic syndrome, diabetes, and incidence and progression of coronary calcium: the Multiethnic Study of Atherosclerosis study. J Am Coll Cardiol Img. 2012;5(4):358–66.

    Article  Google Scholar 

  47. Budoff MJ et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  48. Madaj PM et al. Identification of noncalcified plaque in young persons with diabetes: an opportunity for early primary prevention of coronary artery disease identified with low-dose coronary computed tomographic angiography. Acad Radiol. 2012;19(7):889–93.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kamimura M et al. Role of coronary CT angiography in asymptomatic patients with type 2 diabetes mellitus. Int Heart J. 2012;53(1):23–8.

    Article  PubMed  Google Scholar 

  50. Roos CJ et al. Comparison by computed tomographic angiography. The presence and extent of coronary arterial atherosclerosis in south asians versus caucasians with diabetes mellitus. Am J Cardiol. 2014;113(11):1782–7.

    Article  PubMed  Google Scholar 

  51. Halon DA, et al. Pulse pressure and coronary atherosclerosis in asymptomatic type 2 diabetes mellitus: a 64-channel cardiac computed tomography analysis. Int J Cardiol. 2010;143(1):63–71.

  52. Scholte AJHA et al. Different manifestations of coronary artery disease by stress SPECT myocardial perfusion imaging, coronary calcium scoring, and multislice CT coronary angiography in asymptomatic patients with type 2 diabetes mellitus. J Nucl Cardiol. 2008;15(4):503–9.

    Article  PubMed  Google Scholar 

  53. Park GM et al. Coronary computed tomographic angiographic findings in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol. 2014;113(5):765–71.

    Article  PubMed  Google Scholar 

  54. Muhlestein JB et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA. 2014;312(21):2234–43.

    Article  CAS  PubMed  Google Scholar 

  55. Budoff MJ et al. Noninvasive cardiovascular risk assessment of the asymptomatic diabetic patient: the Imaging Council of the American College of Cardiology. J Am Coll Cardiol Img. 2016;9(2):176–92. This article reviews the role of different non-invasive modalities for assessment asyptomatic diabetic patients.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported and funded by the American Diabetes Association (ADA) with grant reference of 7-12-CT-08. M.J.B. reports grants from the American Diabetes Association and General Electric.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Budoff.

Ethics declarations

Conflict of Interest

Sina Rahmani, Rine Nakanishi, and Matthew J. Budoff declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, S., Nakanishi, R. & Budoff, M.J. Imaging Atherosclerosis in Diabetes: Current State. Curr Diab Rep 16, 105 (2016). https://doi.org/10.1007/s11892-016-0799-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0799-2

Keywords

Navigation