Skip to main content
Log in

Exercise Dynamic of Patients with Chronic Heart Failure and Reduced Ejection Fraction

  • Myocardial Disease (A Abbate and G Sinagra, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Exercise causes various dynamic changes in all body parts either in healthy subject or in heart failure (HF) patients. The present review of current knowledge about HF patients with reduced ejection fraction focuses on dynamic changes along a “metabo-hemodynamic” perspective.

Recent Findings

Studies on the dynamic changes occurring during exercise span many years. Thanks to the availability of advanced methods, it is nowadays possible to properly characterize respiratory, hemodynamic, and muscular function adjustments and their mismatch with the pulmonary and systemic circulations.

Summary

Exercise is a dynamic event that involves several body functions. In HF patients, it is important to know at what level the limitation takes place in order to better manage these patients and to optimize therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ponikowski P, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Esp Cardiol (Engl Ed). 2016;69(12):1167.

    Google Scholar 

  2. Dempsey JA, Vidruk EH, Mitchell GS. Pulmonary control systems in exercise: update. Fed Proc. 1985;44(7):2260–70.

    CAS  PubMed  Google Scholar 

  3. Cundrle I Jr, Olson LJ, Johnson BD. Pulmonary limitations in heart failure. Clin Chest Med. 2019;40(2):439–48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wasserman K, Zhang YY, Gitt A, Belardinelli R, Koike A, Lubarsky L, et al. Lung function and exercise gas exchange in chronic heart failure. Circulation. 1997;96(7):2221–7.

    Article  CAS  PubMed  Google Scholar 

  5. Piepoli M, Clark AL, Volterrani M, Adamopoulos S, Sleight P, Coats AJS. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation. 1996;93(5):940–52.

    Article  CAS  PubMed  Google Scholar 

  6. Chua TP, Ponikowski PP, Harrington D, Chambers J, Coats AJ. Contribution of peripheral chemoreceptors to ventilation and the effects of their suppression on exercise tolerance in chronic heart failure. Heart. 1996;76(6):483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agostoni P, Bussotti M, Cattadori G, Margutti E, Contini M, Muratori M, et al. Gas diffusion and alveolar-capillary unit in chronic heart failure. Eur Heart J. 2006;27(21):2538–43.

    Article  PubMed  Google Scholar 

  8. Morosin M, Vignati C, Novi A, Salvioni E, Veglia F, Alimento M, et al. The alveolar to arterial oxygen partial pressure difference is associated with pulmonary diffusing capacity in heart failure patients. Respir Physiol Neurobiol. 2016;233:1–6.

    Article  PubMed  Google Scholar 

  9. Agostoni PG, Bussotti M, Palermo P, Guazzi M. Does lung diffusion impairment affect exercise capacity in patients with heart failure? Heart. 2002;88(5):453–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agostoni P, Apostolo A, Cattadori G, Salvioni E, Berna G, Antonioli L, et al. Effects of beta-blockers on ventilation efficiency in heart failure. Am Heart J. 2010;159(6):1067–73.

    Article  CAS  PubMed  Google Scholar 

  11. Agostoni P, Cattadori G, Bussotti M, Apostolo A. Cardiopulmonary interaction in heart failure. Pulm Pharmacol Ther. 2007;20(2):130–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kraemer MD, Kubo SH, Rector TS, Brunsvold N, Bank AJ. Pulmonary and peripheral vascular factors are important determinants of peak exercise oxygen uptake in patients with heart failure. J Am Coll Cardiol. 1993;21(3):641–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hansen JE, Sue DY, Oren A, Wasserman K. Relation of oxygen uptake to work rate in normal men and men with circulatory disorders. Am J Cardiol. 1987;59(6):669–74.

    Article  CAS  PubMed  Google Scholar 

  14. Koike A, et al. Evidence that the metabolic acidosis threshold is the anaerobic threshold. J Appl Physiol (1985). 1990;68(6):2521–6.

    Article  CAS  PubMed  Google Scholar 

  15. Wagner PD. Gas exchange and peripheral diffusion limitation. Med Sci Sports Exerc. 1992;24(1):54–8.

    Article  CAS  PubMed  Google Scholar 

  16. Zweerink A, et al. Chronotropic incompetence in chronic heart failure. Circ Heart Fail. 2018;11(8):e004969.

    Article  PubMed  Google Scholar 

  17. Brubaker PH, Kitzman DW. Chronotropic incompetence: causes, consequences, and management. Circulation. 2011;123(9):1010–20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Agostoni P, Emdin M, Corra U, Veglia F, Magri D, Tedesco CC, et al. Permanent atrial fibrillation affects exercise capacity in chronic heart failure patients. Eur Heart J. 2008;29(19):2367–72.

    Article  PubMed  Google Scholar 

  19. Witte KK, Clark AL. Chronotropic incompetence in heart failure. J Am Coll Cardiol. 2006;48(3):595; author reply 595-6–595; author reply 596.

    Article  PubMed  Google Scholar 

  20. Brawner CA, Ehrman JK, Schairer JR, Cao JJ, Keteyian SJ. Predicting maximum heart rate among patients with coronary heart disease receiving beta-adrenergic blockade therapy. Am Heart J. 2004;148(5):910–4.

    Article  CAS  PubMed  Google Scholar 

  21. Magri D, et al. Cardiovascular mortality and chronotropic incompetence in systolic heart failure: the importance of a reappraisal of current cut-off criteria. Eur J Heart Fail. 2014;16(2):201–9.

    Article  PubMed  Google Scholar 

  22. Magri D, et al. Chronotropic incompentence and functional capacity in chronic heart failure: no role of beta-blockers and beta-blocker dose. Cardiovasc Ther. 2012;30(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wilson JR, Martin JL, Schwartz D, Ferraro N. Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle. Circulation. 1984;69(6):1079–87.

    Article  CAS  PubMed  Google Scholar 

  24. Miyazaki A, Adachi H, Oshima S, Taniguchi K, Hasegawa A, Kurabayashi M. Blood flow redistribution during exercise contributes to exercise tolerance in patients with chronic heart failure. Circ J. 2007;71(4):465–70.

    Article  PubMed  Google Scholar 

  25. Zelis R, Flaim SF. Alterations in vasomotor tone in congestive heart failure. Prog Cardiovasc Dis. 1982;24(6):437–59.

    Article  CAS  PubMed  Google Scholar 

  26. Agostoni P, Wasserman K, Perego GB, Marenzi GC, Guazzi M, Assanelli E, et al. Oxygen transport to muscle during exercise in chronic congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 1997;79(8):1120–4.

    Article  CAS  PubMed  Google Scholar 

  27. Cattadori G, Schmid JP, Brugger N, Gondoni E, Palermo P, Agostoni P. Hemodynamic effects of exercise training in heart failure. J Card Fail. 2011;17(11):916–22.

    Article  PubMed  Google Scholar 

  28. Ye LF, Wang SM, Wang LH. Efficacy and safety of exercise rehabilitation for heart failure patients with cardiac resynchronization therapy: a systematic review and meta-analysis. Front Physiol. 2020;11:980.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schlosshan D, Barker D, Pepper C, Williams G, Morley C, Tan LB. CRT improves the exercise capacity and functional reserve of the failing heart through enhancing the cardiac flow- and pressure-generating capacity. Eur J Heart Fail. 2006;8(5):515–21.

    Article  CAS  PubMed  Google Scholar 

  30. Linde C, Ellenbogen K, McAlister FA. Cardiac resynchronization therapy (CRT): clinical trials, guidelines, and target populations. Heart Rhythm. 2012;9(8 Suppl):S3–S13.

    Article  PubMed  Google Scholar 

  31. Cattadori G, Giraldi F, Berti M, Carbucicchio C, Pepi M, Della Bella P, et al. Assessment of cardiac resynchronization therapy response. Int J Cardiol. 2009;136(2):240–2.

    Article  PubMed  Google Scholar 

  32. Convertino VA, Keil LC, Bernauer EM, Greenleaf JE. Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(1):123–8.

    PubMed  Google Scholar 

  33. Perego GB, et al. Contribution of PO2, P50, and Hb to changes in arteriovenous O2 content during exercise in heart failure. J Appl Physiol (1985). 1996;80(2):623–31.

    Article  CAS  PubMed  Google Scholar 

  34. Agostoni P, Wasserman K, Guazzi M, Cattadori G, Palermo P, Marenzi G, et al. Exercise-induced hemoconcentration in heart failure due to dilated cardiomyopathy. Am J Cardiol. 1999;83(2):278–80 A6.

    Article  CAS  PubMed  Google Scholar 

  35. Agostoni P, Cerino M, Palermo P, Magini A, Bianchi M, Bussotti M, et al. Exercise capacity in patients with beta-thalassaemia intermedia. Br J Haematol. 2005;131(2):278–81.

    Article  PubMed  Google Scholar 

  36. Agostoni P, et al. Relationship of resting hemoglobin concentration to peak oxygen uptake in heart failure patients. Am J Hematol. 2010;85(6):414–7.

    CAS  PubMed  Google Scholar 

  37. Magri D, et al. Anemia and Iron deficiency in heart failure: clinical and prognostic role. Heart Fail Clin. 2019;15(3):359–69.

    Article  PubMed  Google Scholar 

  38. Tanner H, Moschovitis G, Kuster GM, Hullin R, Pfiffner D, Hess OM, et al. The prevalence of anemia in chronic heart failure. Int J Cardiol. 2002;86(1):115–21.

    Article  PubMed  Google Scholar 

  39. Silverberg DS, Wexler D, Blum M, Keren G, Sheps D, Leibovitch E, et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J Am Coll Cardiol. 2000;35(7):1737–44.

    Article  CAS  PubMed  Google Scholar 

  40. Maggioni AP, Opasich C, Anand I, Barlera S, Carbonieri E, Gonzini L, et al. Anemia in patients with heart failure: prevalence and prognostic role in a controlled trial and in clinical practice. J Card Fail. 2005;11(2):91–8.

    Article  PubMed  Google Scholar 

  41. Tang YD, Katz SD. Anemia in chronic heart failure: prevalence, etiology, clinical correlates, and treatment options. Circulation. 2006;113(20):2454–61.

    Article  PubMed  Google Scholar 

  42. Harnett JD, Kent GM, Foley RN, Parfrey PS. Cardiac function and hematocrit level. Am J Kidney Dis. 1995;25(4 Suppl 1):S3–7.

    Article  CAS  PubMed  Google Scholar 

  43. Agostoni P, Cattadori G. Noninvasive cardiac output measurement: a new tool in heart failure. Cardiology. 2009;114(4):244–6.

    Article  PubMed  Google Scholar 

  44. Benedetto D, Rao CM, Cefalù C, Aguglia DO, Cattadori G, D’Ascola DG, et al. Effects of blood transfusion on exercise capacity in thalassemia major patients. PLoS One. 2015;10(5):e0127553.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Agostoni P, Assanelli E, Guazzi M, Grazi M, Perego GB, Lomanto M, et al. Mechanisms facilitating oxygen delivery during exercise in patients with chronic heart failure. Cardiologia. 1997;42(7):743–50.

    CAS  PubMed  Google Scholar 

  46. Hamaoka T, McCully KK, Quaresima V, Yamamoto K, Chance B. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt. 2007;12(6):062105.

    Article  PubMed  Google Scholar 

  47. Hirsch DJ, Cooper JR Jr. Cardiac failure and left ventricular assist devices. Anesthesiol Clin North Am. 2003;21(3):625–38.

    Article  PubMed  Google Scholar 

  48. Apostolo A, et al. Comprehensive effects of left ventricular assist device speed changes on alveolar gas exchange, sleep ventilatory pattern, and exercise performance. J Heart Lung Transplant. 2018;37(11):1361–71 First integrated analysis on the effects of cardiac output changes in LVAD patients on several body functions. This paper has clinical and physiological relevance.

    Article  PubMed  Google Scholar 

  49. Koike A, Wasserman K, Taniguchi K, Hiroe M, Marumo F. Critical capillary oxygen partial pressure and lactate threshold in patients with cardiovascular disease. J Am Coll Cardiol. 1994;23(7):1644–50.

    Article  CAS  PubMed  Google Scholar 

  50. Agostoni PG, Guazzi M, Bussotti M, Grazi M, Palermo P, Marenzi G. Lack of improvement of lung diffusing capacity following fluid withdrawal by ultrafiltration in chronic heart failure. J Am Coll Cardiol. 2000;36(5):1600–4.

    Article  CAS  PubMed  Google Scholar 

  51. Agostoni P, Magini A, Andreini D, Contini M, Apostolo A, Bussotti M, et al. Spironolactone improves lung diffusion in chronic heart failure. Eur Heart J. 2005;26(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  52. Guazzi M. Alveolar gas diffusion abnormalities in heart failure. J Card Fail. 2008;14(8):695–702.

    Article  PubMed  Google Scholar 

  53. Mettauer B, Lampert E, Charloux A, Zhao QM, Epailly E, Oswald M, et al. Lung membrane diffusing capacity, heart failure, and heart transplantation. Am J Cardiol. 1999;83(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  54. Hoppeler H, Lüthi P, Claassen H, Weibel ER, Howald H. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch. 1973;344(3):217–32.

    Article  CAS  PubMed  Google Scholar 

  55. Schrepper A, Schwarzer M, Schöpe M, Amorim PA, Doenst T. Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload - role of respiratory chain complex activity. J Mol Cell Cardiol. 2012;52(1):125–35.

    Article  CAS  PubMed  Google Scholar 

  56. Sullivan MJ, Green HJ, Cobb FR. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation. 1990;81(2):518–27.

    Article  CAS  PubMed  Google Scholar 

  57. Drexler H, Riede U, Münzel T, König H, Funke E, Just H. Alterations of skeletal muscle in chronic heart failure. Circulation. 1992;85(5):1751–9.

    Article  CAS  PubMed  Google Scholar 

  58. Schaufelberger M, Eriksson BO, Grimby G, Held P, Swedberg K. Skeletal muscle fiber composition and capillarization in patients with chronic heart failure: relation to exercise capacity and central hemodynamics. J Card Fail. 1995;1(4):267–72.

    Article  CAS  PubMed  Google Scholar 

  59. Philippou A, Xanthis D, Chryssanthopοulos C, Maridaki M, Koutsilieris M. Heart failure-induced skeletal muscle wasting. Curr Heart Fail Rep. 2020;17(5):299–308.

    Article  PubMed  Google Scholar 

  60. Takada S, Sabe H, Kinugawa S. Abnormalities of skeletal muscle, adipocyte tissue, and lipid metabolism in heart failure: practical therapeutic targets. Front Cardiovasc Med. 2020;7:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Caforio AL, et al. Type 1 fiber abnormalities in skeletal muscle of patients with hypertrophic and dilated cardiomyopathy: evidence of subclinical myogenic myopathy. J Am Coll Cardiol. 1989;14(6):1464–73.

    Article  CAS  PubMed  Google Scholar 

  62. Severinghaus JW. Paradoxical relation of mitochondrial PO2 to Vo(2). Oxygen Transport to Tissue Xxi. 1999;471:595–604.

    Article  CAS  Google Scholar 

  63. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18(10):1208–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tucker WJ, et al. Impaired exercise tolerance in heart failure: role of skeletal muscle morphology and function. Curr Heart Fail Rep. 2018;15(6):323–31 Nice review on the importance of the scheletal muscle function and the anatomy changes in heart failure.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Del Torto A, et al. Contribution of central and peripheral factors at peak exercise in heart failure patients with progressive severity of exercise limitation. Int J Cardiol. 2017;248:252–6.

    Article  PubMed  Google Scholar 

  66. Cattadori G, Schmid JP, Agostoni P. Noninvasive measurement of cardiac output during exercise by inert gas rebreathing technique. Heart Fail Clin. 2009;5(2):209–15.

    Article  PubMed  Google Scholar 

  67. Gabrielsen A, et al. Non-invasive measurement of cardiac output in heart failure patients using a new foreign gas rebreathing technique. Clin Sci (Lond). 2002;102(2):247–52.

    Article  Google Scholar 

  68. Kemps HM, et al. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol (1985). 2008;105(6):1822–9.

    Article  PubMed  Google Scholar 

  69. Charloux A, Lonsdorfer-Wolf E, Richard R, Lampert E, Oswald-Mammosser M, Mettauer B, et al. A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the "direct" Fick method. Eur J Appl Physiol. 2000;82(4):313–20.

    Article  CAS  PubMed  Google Scholar 

  70. Vignati C, Apostolo A, Cattadori G, Farina S, del Torto A, Scuri S, et al. Lvad pump speed increase is associated with increased peak exercise cardiac output and vo2, postponed anaerobic threshold and improved ventilatory efficiency. Int J Cardiol. 2017;230:28–32.

    Article  PubMed  Google Scholar 

  71. Fresiello L, Jacobs S, Timmermans P, Buys R, Hornikx M, Goetschalckx K, et al. Limiting factors of peak and submaximal exercise capacity in LVAD patients. PLoS One. 2020;15(7):e0235684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gross C, Marko C, Mikl J, Altenberger J, Schlöglhofer T, Schima H, et al. LVAD pump flow does not adequately increase with exercise. Artif Organs. 2019;43(3):222–8.

    Article  CAS  PubMed  Google Scholar 

  73. Cairo G, Bernuzzi F, Recalcati S. A precious metal: Iron, an essential nutrient for all cells. Genes Nutr. 2006;1(1):25–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131(2S-2):568S–79S discussion 580S.

    Article  CAS  PubMed  Google Scholar 

  75. Munoz M, Villar I, Garcia-Erce JA. An update on iron physiology. World J Gastroenterol. 2009;15(37):4617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anderson GJ, Vulpe CD. Mammalian iron transport. Cell Mol Life Sci. 2009;66(20):3241–61.

    Article  CAS  PubMed  Google Scholar 

  77. Bolger AP, Bartlett FR, Penston HS, O’Leary J, Pollock N, Kaprielian R, et al. Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J Am Coll Cardiol. 2006;48(6):1225–7.

    Article  CAS  PubMed  Google Scholar 

  78. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48.

    Article  CAS  PubMed  Google Scholar 

  79. Okonko DO, Grzeslo A, Witkowski T, Mandal AKJ, Slater RM, Roughton M, et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol. 2008;51(2):103–12.

    Article  CAS  PubMed  Google Scholar 

  80. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencydagger. Eur Heart J. 2015;36(11):657–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiuseppe Agostoni.

Ethics declarations

Conflict of Interest

Dr. Agostoni reports non-financial support from Menarini, Novartis, and Boeringer; grants and non-financial support from Actelion; and grants from Daiichi Sankyo and Bayer.

The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reports studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myocardial Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovai, S., Mattavelli, I., Salvioni, E. et al. Exercise Dynamic of Patients with Chronic Heart Failure and Reduced Ejection Fraction. Curr Cardiol Rep 23, 92 (2021). https://doi.org/10.1007/s11886-021-01491-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01491-6

Keywords

Navigation