Skip to main content
Log in

Mammalian iron transport

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Crosa JH, Mey AR, Payne SM (eds) (2004) Iron transport in bacteria. American Society for Microbiology, Washington, DC

    Google Scholar 

  2. Philpott CC, Protchenko O (2008) Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7:20–27

    Article  PubMed  CAS  Google Scholar 

  3. Sutak R, Lesuisse E, Tachezy J, Richardson DR (2008) Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16:261–268

    Article  PubMed  CAS  Google Scholar 

  4. Wilson MT, Reeder BJ (2008) Oxygen-binding haem proteins. Exp Physiol 93:128–132

    Article  PubMed  CAS  Google Scholar 

  5. Rouault TA, Tong WH (2005) Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345–351

    Article  PubMed  CAS  Google Scholar 

  6. Lill R, Mühlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486

    Article  PubMed  CAS  Google Scholar 

  7. Crichton R (2001) Inorganic biochemistry of iron metabolism. From Molecular mechanisms to clinical consequences. 2nd edn. Wiley, New York

    Google Scholar 

  8. Castagnetto JM, Hennessy SW, Roberts VA, Getzoff ED, Tainer JA, Pique ME (2002) MDB: the Metalloprotein Database and Browser at The Scripps Research Institute. Nucl Acids Res 30:379–382. http://metallo.scripps.edu

  9. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  10. Koorts AM, Viljoen M (2007) Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion. Arch Physiol Biochem 113:30–54

    Article  PubMed  CAS  Google Scholar 

  11. Iancu TC, Deugnier Y, Halliday JW, Powell LW, Brissot P (1997) Ultrastructural sequences during liver iron overload in genetic hemochromatosis. J Hepatol 27:628–638

    Article  PubMed  CAS  Google Scholar 

  12. Trinder D, Morgan E (2001) Uptake of transferrin-bound iron by mammalian cells. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 427–449

    Google Scholar 

  13. Chua AC, Graham RM, Trinder D, Olynyk JK (2007) The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci 44:413–459

    Article  PubMed  CAS  Google Scholar 

  14. Parkes JG, Templeton DM (2001) Transport of non-transferrin-bound iron by hepatocytes. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 451–466

    Google Scholar 

  15. Hider RC (2002) Nature of nontransferrin-bound iron. Eur J Clin Invest 32(Suppl 1):50–54

    Article  PubMed  CAS  Google Scholar 

  16. Enns CA (2001) The transferrin receptor. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 71–94

    Google Scholar 

  17. Aisen P (2004) Transferrin receptor 1. Int J Biochem Cell Biol 36:2137–2143

    Article  PubMed  CAS  Google Scholar 

  18. Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC (1999) Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet 21:396–399

    Article  PubMed  CAS  Google Scholar 

  19. Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC (1999) Crystal structure of the ectodomain of human transferrin receptor. Science 286:779–782

    Article  PubMed  CAS  Google Scholar 

  20. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Structure of the human transferrin receptor-transferrin complex. Cell 116:565–576

    Article  PubMed  CAS  Google Scholar 

  21. Tsunoo H, Sussman HH (1983) Characterization of transferrin binding and specificity of the placental transferrin receptor. Arch Biochem Biophys 225:42–54

    Article  PubMed  CAS  Google Scholar 

  22. Klausner RD, Ashwell G, van Renswoude J, Harford JB, Bridges KR (1983) Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci USA 80:2263–2266

    Article  PubMed  CAS  Google Scholar 

  23. Watkins JA, Altazan JD, Elder P, Li C-Y, Nunez M-T, Cui X-X, Glass J (1992) Kinetic characterization of reductant dependent processes in iron mobilization from endocytic vesicles. Biochemistry 31:5820–5830

    Article  PubMed  CAS  Google Scholar 

  24. Bali PK, Zak O, Aisen P (1991) A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry 30:324–328

    Article  PubMed  CAS  Google Scholar 

  25. Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269

    Article  PubMed  CAS  Google Scholar 

  26. Ohgami RS, Campagna DR, Antiochos B, Wood EB, Sharp JJ, Barker JE, Fleming MD (2005) nm1054: a spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouse. Blood 106:3625–3631

    Article  PubMed  CAS  Google Scholar 

  27. Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108:1388–1394

    Article  PubMed  CAS  Google Scholar 

  28. Knutson MD (2007) Steap proteins: implications for iron and copper metabolism. Nutr Rev 65:335–340

    PubMed  Google Scholar 

  29. Sendamarai AK, Ohgami RS, Fleming MD, Lawrence CM (2008) Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle. Proc Natl Acad Sci USA 105:7410–7415

    Article  PubMed  CAS  Google Scholar 

  30. Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC (1998) NRAMP2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci USA 95:1148–1153

    Article  PubMed  CAS  Google Scholar 

  31. Katz JH (1961) Iron and protein kinetics studied by means of doubly labeled human crystalline transferrin. J Clin Invest 40:2143–2152

    Article  PubMed  CAS  Google Scholar 

  32. Lim JE, Jin O, Bennett C, Morgan K, Wang F, Trenor CC 3rd, Fleming MD, Andrews NC (2005) A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet 37:1270–1273

    Article  PubMed  CAS  Google Scholar 

  33. White RA, Boydston LA, Brookshier TR, McNulty SG, Nsumu NN, Brewer BP, Blackmore K (2005) Iron metabolism mutant hbd mice have a deletion in Sec15l1, which has homology to a yeast gene for vesicle docking. Genomics 86:668–673

    Article  PubMed  CAS  Google Scholar 

  34. Garrick LM, Edwards JA, Hoke JE, Bannerman RM (1987) Diminished acquisition of iron by reticulocytes from mice with hemoglobin deficit. Exp Hematol 15:671–675

    PubMed  CAS  Google Scholar 

  35. Zhang AS, Sheftel AD, Ponka P (2006) The anemia of “haemoglobin-deficit” (hbd/hbd) mice is caused by a defect in transferrin cycling. Exp Hematol 34:593–598

    Article  PubMed  CAS  Google Scholar 

  36. Zhang XM, Ellis S, Sriratana A, Mitchell CA, Rowe T (2004) Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 279:43027–43034

    Article  PubMed  CAS  Google Scholar 

  37. Anderson GJ, Powell LW, Halliday JW (1994) The endocytosis of transferrin by rat intestinal epithelial cells. Gastroenterology 106:414–422

    PubMed  CAS  Google Scholar 

  38. Trinder D, Zak O, Aisen P (1996) Transferrin receptor-independent uptake of differic transferrin by human hepatoma cells with antisense inhibition of receptor expression. Hepatology 23:1512–1520

    Article  PubMed  CAS  Google Scholar 

  39. Trinder D, Morgan EH, Baker E (1988) The effects of an antibody to the rat transferrin receptor and of rat serum albumin on the uptake of diferric transferrin by rat hepatocytes. Biochim Biophys Acta 943:440–446

    Article  PubMed  CAS  Google Scholar 

  40. Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP (1999) Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like family. J Biol Chem 274:20826–20832

    Article  PubMed  CAS  Google Scholar 

  41. Lee AW, Oates PS, Trinder D (2003) Effects of cell proliferation on the uptake of transferrin-bound iron by human hepatoma cells. Hepatology 38:967–977

    PubMed  CAS  Google Scholar 

  42. Robb AD, Ericsson M, Wessling-Resnick M (2004) Transferrin receptor 2 mediates a biphasic pattern of transferrin uptake associated with ligand delivery to multivesicular bodies. Am J Physiol 287:C1769–C1775

    Article  CAS  Google Scholar 

  43. Morgan EH, Smith GD, Peters TJ (1986) Uptake and subcellular processing of 59Fe-125I-labelled transferrin by rat liver. Biochem J 237:163–173

    PubMed  CAS  Google Scholar 

  44. Trinder D, Morgan EH, Baker E (1986) The mechanisms of iron uptake by fetal rat hepatocytes in culture. Hepatology 6:852–858

    Article  PubMed  CAS  Google Scholar 

  45. Fleming RE, Migas MC, Holden CC, Waheed A, Britton RS, Tomatsu S, Bacon BR, Sly WS (2000) Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci USA 97:2214–2219

    Article  PubMed  CAS  Google Scholar 

  46. Deaglio S, Capobianco A, Cali A, Bellora F, Alberti F, Righi L, Sapino A, Camaschella C, Malavasi F (2002) Structural, functional, and tissue distribution analysis of human transferrin receptor-2 by murine monoclonal antibodies and polyclonal antiserum. Blood 100:3782–3789

    Article  PubMed  CAS  Google Scholar 

  47. Camaschella C, Roetto A, Cali A, De Gobbi M, Garozzo G, Carella M, Majorano N, Totaro A, Gasparini P (2000) The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet 25:14–15

    Article  PubMed  CAS  Google Scholar 

  48. Fleming RE, Ahmann JR, Migas MC, Waheed A, Koeffler HP, Kawabata H, Britton RS, Bacon BR, Sly WS (2002) Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc Natl Acad Sci USA 99:10653–10658

    Article  PubMed  CAS  Google Scholar 

  49. Raje CI, Kumar S, Harle A, Nanda JS, Raje M (2007) The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 282:3252–3261

    Article  PubMed  CAS  Google Scholar 

  50. Thorstensen K, Romslo I (1990) The role of transferrin in the mechanism of cellular iron uptake. Biochem J 271:1–10

    PubMed  CAS  Google Scholar 

  51. Oshiro S, Nakajima H, Markello T, Krasnewich D, Bernardini I, Gahl WA (1993) Redox, transferrin-independent, and receptor-mediated endocytosis iron uptake systems in cultured human fibroblasts. J Biol Chem 268:21586–21591

    PubMed  CAS  Google Scholar 

  52. Cole ES, Glass J (1983) Transferrin binding and iron uptake in mouse hepatocytes. Biochim Biophys Acta 762:102–110

    Article  PubMed  CAS  Google Scholar 

  53. Thorstensen K, Romslo I (1988) Uptake of iron from transferrin by isolated rat hepatocytes. A redox-mediated plasma membrane process? J Biol Chem 263:8844–8850

    PubMed  CAS  Google Scholar 

  54. Trinder D, Morgan E (1997) Inhibition of uptake of transferrin-bound iron by human hepatoma cells by nontransferrin-bound iron. Hepatology 26:691–698

    Article  PubMed  CAS  Google Scholar 

  55. Graham RM, Morgan EH, Baker E (1998) Ferric citrate uptake by cultured rat hepatocytes is inhibited in the presence of transferrin. Eur J Biochem 253:139–145

    Article  PubMed  CAS  Google Scholar 

  56. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  57. Courville P, Chaloupka R, Cellier MF (2006) Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol 84:960–978

    Article  PubMed  CAS  Google Scholar 

  58. Fleming MD, Trenor CC 3rd, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16:383–386

    PubMed  CAS  Google Scholar 

  59. Nevo Y (2008) Site-directed mutagenesis investigation of coupling properties of metal ion transport by DCT1. Biochim Biophys Acta 1778:334–341

    Article  PubMed  CAS  Google Scholar 

  60. Li H, Gu JD, Sun H (2008) Structure, topology and assembly of a 32-mer peptide corresponding to the loop 3 and transmembrane domain 4 of divalent metal transporter (DMT1) in membrane-mimetic environments. J Inorg Biochem 102:1257–1266

    Article  PubMed  CAS  Google Scholar 

  61. Bowen BJ, Morgan EH (1987) Anemia of the Belgrade rat: evidence for defective membrane transport of iron. Blood 70:38–44

    PubMed  CAS  Google Scholar 

  62. Mackenzie B, Garrick MD (2005) Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol 289:G981–G986

    CAS  Google Scholar 

  63. Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC (2005) Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 115:1258–1266

    PubMed  CAS  Google Scholar 

  64. Picard V, Govoni G, Jabado N, Gros P (2000) Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool. J Biol Chem 275:35738–35745

    Article  PubMed  CAS  Google Scholar 

  65. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620

    Article  PubMed  CAS  Google Scholar 

  66. Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–485

    Article  PubMed  CAS  Google Scholar 

  67. Gruenheid S, Pinner E, Desjardins M, Gros P (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185:717–730

    Article  PubMed  CAS  Google Scholar 

  68. Goswami T, Bhattacharjee A, Babal P, Searle S, Moore E, Li M, Blackwell JM (2001) Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J 354:511–519

    Article  PubMed  CAS  Google Scholar 

  69. Wyllie S, Seu P, Goss JA (2002) The natural resistance-associated macrophage protein 1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages. Microbes Infect 4:351–359

    Article  PubMed  CAS  Google Scholar 

  70. Soe-Lin S, Sheftel AD, Wasyluk B, Ponka P (2008) Nramp1 equips macrophages for efficient iron recycling. Exp Hematol 36:929–937

    Article  PubMed  CAS  Google Scholar 

  71. Bernstein SE (1987) Hereditary hypotransferrinemia with hemosiderosis, a murine disorder resembling human atransferrinemia. J Lab Clin Med 110:690–705

    PubMed  CAS  Google Scholar 

  72. Hayashi A, Wada Y, Suzuki T, Shimizu A (1993) Studies on familial hypotransferrinemia: unique clinical course and molecular pathology. Am J Hum Genet 53:201–213

    PubMed  CAS  Google Scholar 

  73. Aisen P, Leibman A, Zweier J (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253:1930–1937

    PubMed  CAS  Google Scholar 

  74. Breuer W, Shvartsman M, Cabantchik ZI (2008) Intracellular labile iron. Int J Biochem Cell Biol 40:350–354

    Article  PubMed  CAS  Google Scholar 

  75. Craven CM, Alexander J, Eldridge M, Kushner JP, Bernstein S, Kaplan J (1987) Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc Natl Acad Sci USA 84:3457–3461

    Article  PubMed  CAS  Google Scholar 

  76. Wright TL, Brissot P, Ma W-L, Weisinger RA (1986) Characterization of non-transferrin-bound iron clearance by rat liver. J Biol Chem 261:10909–10914

    PubMed  CAS  Google Scholar 

  77. Gutierrez JA, Yu J, Rivera S, Wessling-Resnick M (1997) Functional expression cloning and characterization of SFT, a stimulator of Fe transport. J Cell Biol 139:895–905 [Correction in (1999) J Cell Biol 147, following p 204]

    Article  PubMed  CAS  Google Scholar 

  78. Barisani D, Conte D (2002) Transferrin receptor 1 (TfR1) and putative stimulator of Fe transport (SFT) expression in iron deficiency and overload: an overview. Blood Cells Mol Dis 29:498–505

    Article  PubMed  CAS  Google Scholar 

  79. Gehrke SG, Riedel HD, Herrmann T, Hadaschik B, Bents K, Veltkamp C, Stremmel W (2003) UbcH5A, a member of human E2 ubiquitin-conjugating enzymes, is closely related to SFT, a stimulator of iron transport, and is up-regulated in hereditary hemochromatosis. Blood 101:3288–3293

    Article  PubMed  CAS  Google Scholar 

  80. Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103:13612–13617

    Article  PubMed  CAS  Google Scholar 

  81. Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9:1187–1194

    Article  PubMed  CAS  Google Scholar 

  82. Randell EW, Parkes JG, Olivieri NF, Templeton DM (1994) Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem 269:16046–16053

    PubMed  CAS  Google Scholar 

  83. Lim SK, Kim H, Lim SK, bin Ali A, Lim YK, Wang Y, Chong SM, Costantini F, Baumman H (1998) Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 92:1870–1877

    PubMed  CAS  Google Scholar 

  84. Tolosano E, Hirsch E, Patrucco E, Camaschella C, Navone R, Silengo L, Altruda F (1999) Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94:3906–3914

    PubMed  CAS  Google Scholar 

  85. Wassell J (2000) Haptoglobin: function and polymorphism. Clin Lab 46:547–552

    PubMed  CAS  Google Scholar 

  86. Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354

    Article  PubMed  CAS  Google Scholar 

  87. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201

    Article  PubMed  CAS  Google Scholar 

  88. Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiol 210:153–160

    Article  CAS  Google Scholar 

  89. Tolosano E, Altruda F (2002) Hemopexin: structure, function, and regulation. DNA Cell Biol 21:297–306

    Article  PubMed  CAS  Google Scholar 

  90. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784

    PubMed  CAS  Google Scholar 

  91. Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK (2005) Identification of the receptor scavenging hemopexin-heme complexes. Blood 106:2572–2579

    Article  PubMed  CAS  Google Scholar 

  92. Smith A, Farooqui SM, Morgan WT (1991) The murine haemopexin receptor. Evidence that the haemopexin-binding site resides on a 20 kDa subunit and that receptor recycling is regulated by protein kinase C. Biochem J 276:417–425

    PubMed  CAS  Google Scholar 

  93. Maines MD (2005) The heme oxygenase system: update 2005. Antiox Redox Signal 7:1761–1766

    Article  CAS  Google Scholar 

  94. Latunde-Dada GO, Simpson RJ, McKie AT (2006) Recent advances in mammalian haem transport. Trends Biochem Sci 31:182–188

    Article  PubMed  CAS  Google Scholar 

  95. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, McKie AT (2005) Identification of an intestinal heme transporter. Cell 122:789–801

    Article  PubMed  CAS  Google Scholar 

  96. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928

    Article  PubMed  CAS  Google Scholar 

  97. West AR, Oates PS (2008) Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 14:4101–4110

    Article  PubMed  CAS  Google Scholar 

  98. Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, Kingsley PD, De Domenico I, Vaughn MB, Kaplan J, Palis J, Abkowitz JL (2008) A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319:825–828

    Article  PubMed  CAS  Google Scholar 

  99. Sibille JC, Kondo H, Aisen P (1988) Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology 8:296–301

    Article  PubMed  CAS  Google Scholar 

  100. Mack U, Cooksley WG, Ferris RA, Powell LW, Halliday JW (1981) Regulation of plasma ferritin by the isolated perfused rat liver. Br J Haematol 47:403–412

    Article  PubMed  CAS  Google Scholar 

  101. Chen TT, Li L, Chung DH, Allen CD, Torti SV, Torti FM, Cyster JG, Chen CY, Brodsky FM, Niemi EC, Nakamura MC, Seaman WE, Daws MR (2005) TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med 202:955–965

    Article  PubMed  CAS  Google Scholar 

  102. Li JY, Paragas N, Ned RM, Qiu A, Viltard M, Leete T, Drexler IR, Chen X, Sanna-Cherchi S, Mohammed F, Williams D, Lin CS, Schmidt-Ott KM, Andrews NC, Barasch J (2009) Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell 16:35–46

    Article  PubMed  CAS  Google Scholar 

  103. Inman RS, Coughlan MM, Wessling-Resnick M (1994) Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport. Biochemistry 33:11850–11857

    Article  PubMed  CAS  Google Scholar 

  104. Jordan I, Kaplan J (1994) The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity. Biochem J 302:875–879

    PubMed  CAS  Google Scholar 

  105. Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301

    PubMed  CAS  Google Scholar 

  106. Raja KB, Simpson RJ, Peters TJ (1992) Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim Biophys Acta 1135:141–146

    Article  PubMed  CAS  Google Scholar 

  107. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–1759

    Article  PubMed  CAS  Google Scholar 

  108. Gunshin H, Starr CN, Direnzo C, Fleming MD, Jin J, Greer EL, Sellers VM, Galica SM, Andrews NC (2005) Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood 106:2879–2883

    Article  PubMed  CAS  Google Scholar 

  109. Verrijt CE, Kroos MJ, Huijskes-Heins MI, van Eijk HG, van Dijk JP (1998) Non-transferrin iron uptake by trophoblast cells in culture. Significance of a NADH-dependent ferrireductase. Placenta 19:525–530

    Article  PubMed  CAS  Google Scholar 

  110. Knutson M, Wessling-Resnick M (2003) Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol 38:61–88

    Article  PubMed  CAS  Google Scholar 

  111. Anderson GJ, Vulpe CD (2001) Regulation of intestinal iron transport. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 559–596

    Google Scholar 

  112. Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  PubMed  CAS  Google Scholar 

  113. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Postional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  PubMed  CAS  Google Scholar 

  114. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  115. McArdle HJ, Andersen HS, Jones H, Gambling L (2008) Copper and iron transport across the placenta: regulation and interactions. J Neuroendocrinol 20:427–431

    Article  PubMed  CAS  Google Scholar 

  116. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1:191–200

    Article  PubMed  CAS  Google Scholar 

  117. Pietrangelo A (2004) Non-HFE hemochromatosis. Hepatology 39:21–29

    Article  PubMed  Google Scholar 

  118. Rice AE, Mendez MJ, Hokanson CA, Rees DC, Björkman PJ (2009) Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J Mol Biol 386:717–732

    Article  PubMed  CAS  Google Scholar 

  119. De Domenico I, Ward DM, Musci G, Kaplan J (2007) Evidence for the multimeric structure of ferroportin. Blood 109:2205–2209

    Article  PubMed  CAS  Google Scholar 

  120. Wallace DF, Subramaniam VN (2007) Non-HFE haemochromatosis. World J Gastroenterol 13:4690–4698

    PubMed  CAS  Google Scholar 

  121. Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, Berg CL, Sassa S, Wood BL, Abkowitz JL (2004) Identification of a human heme exporter that is essential for erythropoiesis. Cell 118:757–766

    Article  PubMed  CAS  Google Scholar 

  122. Krishnamurthy P, Schuetz JD (2006) Role of ABCG2/BCRP in biology and medicine. Ann Rev Pharm Toxicol 46:381–410

    Article  PubMed  CAS  Google Scholar 

  123. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  PubMed  CAS  Google Scholar 

  124. Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA 96:10812–10817

    Article  PubMed  CAS  Google Scholar 

  125. Xu X, Pin S, Gathinji M, Fuchs R, Harris ZL (2004) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann N Y Acad Sci 1012:299–305

    Article  PubMed  CAS  Google Scholar 

  126. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195–199

    Article  PubMed  CAS  Google Scholar 

  127. Anderson GJ, Frazer DM, McKie AT, Vulpe CD (2002) The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol Dis 29:367–375

    Article  PubMed  CAS  Google Scholar 

  128. Hadziahmetovic M, Dentchev T, Song Y, Haddad N, He X, Hahn P, Pratico D, Wen R, Harris ZL, Lambris J, Beard J, Dunaief J (2008) Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD. Invest Ophthalmol Vis Sci 49:2728–2736

    Article  PubMed  Google Scholar 

  129. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148

    Article  PubMed  CAS  Google Scholar 

  130. Cherukuri S, Potla R, Sarkar J, Nurko S, Harris ZL, Fox PL (2005) Unexpected role of ceruloplasmin in intestinal iron absorption. Cell Metab 2:309–319

    Article  PubMed  CAS  Google Scholar 

  131. De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26:2823–2831

    Article  PubMed  CAS  Google Scholar 

  132. Roeser HP, Lee GR, Nacht S, Cartwright GE (1970) The role of ceruloplasmin in iron metabolism. J Clin Invest 49:2408–2417

    Article  PubMed  CAS  Google Scholar 

  133. Shiono Y, Wakusawa S, Hayashi H, Takikawa T, Yano M, Okada T, Mabuchi H, Kono S, Miyajima H (2001) Iron accumulation in the liver of male patients with Wilson’s disease. Am J Gastroenterol 96:3147–3151

    Article  PubMed  CAS  Google Scholar 

  134. Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mut Res 531:81–92

    CAS  Google Scholar 

  135. Prohaska JR, Gybina AA (2004) Intracellular copper transport in mammals. J Nut 134:1003–1006

    CAS  Google Scholar 

  136. Shi H, Bencze KZ, Stemmler TL, Philpott CC (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320:1207–1210

    Article  PubMed  CAS  Google Scholar 

  137. Ajioka RS, Phillips JD, Kushner JP (2006) Biosynthesis of heme in mammals. Biochim Biophys Acta 1763:723–736

    Article  PubMed  CAS  Google Scholar 

  138. Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874

    Article  PubMed  CAS  Google Scholar 

  139. Sheftel AD, Zhang AS, Brown C, Shirihai OS, Ponka P (2007) Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110:125–132

    Article  PubMed  CAS  Google Scholar 

  140. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440:96–100

    Article  PubMed  CAS  Google Scholar 

  141. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J (2009) Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol 29:1007–1016

    Article  PubMed  CAS  Google Scholar 

  142. Krishnamurthy P, Xie T, Schuetz JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Therapeut 114:345–358

    Article  CAS  Google Scholar 

  143. Pondarré C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM, McDonald A, Han AP, Medlock A, Kutok JL, Anderson SA, Eisenstein RS, Fleming MD (2006) The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Gene 15:953–964

    Article  CAS  Google Scholar 

  144. Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J, Lill R, Bishop DF (2000) Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 96:3256–3264

    PubMed  CAS  Google Scholar 

  145. Puccio H, Simon D, Cossée M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186

    Article  PubMed  CAS  Google Scholar 

  146. Pandolfo M (2003) Friedreich ataxia. Sem Pediatric Neurol 10:163–172

    Article  Google Scholar 

  147. Lodi R, Tonon C, Calabrese V, Schapira AH (2006) Friedreich’s ataxia: from disease mechanisms to therapeutic interventions. Antiox Redox Signal 8:438–443

    Article  CAS  Google Scholar 

  148. Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  PubMed  CAS  Google Scholar 

  149. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  PubMed  CAS  Google Scholar 

  150. Cairo G, Recalcati S (2007) Iron-regulatory proteins: molecular biology and pathophysiological implications. Exp Rev Mol Med 9:1–13

    Article  Google Scholar 

  151. Ponka P, Beaumont C, Richardson DR (1998) Function and regulation of transferrin and ferritin. Sem Hematol 35:35–54

    CAS  Google Scholar 

  152. Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA (2001) Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 509:309–316

    Article  PubMed  CAS  Google Scholar 

  153. Tchernitchko D, Bourgeois M, Martin M-E, Beaumont C (2002) Expression of the two mRNA isoforms of the iron transporter Nramp2/DMT1 in mice and function of the iron responsive element. Biochem J 363:449–455

    Article  PubMed  CAS  Google Scholar 

  154. Galy B, Ferring-Appel D, Kaden S, Gröne HJ, Hentze MW (2008) Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab 7:79–85

    Article  PubMed  CAS  Google Scholar 

  155. Mok H, Jelinek J, Pai S, Cattanach BM, Prchal JT, Youssoufian H, Schumacher A (2004) Disruption of ferroportin 1 regulation causes dynamic alterations in iron homeostasis and erythropoiesis in polycythaemic mice. Development 131:1859–1868

    Article  PubMed  CAS  Google Scholar 

  156. Melefors O, Goossen B, Johansson HE, Stripecke R, Gray NK, Hentze MW (1993) Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J Biol Chem 268:5974–5978

    PubMed  Google Scholar 

  157. Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, Rouault TA (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23:386–395

    Article  PubMed  CAS  Google Scholar 

  158. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R 3rd, Grinberg A, Love P, Tresser N, Rouault TA (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27:209–214

    Article  PubMed  CAS  Google Scholar 

  159. Galy B, Ferring D, Minana B, Bell O, Janser HG, Muckenthaler M, Schümann K, Hentze MW (2005) Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood 106:2580–2589

    Article  PubMed  CAS  Google Scholar 

  160. Meyron-Holtz EG, Ghosh MC, Rouault TA (2004) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306:2087–2090

    Article  PubMed  CAS  Google Scholar 

  161. Frazer DM, Vulpe CD, McKie AT, Wilkins SJ, Trinder D, Cleghorn GJ, Anderson GJ (2001) Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. Am J Physiol 281:G931–G939

    CAS  Google Scholar 

  162. Mims MP, Prchal JT (2005) Divalent metal transporter 1. Hematology 10:339–345

    Article  CAS  Google Scholar 

  163. Hintze KJ, Theil EC (2006) Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci 63:591–600

    Article  PubMed  CAS  Google Scholar 

  164. Casey JL, Di Jeso B, Rao K, Klausner RD, Harford JB (1988) Two genetic loci participate in the regulation by iron of the gene for the human transferrin receptor. Proc Natl Acad Sci USA 85:1787–1791

    Article  PubMed  CAS  Google Scholar 

  165. Peyssonnaux C, Nizet V, Johnson RS (2008) Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle 7:28–32

    PubMed  CAS  Google Scholar 

  166. Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G (1999) Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 274:24142–24146

    Article  PubMed  CAS  Google Scholar 

  167. Lok CN, Ponka P (1999) Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 274:24147–24152

    Article  PubMed  CAS  Google Scholar 

  168. Weiss G (2005) Modification of iron regulation by the inflammatory response. Best Pract Res Clin Haematol 18:183–201

    Article  PubMed  CAS  Google Scholar 

  169. Trinder D, Oates PS, Thomas C, Sadlier J, Morgan EH (2000) Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46:270–276

    Article  PubMed  CAS  Google Scholar 

  170. Scheiber-Mojdehkar B, Sturm B, Plank L, Kryzer I, Goldenberg H (2003) Influence of parenteral iron preparations on non-transferrin bound iron uptake, the iron regulatory protein and the expression of ferritin and the divalent metal transporter DMT-1 in HepG2 human hepatoma cells. Biochem Pharmacol 65:1973–1978

    Article  PubMed  CAS  Google Scholar 

  171. Yeh KY, Yeh M, Watkins JA, Rodriguez-Paris J, Glass J (2000) Dietary iron induces rapid changes in rat intestinal divalent metal transporter expression. Am J Physiol 279:G1070–G1079

    CAS  Google Scholar 

  172. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  173. Johnson MB, Chen J, Murchison N, Green FA, Enns CA (2007) Transferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway. Mol Biol Cell 18:743–754

    Article  PubMed  CAS  Google Scholar 

  174. Foot NJ, Dalton HE, Shearwin-Whyatt LM, Dorstyn L, Tan SS, Yang B, Kumar S (2008) Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood 112:4268–4275

    Article  PubMed  CAS  Google Scholar 

  175. Lam-Yuk-Tseung S, Gros P (2006) Distinct targeting and recycling properties of two isoforms of the iron transporter DMT1 (NRAMP2, Slc11A2). Biochemistry 45:2294–2301

    Article  PubMed  CAS  Google Scholar 

  176. De Domenico I, Ward DM, Langelier C, Vaughn MB, Nemeth E, Sundquist WI, Ganz T, Musci G, Kaplan J (2007) The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 18:2569–2578

    Article  PubMed  CAS  Google Scholar 

  177. De Domenico I, Lo E, Ward DM, Kaplan J (2009) Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci USA 106:3800–3805

    Article  PubMed  Google Scholar 

  178. Wang F, Paradkar PN, Custodio AO, McVey Ward D, Fleming MD, Campagna D, Roberts KA, Boyartchuk V, Dietrich WF, Kaplan J, Andrews NC (2007) Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice. Nat Genet 39:1025–1032

    Article  PubMed  CAS  Google Scholar 

  179. Zakin MM (1992) Regulation of transferrin gene expression. FASEB J 6:3253–3258

    PubMed  CAS  Google Scholar 

  180. Sylvester SR, Griswold MD (1994) The testicular iron shuttle: a “nurse” function of the Sertoli cells. J Androl 15:381–385

    PubMed  CAS  Google Scholar 

  181. MacGillivray RTA, Mason AB (2001) Transferrins. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 41–69

    Google Scholar 

  182. Cairo G (2001) Regulation of liver iron metabolism. In: Templeton DM (ed) Molecular and cellular iron transport. Marcel Dekker, New York, pp 613–641

    Google Scholar 

  183. Lok CN, Loh TT (1998) Regulation of transferrin function and expression: review and update. Biol Signals Recept 7:157–178

    Article  PubMed  CAS  Google Scholar 

  184. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 98:8780–8785

    Article  PubMed  CAS  Google Scholar 

  185. Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Sirito M, Sawadogo M, Kahn A, Vaulont S (2002) Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA 99:4596–4601

    Article  PubMed  CAS  Google Scholar 

  186. Ganz T (2005) Hepcidin—a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol 18:171–182

    Article  PubMed  CAS  Google Scholar 

  187. Rivera S, Liu L, Nemeth E, Gabayan V, Sorensen OE, Ganz T (2005) Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia. Blood 105:1797–1802

    Article  PubMed  CAS  Google Scholar 

  188. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819

    Article  PubMed  CAS  Google Scholar 

  189. Millard KN, Frazer DM, Wilkins SJ, Anderson GJ (2004) Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat. Gut 53:655–660

    Article  PubMed  CAS  Google Scholar 

  190. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037–1044

    PubMed  CAS  Google Scholar 

  191. Wang RH, Li C, Xu X, Zheng Y, Xiao C, Zerfas P, Cooperman S, Eckhaus M, Rouault T, Mishra L, Deng CX (2005) A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2:399–409

    Article  PubMed  CAS  Google Scholar 

  192. Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, Andrews NC, Lin HY (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539

    Article  PubMed  CAS  Google Scholar 

  193. Anderson GJ, Frazer DM (2006) Iron metabolism meets signal transduction. Nat Genet 38:503–504

    Article  PubMed  CAS  Google Scholar 

  194. Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth MP (2009) Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet 41:478–481

    Article  PubMed  CAS  Google Scholar 

  195. Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD, Pietrangelo A, Vukicevic S, Lin HY, Babitt JL (2009) BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 41:482–487

    Article  PubMed  CAS  Google Scholar 

  196. Frazer DM, Anderson GJ (2003) The orchestration of body iron intake: how and where do enterocytes receive their cues? Blood Cells Mol Dis 30:288–297

    Article  PubMed  CAS  Google Scholar 

  197. Wilkins SJ, Frazer DM, Millard KN, McLaren GD, Anderson GJ (2006) Iron metabolism in the hemoglobin-deficit mouse: correlation of diferric transferrin with hepcidin expression. Blood 107:1659–1664

    Article  PubMed  CAS  Google Scholar 

  198. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS (2008) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 117:1926–1932

    Article  CAS  Google Scholar 

  199. Ahmad KA, Ahmann JR, Migas MC, Waheed A, Britton RS, Bacon BR, Sly WS, Fleming RE (2002) Decreased liver hepcidin expression in the Hfe knockout mouse. Blood Cells Mol Dis 29:361–366

    Article  PubMed  CAS  Google Scholar 

  200. Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, Subramaniam VN, Powell LW, Anderson GJ, Ramm GA (2003) Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361:669–673

    Article  PubMed  CAS  Google Scholar 

  201. Roetto A, Papanikolaou G, Politou M, Alberti F, Girelli D, Christakis J, Loukopoulos D, Camaschella C (2003) Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 33:21–22

    Article  PubMed  CAS  Google Scholar 

  202. Fleming RE, Britton RS, Waheed A, Sly WS, Bacon BR (2004) Pathogenesis of hereditary hemochromatosis. Clin Liver Dis 8:755–773

    Article  PubMed  Google Scholar 

  203. Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dube MP, Andres L, MacFarlane J, Sakellaropoulos N, Politou M, Nemeth E, Thompson J, Risler JK, Zaborowska C, Babakaiff R, Radomski CC, Pape TD, Davidas O, Christakis J, Brissot P, Lockitch G, Ganz T, Hayden MR, Goldberg YP (2004) Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 36:77–82

    Article  PubMed  CAS  Google Scholar 

  204. Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C (2005) Hepcidin is decreased in TFR2 hemochromatosis. Blood 105:1803–1806

    Article  PubMed  CAS  Google Scholar 

  205. Andrews NC (2008) Forging a field: the golden age of iron biology. Blood 112:219–230

    Article  PubMed  CAS  Google Scholar 

  206. Kemna EH, Tjalsma H, Willems HL, Swinkels DW (2008) Hepcidin: from discovery to differential diagnosis. Haematologica 93:90–97

    Article  PubMed  CAS  Google Scholar 

  207. Wrighting DM, Andrews NC (2008) Iron homeostasis and erythropoiesis. Curr Top Dev Biol 82:141–167

    Article  PubMed  CAS  Google Scholar 

  208. Iacopetta BJ, Morgan EH, Yeoh GC (1982) Transferrin receptors and iron uptake during erythroid cell development. Biochim Biophys Acta 687:204–210

    Article  PubMed  CAS  Google Scholar 

  209. Anderson GJ, Frazer DM (2005) Hepatic iron metabolism. Semin Liver Dis 25:420–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

G.J.A. is the recipient of a Senior Research Fellowship from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Jon Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, G.J., Vulpe, C.D. Mammalian iron transport. Cell. Mol. Life Sci. 66, 3241–3261 (2009). https://doi.org/10.1007/s00018-009-0051-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0051-1

Keywords

Navigation