Skip to main content

Advertisement

Log in

Role of Cardiac MRI in Diabetes

  • Diabetes and Cardiovascular Disease (S Malik, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Diabetes and insulin resistance have a variety of detrimental effects on cardiovascular health and outcomes. Cardiac magnetic resonance offers a non-invasive means to obtain many layers of information at a tissue level, including fibrosis, edema, intramyocardial motion, triglyceride content, and myocardial energetics. The role of cardiovascular magnetic resonance is particularly important in the evaluation of recognized and unrecognized coronary artery disease. In this review, we address the current state-of-the-art in cardiac magnetic resonance imaging – for both clinical and investigational use – as it applies to diabetic cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kannel W, Hjortland M, Castelli W. Role of diabetes in congestive heart failure: the Framingham Study. Am J Cardiol. 1976;34:29–34.

    Article  Google Scholar 

  2. de Simone G, Devereux RB, Chinali M, et al. Diabetes and incident heart failure in hypertensive and normotensive participants of the Strong Heart Study. J Hypertens. 2010;28:353–60.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Burchfiel C, Reed D, Marcus E, Strong J, Hayashi T. Association of diabetes mellitus with coronary atherosclerosis and myocardial lesions: an autopsy study from the Honolulu Heart Program. Am J Epidemiol. 1993;137:1328–40.

    CAS  PubMed  Google Scholar 

  4. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25:543–67.

    Article  CAS  PubMed  Google Scholar 

  5. American College of Cardiology Foundation Task Force on Expert Consensus D, Hundley WG, Bluemke DA, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55:2614–62.

    Article  PubMed  Google Scholar 

  6. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379–83.

    Article  CAS  PubMed  Google Scholar 

  7. Raman SV, Simonetti OP, Winner 3rd MW, et al. Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2010;55:2480–8.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48:1977–85.

    Article  PubMed  Google Scholar 

  9. Hudsmith LE, Tyler DJ, Emmanuel Y, et al. 31P cardiac magnetic resonance spectroscopy during leg exercise at 3 Tesla. Int J Cardiovasc Imaging. 2009;25:819–26.

    Article  PubMed  Google Scholar 

  10. Ng AC, Delgado V, Bertini M, et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation. 2010;122:2538–44.

    Article  PubMed  Google Scholar 

  11. Rosen BD, Saad MF, Shea S, et al. Hypertension and smoking are associated with reduced regional left ventricular function in asymptomatic: individuals the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol. 2006;47:1150–8.

    Article  PubMed  Google Scholar 

  12. Paetsch I, Jahnke C, Wahl A, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation. 2004;110:835–42.

    Article  CAS  PubMed  Google Scholar 

  13. Gebker R, Jahnke C, Paetsch I, et al. MR myocardial perfusion imaging with k-space and time broad-use linear acquisition speed-up technique: feasibility study. Radiology. 2007;245:863–71.

    Article  PubMed  Google Scholar 

  14. Amado LC, Gerber BL, Gupta SN, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol. 2004;44:2383–9.

    Article  PubMed  Google Scholar 

  15. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  CAS  PubMed  Google Scholar 

  16. Flett AS, Hasleton J, Cook C, et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging. 2011;4:150–6.

    Article  PubMed  Google Scholar 

  17. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103:2230–5.

    Article  CAS  PubMed  Google Scholar 

  18. Peters DC, Appelbaum EA, Nezafat R, et al. Left ventricular infarct size, peri-infarct zone, and papillary scar measurements: a comparison of high-resolution 3D and conventional 2D late gadolinium enhancement cardiac MR. J Magn Reson Imaging. 2009;30:794–800.

    Article  PubMed Central  PubMed  Google Scholar 

  19. •• Ng AC, Auger D, Delgado V, et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T (1) mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circ Cardiovasc Imaging. 2012;5:51–9. This manuscript was one of the first demonstrations that diffuse myocardial fibrosis as assessed by T1 mapping CMR techniques is associated with diastolic dysfunction and strain in diabetes.

    Article  PubMed  Google Scholar 

  20. Rijzewijk LJ, van der Meer RW, Lamb HJ, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol. 2009;54:1524–32.

    Google Scholar 

  21. Rijzewijk LJ, van der Meer RW, Smit JW, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol. 2008;52:1793–9.

    Google Scholar 

  22. Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971–1993. Diabetes Care. 1998;21:1138–45.

    Article  CAS  PubMed  Google Scholar 

  23. Eberly LE, Cohen JD, Prineas R, Yang L. Intervention Trial Research g. Impact of incident diabetes and incident nonfatal cardiovascular disease on 18-year mortality: the multiple risk factor intervention trial experience. Diabetes Care. 2003;26:848–54.

    Article  PubMed  Google Scholar 

  24. Abbott RD, Donahue RP, Kannel WB, Wilson PW. The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study. JAMA. 1988;260:3456–60.

    Article  CAS  PubMed  Google Scholar 

  25. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    Article  CAS  PubMed  Google Scholar 

  26. Wu KC, Weiss RG, Thiemann DR, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol. 2008;51:2414–21.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wu E, Ortiz JT, Tejedor P, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94:730–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kwong RY, Sattar H, Wu H, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118:1011–20.

    Google Scholar 

  29. •• Schelbert EB, Cao JJ, Sigurdsson S, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA. 2012;308:890–6. This is one of the largest prospective, community based studies demonstrating the prognostic importance of LGE CMR; these authors specifically comment on the prognostic utility of LGE CMR in diabetics.

    Article  CAS  PubMed  Google Scholar 

  30. • Turkbey EB, Backlund JY, Genuth S, et al. Myocardial structure, function, and scar in patients with type 1 diabetes mellitus. Circulation. 2011;124:1737–46. This study from the DCCT trial demonstrates a relationship between glycemic control and aberrant LV structure and function.

    Article  PubMed Central  PubMed  Google Scholar 

  31. • Yoon YE, Kitagawa K, Kato S, et al. Prognostic significance of unrecognized myocardial infarction detected with MR imaging in patients with impaired fasting glucose compared with those with diabetes. Radiology. 2012;262:807–15. This study extends the results of Kwong et al. (reference 29) to patients with pre-diabetes (impaired fasting glucose), with similar results that LGE CMR is prognostic even before the onset of type 2 diabetes.

    Article  PubMed  Google Scholar 

  32. Mather AN, Crean A, Abidin N, et al. Relationship of dysglycemia to acute myocardial infarct size and cardiovascular outcome as determined by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:61.

    Article  PubMed  Google Scholar 

  33. Jensen CJ, Eberle HC, Nassenstein K, et al. Impact of hyperglycemia at admission in patients with acute ST-segment elevation myocardial infarction as assessed by contrast-enhanced MRI. Clin Res Cardiol. 2011;100:649–59.

    Article  CAS  PubMed  Google Scholar 

  34. Gottumukkala RV, Lv H, Cornivelli L, Wagers AJ, Kwong RY, Bronson R, et al. Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes. Sci Transl Med 2012;4:138ra180.

    Google Scholar 

  35. Young LH, Wackers FJ, Chyun DA, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Shaw LJ, Cerqueira MD, Brooks MM, et al. Impact of left ventricular function and the extent of ischemia and scar by stress myocardial perfusion imaging on prognosis and therapeutic risk reduction in diabetic patients with coronary artery disease: results from the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2012;19:658–69.

    Article  Google Scholar 

  37. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2007;50:1343–53.

    Article  PubMed  Google Scholar 

  38. Schwitter J, Wacker CM, van Rossum AC, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–9.

    Article  PubMed  Google Scholar 

  39. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Jahnke C, Nagel E, Gebker R, et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115:1769–76.

    Article  PubMed  Google Scholar 

  41. Buckert D, Dewes P, Walcher T, Rottbauer W, Bernhardt P. Intermediate-term prognostic value of reversible perfusion deficit diagnosed by adenosine CMR: a prospective follow-up study in a consecutive patient population. JACC Cardiovasc Imaging. 2013;6:56–63.

    Article  PubMed  Google Scholar 

  42. Korosoglou G, Elhmidi Y, Steen H, et al. Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1,493 consecutive patients: assessment of myocardial wall motion and perfusion. J Am Coll Cardiol. 2010;56:1225–34.

    Article  CAS  PubMed  Google Scholar 

  43. Bingham SE, Hachamovitch R. Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events. Circulation. 2011;123:1509–18.

    Article  PubMed  Google Scholar 

  44. Steel K, Broderick R, Gandla V, et al. Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation. 2009;120:1390–400.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Fihn SD, Gardin JM, Abrams J, et al. ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2012;60:e44–e164.

    Article  PubMed  Google Scholar 

  46. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27:1879–84.

    Article  PubMed  Google Scholar 

  47. Heckbert SR, Post W, Pearson GD, et al. Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the Multiethnic Study of Atherosclerosis. J Am Coll Cardiol. 2006;48:2285–92.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Bertoni AG, Goff Jr DC, D'Agostino Jr RB, et al. Diabetic cardiomyopathy and subclinical cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care. 2006;29:588–94.

    Google Scholar 

  49. Wang L, Jerosch-Herold M, Jacobs Jr DR, Shahar E, Folsom AR. Coronary risk factors and myocardial perfusion in asymptomatic adults: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2006;47:565–72.

    Article  PubMed  Google Scholar 

  50. Velagaleti RS, Gona P, Chuang ML, et al. Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: the Framingham Heart Study. Circ Cardiovasc Imaging. 2010;3:257–63.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Shah RV, Abbasi SA, Heydari B, et al. Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: the multi-ethnic study of atherosclerosis. J Am Coll Cardiol. 2013.

  52. Hudsmith LE, Neubauer S. Magnetic resonance spectroscopy in myocardial disease. JACC Cardiovasc Imaging. 2009;2:87–96.

    Google Scholar 

  53. Hammer S, Snel M, Lamb HJ, et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol. 2008;52:1006–12.

    Article  CAS  PubMed  Google Scholar 

  54. Zib I, Jacob AN, Lingvay I, et al. Effect of pioglitazone therapy on myocardial and hepatic steatosis in insulin-treated patients with type 2 diabetes. J Investig Med. 2007;55:230–6.

    Article  CAS  PubMed  Google Scholar 

  55. Korosoglou G, Humpert PM, Ahrens J, et al. Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve. J Magn Reson Imaging. 2012;35:804–11.

    Article  PubMed  Google Scholar 

  56. van der Meer RW, Rijzewijk LJ, de Jong HW, et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation. 2009;119:2069–77.

    Google Scholar 

  57. • McGavock J, Szczepaniak LS, Ayers CR, et al. The effects of rosiglitazone on myocardial triglyceride content in patients with type 2 diabetes: a randomised, placebo-controlled trial. Diab Vasc Dis Res. 2012;9:131–7. A study of the therapeutic effects of glitazone therapy on myocardial steatosis and energetics in diabetes. This represents a use of CMR in tracking therapeutic responses in patients with diabetes.

    Article  PubMed  Google Scholar 

  58. McGavock JM, Lingvay I, Zib I, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116:1170–5.

    Google Scholar 

  59. Scheuermann-Freestone M, Madsen PL, Manners D, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107:3040–6.

    Article  CAS  PubMed  Google Scholar 

  60. Diamant M, Lamb HJ, Groeneveld Y, et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol. 2003;42:328–35.

    Article  CAS  PubMed  Google Scholar 

  61. Rijzewijk LJ, Jonker JT, van der Meer RW, et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J Am Coll Cardiol. 2010;56:225–33.

    Article  CAS  PubMed  Google Scholar 

  62. Shivu GN, Phan TT, Abozguia K, et al. Relationship between coronary microvascular dysfunction and cardiac energetics impairment in type 1 diabetes mellitus. Circulation. 2010;121:1209–15.

    Article  PubMed  Google Scholar 

  63. Metzler B, Schocke MF, Steinboeck P, et al. Decreased high-energy phosphate ratios in the myocardium of men with diabetes mellitus type I. J Cardiovasc Magn Reson. 2002;4:493–502.

    Article  PubMed  Google Scholar 

  64. Schilling JD, Mann DL. Diabetic cardiomyopathy: bench to bedside. Heart Fail Clin. 2012;8:619–31.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Das A, Das J, Chandrasekar S. Specific heart muscle disease in diabetes mellitus - a functional structural correlation. Int J Cardiol. 1987;17:299–302.

    Article  CAS  PubMed  Google Scholar 

  66. Murarka S, Movahed M. Diabetic cardiomyopathy. J Card Fail. 2010;16:971–9.

    Article  PubMed  Google Scholar 

  67. Nunoda S, Genda A, Sugihara N, Nakayama A, Mizuno S, Takeda R. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessel. 1985;1:43–7.

    Article  CAS  Google Scholar 

  68. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2004;52:141–6.

    Article  Google Scholar 

  69. Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.

    Article  PubMed  Google Scholar 

  70. Coelho-Filho OR, Mongeon FP, Mitchell R, et al. Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging. 2013;6:134–41.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Flett AS, Sado DM, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2012;13:819–26.

    Article  PubMed  Google Scholar 

  72. •• Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126:1206–16. A landmark study demonstating the value of T1 mapping to forecast mortality in an adult population.

    Article  PubMed Central  PubMed  Google Scholar 

  73. •• Jellis C, Wright J, Kennedy D, et al. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ Cardiovasc Imaging. 2011;4:693–702. One of the first studies exmaining the relationship between myocardial fibrosis by T1 mapping and metabolism (e.g., insulin resistance) and cardiac function in diabetes.

    Article  PubMed  Google Scholar 

  74. Giannetta E, Isidori AM, Galea N, et al. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation. 2012;125:2323–33.

    Article  CAS  PubMed  Google Scholar 

  75. Rao AD, Shah RV, Garg R, et al. Aldosterone and myocardial extracellular matrix expansion in type 2 diabetes mellitus. Am J Cardiol. 2013;112(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  76. Ho CY, Abbasi SA, Neilan TG, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6:415–22.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Ravi V. Shah has been a consultant for Novartis and Ventripoint.

Siddique A. Abbasi declares that he has no conflict of interest.

Raymond Y. Kwong declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Y. Kwong.

Additional information

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, R.V., Abbasi, S.A. & Kwong, R.Y. Role of Cardiac MRI in Diabetes. Curr Cardiol Rep 16, 449 (2014). https://doi.org/10.1007/s11886-013-0449-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0449-0

Keywords

Navigation