Skip to main content

Advertisement

Log in

Impact of hyperglycemia at admission in patients with acute ST-segment elevation myocardial infarction as assessed by contrast-enhanced MRI

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Blood glucose level at admission in ST-segment elevation myocardial infarction (STEMI) is a predictor of heart failure and mortality. This study was performed to investigate the impact of hyperglycemia at admission in non-diabetic patients on infarct size, microvascular obstruction, and long-term outcome using contrast-enhanced magnetic resonance imaging (CMR) in patients with acute STEMI.

Methods

One hundred and seven consecutive patients (84 males; mean age 59.4 years ± 11.3 years) with a first acute STEMI successfully treated by primary PCI were included. Admission hyperglycemia was defined as blood glucose above 7.8 mmol/l. CMR was performed 3.6 days ± 1.9 days after admission on a 1.5-tesla MR system. The imaging protocol included single-shot steady-state free precession (SSFP) cine sequences for assessing segmental and global left ventricular (LV) function and microvascular obstruction (MVO)/late gadolinium enhancement (LGE) imaging immediately and 10 min after the administration of 0.2 mmol gadodiamide/kg of body weight using an inversion-recovery SSFP (IR-SSFP) sequence. A receiver operating characteristics analysis was used to detect the best cut-off point of microvascular obstruction that predicted myocardial infarction and death during follow-up.

Results

Of 107 patients, 37 (35%) had hyperglycemia on admission. Compared to normoglycemic patients, patients with admission hyperglycemia had a lower LV ejection fraction (38.6 ± 13.7% vs. 47.5 ± 12.2%, p < 0.001), greater ESV (88.8 ± 41.8 ml vs. 72.3 ml ± 35.1 ml, p = 0.01), greater infarct size (LGE% 21.1 ± 14.9% vs. 9.8 ± 8.7%, p < 0.001), and greater MVO (MVO% 9.6 ± 9.9% vs. 2.5 ± 4.3%, p < 0.001). Admission hyperglycemia was an independent predictor of the presence and extent of microvascular obstruction. Microvascular obstruction as a percentage of left ventricular mass was the only variable independently related to clinical outcome in a Cox proportional hazard model (Wald 18.78, HR 1.155, p < 0.001).

Conclusion

Hyperglycemia at admission in STEMI patients who are successfully treated by PCI is independently associated with the presence and extent of microvascular obstruction on contrast-enhanced CMR. Thus, microvascular obstruction as assessed by CMR may be a mechanism that relates admission hyperglycemia in acute STEMI to worse outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marfella R, Verza M, Coppola L (2005) Myocardial infarction and hyperglycemia. Am J Cardiol 96:1468

    Article  PubMed  Google Scholar 

  2. Nordin C, Amiruddin R, Rucker L, Choi J, Kohli A, Marantz PR (2005) Diabetes and stress hyperglycemia associated with myocardial infarctions at an urban municipal hospital: prevalence and effect on mortality. Cardiol Rev 13:223–230

    Article  PubMed  Google Scholar 

  3. Capes SE, Hunt D, Malmberg K, Gerstein HC (2000) Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 355:773–778

    Article  PubMed  CAS  Google Scholar 

  4. Ishihara M, Kagawa E, Inoue I et al (2007) Impact of admission hyperglycemia and diabetes mellitus on short- and long-term mortality after acute myocardial infarction in the coronary intervention era. Am J Cardiol 99:1674–1679

    Article  PubMed  Google Scholar 

  5. Stranders I, Diamant M, van Gelder RE et al (2004) Admission blood glucose level as risk indicator of death after myocardial infarction in patients with and without diabetes mellitus. Arch Intern Med 164:982–988

    Article  PubMed  Google Scholar 

  6. Lavi S, Kapeliovich M, Gruberg L et al (2008) Hyperglycemia during acute myocardial infarction in patients who are treated by primary percutaneous coronary intervention: impact on long-term prognosis. Int J Cardiol 123:117–122

    Article  PubMed  Google Scholar 

  7. Cochet A, Zeller M, Lalande A et al (2008) Utility of cardiac magnetic resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-segment elevation myocardial infarction. J Cardiovasc Magn Reson 10:2

    Article  PubMed  Google Scholar 

  8. Iwakura K, Ito H, Ikushima M et al (2003) Association between hyperglycemia and the no-reflow phenomenon in patients with acute myocardial infarction. J Am Coll Cardiol 41:1–7

    Article  PubMed  CAS  Google Scholar 

  9. Shen XH, Jia SQ, Li HW (2006) The influence of admission glucose on epicardial and microvascular flow after primary angioplasty. Chin Med J (Engl) 119:95–102

    Google Scholar 

  10. Rassaf T, Nolte J, Heussen N et al (2010) Quantitation of the thickness of the non-enhanced myocardial rim predicts recovery of territorial myocardial function in chronic ischemic heart disease: a cardiac magnetic resonance imaging study. Clin Res Cardiol 99:293–300

    Google Scholar 

  11. Pilz G, Heer T, Graw M et al (2010) Influence of small caliber coronary arteries on the diagnostic accuracy of adenosine stress cardiac magnetic resonance imaging. Clin Res Cardiol (Epub ahead of print)

  12. Bruder O, Schneider S, Nothnagel D et al (2009) EuroCMR (European Cardiovascular Magnetic Resonance) registry: results of the German pilot phase. J Am Coll Cardiol 54:1457–1466

    Article  PubMed  Google Scholar 

  13. Bruder O, Wagner A, Mahrholdt H (2010) Lessons learned from the european cardiovascular magnetic resonance (EuroCMR) registry pilot phase. Curr Cardiovasc Imaging Rep 3:171–174

    Google Scholar 

  14. Koeth O, Mark B, Kilkowski A et al (2008) Clinical, angiographic and cardiovascular magnetic resonance findings in consecutive patients with Takotsubo cardiomyopathy. Clin Res Cardiol 97:623–627

    Article  PubMed  Google Scholar 

  15. Merkle N, Wohrle J, Nusser T et al (2010) Diagnostic performance of magnetic resonance first pass perfusion imaging is equally potent in female compared to male patients with coronary artery disease. Clin Res Cardiol 99:21–8

    Google Scholar 

  16. Muller U, Nitzsche S, Eitel I, Gutberlet M, Schuler G, Thiele H (2008) Covered rupture of the free left ventricular wall or “only” thrombus in a true aneurysm? Clin Res Cardiol 97:843–845

    Article  PubMed  Google Scholar 

  17. Mahrholdt H, Wagner A, Holly TA et al (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106:2322–2327

    Article  PubMed  CAS  Google Scholar 

  18. Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    PubMed  CAS  Google Scholar 

  19. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  CAS  Google Scholar 

  20. Kim RJ, Manning WJ (2004) Viability assessment by delayed enhancement cardiovascular magnetic resonance: will low-dose dobutamine dull the shine? Circulation 109:2476–2479

    Article  PubMed  Google Scholar 

  21. Jensen CJ, Jochims M, Hunold P, Sabin GV, Schlosser T, Bruder O (2010) Right ventricular involvement in acute left ventricular myocardial infarction: prognostic implications of MRI findings. AJR Am J Roentgenol 194:592–598

    Google Scholar 

  22. Jensen CJ, Bleckmann D, Eberle HC et al (2009) A simple MR algorithm for estimation of myocardial salvage following acute ST segment elevation myocardial infarction. Clin Res Cardiol 98:651–656

    Article  PubMed  Google Scholar 

  23. Merten C, Steen H, Kulke C, Giannitsis E, Katus HA (2008) Contrast-enhanced magnetic resonance imaging reveals early decrease of transmural extent of reperfused acute myocardial infarction. Clin Res Cardiol 97:913–916

    Article  PubMed  Google Scholar 

  24. Wu KC, Zerhouni EA, Judd RM et al (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772

    PubMed  CAS  Google Scholar 

  25. Rochitte CE, Lima JA, Bluemke DA et al (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    PubMed  CAS  Google Scholar 

  26. Wu KC, Kim RJ, Bluemke DA et al (1998) Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol 32:1756–1764

    Article  PubMed  CAS  Google Scholar 

  27. Bruder O, Breuckmann F, Jensen C et al (2008) Prognostic impact of contrast-enhanced CMR early after acute ST segment elevation myocardial infarction (STEMI) in a regional STEMI network: results of the “Herzinfarktverbund Essen”. Herz 33:136–142

    Article  PubMed  Google Scholar 

  28. de Waha S, Desch S, Eitel I et al (2010) Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J 31:2660–2668

    Google Scholar 

  29. Ryden L, Standl E, Bartnik M et al (2007) Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J 28:88–136

    Article  PubMed  CAS  Google Scholar 

  30. American Diabetes Association (2003) Screening for type 2 diabetes. Diabetes Care 26(Suppl 1):S21–S24

    Google Scholar 

  31. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26 (Suppl 1)

  32. Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    PubMed  CAS  Google Scholar 

  33. Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R (2008) The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 51:1581–1587

    Article  PubMed  Google Scholar 

  34. Weir RA, Murphy CA, Petrie CJ et al (2010) Microvascular obstruction remains a portent of adverse remodeling in optimally treated patients with left ventricular systolic dysfunction after acute myocardial infarction. Circ Cardiovasc Imaging 3:360–367

    Google Scholar 

  35. Van de Werf F, Bax J, Betriu A et al (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the task force on the management of ST-segment elevation acute myocardial infarction of the European society of cardiology. Eur Heart J 29:2909–2945

    Article  PubMed  Google Scholar 

  36. Lankisch M, Futh R, Gulker H et al (2008) Screening for undiagnosed diabetes in patients with acute myocardial infarction. Clin Res Cardiol 97:753–759

    Article  PubMed  Google Scholar 

  37. Marfella R, Esposito K, Giunta R et al (2000) Circulating adhesion molecules in humans: role of hyperglycemia and hyperinsulinemia. Circulation 101:2247–2251

    PubMed  CAS  Google Scholar 

  38. Worthley MI, Holmes AS, Willoughby SR et al (2007) The deleterious effects of hyperglycemia on platelet function in diabetic patients with acute coronary syndromes mediation by superoxide production, resolution with intensive insulin administration. J Am Coll Cardiol 49:304–310

    Article  PubMed  CAS  Google Scholar 

  39. Kersten JR, Toller WG, Tessmer JP, Pagel PS, Warltier DC (2001) Hyperglycemia reduces coronary collateral blood flow through a nitric oxide-mediated mechanism. Am J Physiol Heart Circ Physiol 281:H2097–H2104

    PubMed  CAS  Google Scholar 

  40. Ishihara M, Inoue I, Kawagoe T et al (2003) Effect of acute hyperglycemia on the ischemic preconditioning effect of prodromal angina pectoris in patients with a first anterior wall acute myocardial infarction. Am J Cardiol 92:288–291

    Article  PubMed  Google Scholar 

  41. Hombach V, Merkle N, Kestler HA et al (2008) Characterization of patients with acute chest pain using cardiac magnetic resonance imaging. Clin Res Cardiol 97:760–767

    Article  PubMed  Google Scholar 

  42. Neizel M, Futterer S, Steen H et al (2009) Predicting microvascular obstruction with cardiac troponin T after acute myocardial infarction: a correlative study with contrast-enhanced magnetic resonance imaging. Clin Res Cardiol 98:555–562

    Article  PubMed  CAS  Google Scholar 

  43. Van den Berghe G, Wouters PJ, Bouillon R et al (2003) Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control. Crit Care Med 31:359–366

    Article  PubMed  Google Scholar 

  44. Cheung NW, Wong VW, McLean M (2006) Insulin infusion therapy for myocardial infarction. Expert Opin Pharmacother 7:2495–2503

    Article  PubMed  CAS  Google Scholar 

  45. Cheung NW, Wong VW, McLean M (2006) The hyperglycemia: intensive insulin infusion in infarction (HI-5) study: a randomized controlled trial of insulin infusion therapy for myocardial infarction. Diabetes Care 29:765–770

    Article  PubMed  CAS  Google Scholar 

  46. Malmberg K, Ryden L, Wedel H et al (2005) Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 26:650–661

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Steffen Schneider from the Institute for Myocardial Infarction Research, Ludwigshafen, Germany for his advice and assistance with statistical analysis. We would also like to thank CMR technologists Elke Brand and Christian Ratering. The authors thank Prof. A. Mügge and his team from the Department of Cardiology at Ruhr University Bochum for support and ongoing cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, C.J., Eberle, H.C., Nassenstein, K. et al. Impact of hyperglycemia at admission in patients with acute ST-segment elevation myocardial infarction as assessed by contrast-enhanced MRI. Clin Res Cardiol 100, 649–659 (2011). https://doi.org/10.1007/s00392-011-0290-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-011-0290-7

Keywords

Navigation