Skip to main content
Log in

Subclinical Atherosclerosis to Guide Treatment in Dyslipidemia and Diabetes Mellitus

  • Review
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Dyslipidemia and type 2 diabetes mellitus are two common conditions that are associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). In this review, we aimed to provide an in-depth and contemporary review of non-invasive approaches to assess subclinical atherosclerotic burden, predict cardiovascular risk, and guide appropriate treatment strategies. We focused this paper on two main imaging modalities: coronary artery calcium (CAC) score and computed tomography coronary angiography.

Recent Findings

Recent longitudinal studies have provided stronger evidence on the relationship between increased CAC, thoracic aorta calcification, and risk of cardiovascular events among those with primary hypercholesterolemia, highlighting the beneficial role of statin therapy. Interestingly, resilient profiles of individuals not exhibiting atherosclerosis despite dyslipidemia have been described. Non-conventional markers of dyslipidemia have also been associated with increased subclinical atherosclerosis presence and burden, highlighting the contribution of apolipoprotein B-100 (apoB)-rich lipoprotein particles, such as remnant cholesterol and lipoprotein(a), to the residual risk of individuals on-target for low-density lipoprotein cholesterol (LDL-C) goals. Regarding type 2 diabetes mellitus, variability in atherosclerotic burden has also been found, and CAC testing has shown significant predictive value in stratifying cardiovascular risk.

Summary

Non-invasive assessment of subclinical atherosclerosis can help reveal the continuum of ASCVD risk in those with dyslipidemia and diabetes mellitus and can inform personalized strategies for cardiovascular disease prevention in the primary prevention setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://doi.org/10.1161/CIR.0000000000001052.

    Article  PubMed  Google Scholar 

  2. Gu J, Sanchez R, Chauhan A, Fazio S, Wong N. Lipid treatment status and goal attainment among patients with atherosclerotic cardiovascular disease in the United States: a 2019 update. Am J Prev Cardiol. 2022;10:100336. https://doi.org/10.1016/j.ajpc.2022.100336.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tönnies T, Brinks R, Isom S, Dabelea D, Divers J, Mayer-Davis EJ, Lawrence JM, Pihoker C, Dolan L, Liese AD, Saydah SH, D'Agostino RB, Hoyer A, Imperatore G. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2060: the SEARCH for diabetes in youth study. Diabetes Care. 2023;46(2):313–20.

    Article  PubMed  Google Scholar 

  4. Mszar R, Gopal DJ, Chowdary R, et al. Racial/ethnic disparities in screening for and awareness of high cholesterol among pregnant women receiving prenatal care. J Am Heart Assoc. 2021;10(1):e017415. https://doi.org/10.1161/JAHA.120.017415.

    Article  CAS  PubMed  Google Scholar 

  5. Haw JS, Shah M, Turbow S, Egeolu M, Umpierrez G. Diabetes complications in racial and ethnic minority populations in the USA. Curr Diab Rep. 2021;21(1):2. https://doi.org/10.1007/s11892-020-01369-x.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aggarwal R, Bhatt DL, Rodriguez F, Yeh RW, Wadhera RK. Trends in lipid concentrations and lipid control among US adults, 2007-2018. JAMA. 2022;328(8):737–45. https://doi.org/10.1001/jama.2022.12567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Centers for Disease Control and Prevention. National Diabetes Statistics Report website. https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed December 16, 2023.

  8. Aggarwal R, Yeh RW, Joynt Maddox KE, Wadhera RK. Cardiovascular risk factor prevalence, treatment, and control in US adults aged 20 to 44 years, 2009 to March 2020. JAMA. 2023;329(11):899–909.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blaha MJ, Abdelhamid M, Santilli F, Shi Z, Sibbing D. Advanced subclinical atherosclerosis: a novel category within the cardiovascular risk continuum with distinct treatment implications. Am J Prev Cardiol. 2023;13:100456. https://doi.org/10.1016/j.ajpc.2022.100456.

    Article  PubMed  Google Scholar 

  10. Blaha MJ. Personalizing treatment: between primary and secondary prevention. Am J Cardiol. 2016;118(6 Suppl):4A–12A. https://doi.org/10.1016/j.amjcard.2016.05.026.

    Article  PubMed  Google Scholar 

  11. Mortensen MB, Falk E, Li D, et al. Statin trials, cardiovascular events, and coronary artery calcification: implications for a trial-based approach to statin therapy in MESA. J Am Coll Cardiol Img. 2018;11(2 Pt 1):221–30. https://doi.org/10.1016/j.jcmg.2017.01.029.

    Article  Google Scholar 

  12. Sarwar A, Shaw LJ, Shapiro MD, et al. Diagnostic and prognostic value of absence of coronary artery calcification. J Am Coll Cardiol Img. 2009;2(6):675–88. https://doi.org/10.1016/j.jcmg.2008.12.031.

    Article  Google Scholar 

  13. Mendieta G, Pocock S, Mass V, et al. Determinants of progression and regression of subclinical atherosclerosis over 6 years. J Am Coll Cardiol. Nov 28 2023;82(22):2069-2083. https://doi.org/10.1016/j.jacc.2023.09.814

  14. •• Orringer CE, Blaha MJ, Blankstein R, et al. The National Lipid Association scientific statement on coronary artery calcium scoring to guide preventive strategies for ASCVD risk reduction. J Clin Lipidol. 2021;15(1):33–60. https://doi.org/10.1016/j.jacl.2020.12.005. This scientific statement provides key information and recommendations on the use of CAC scoring in clinical practice for specific subgroups of individuals including those with severe hypercholesterolemia and diabetes mellitus.

    Article  PubMed  Google Scholar 

  15. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. Jun 18 2019;139:e1082–143. https://doi.org/10.1161/CIR.0000000000000625.

    Article  PubMed  Google Scholar 

  16. Dzaye O, Dardari ZA, Cainzos-Achirica M, et al. Warranty period of a calcium score of zero: comprehensive analysis from MESA. JACC Cardiovasc Imaging. 2021;14(5):990–1002. https://doi.org/10.1016/j.jcmg.2020.06.048.

    Article  PubMed  Google Scholar 

  17. Osei AD, Mirbolouk M, Berman D, et al. Prognostic value of coronary artery calcium score, area, and density among individuals on statin therapy vs. non-users: the coronary artery calcium consortium. Atherosclerosis. 2021;316:79–83. https://doi.org/10.1016/j.atherosclerosis.2020.10.009.

    Article  CAS  PubMed  Google Scholar 

  18. Lloyd-Jones DM, Morris PB, Ballantyne CM, et al. ACC Expert consensus decision pathway on the role of nonstatin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;80(14):1366–418. https://doi.org/10.1016/j.jacc.2022.07.006.

    Article  PubMed  Google Scholar 

  19. Dzaye O, Razavi AC, Michos ED, et al. Coronary artery calcium scores indicating secondary prevention level risk: findings from the CAC consortium and FOURIER trial. Atherosclerosis. 2022;347:70–6. https://doi.org/10.1016/j.atherosclerosis.2022.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peng AW, Dardari ZA, Blumenthal RS, et al. Very high coronary artery calcium (>/=1000) and association with cardiovascular disease events, non-cardiovascular disease outcomes, and mortality: results from MESA. Circulation. 2021;143(16):1571–83. https://doi.org/10.1161/CIRCULATIONAHA.120.050545.

    Article  CAS  PubMed  Google Scholar 

  21. Peng AW, Mirbolouk M, Orimoloye OA, et al. Long-term all-cause and cause-specific mortality in asymptomatic patients with CAC >/=1,000: results from the CAC consortium. JACC Cardiovasc Imaging. 2020;13(1 Pt 1):83–93. https://doi.org/10.1016/j.jcmg.2019.02.005.

    Article  PubMed  Google Scholar 

  22. Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34:3478–90a. https://doi.org/10.1093/eurheartj/eht273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gidding SS, Champagne MA, de Ferranti SD, et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation. 2015;132(22):2167–92. https://doi.org/10.1161/CIR.0000000000000297.

    Article  PubMed  Google Scholar 

  24. Wilemon KA, Patel J, Aguilar-Salinas C, et al. Reducing the clinical and public health burden of familial hypercholesterolemia. JAMA Cardiology. 2020;5:217–29. https://doi.org/10.1001/jamacardio.2019.5173.

    Article  PubMed  Google Scholar 

  25. McGowan MP, Hosseini Dehkordi SH, Moriarty PM, Duell PB. Diagnosis and treatment of heterozygous familial hypercholesterolemia. J Am Heart Assoc. 2019;8:e013225. https://doi.org/10.1161/JAHA.119.013225.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goldberg AC, Hopkins PN, Toth PP, et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5:S1–8. https://doi.org/10.1016/j.jacl.2011.04.003.

    Article  PubMed  Google Scholar 

  27. Mszar R, Nasir K, Santos RD. Coronary artery calcification in familial hypercholesterolemia: an opportunity for risk assessment and shared decision making with the power of zero? Circulation. 2020;142(15):1405–7. https://doi.org/10.1161/CIRCULATIONAHA.120.049057.

    Article  PubMed  Google Scholar 

  28. Gallo A, Mszar R, Miname MH. Updates on the use of subclinical atherosclerosis to predict risk of cardiovascular events in heterozygous familial hypercholesterolemia. Curr Atheroscler Rep. 2022;24(6):407–18. https://doi.org/10.1007/s11883-022-01017-7.

    Article  CAS  PubMed  Google Scholar 

  29. Mszar R, Grandhi GR, Valero-Elizondo J, et al. Absence of coronary artery calcification in middle aged familial hypercholesterolemia patients without atherosclerotic cardiovascular disease. J Am Coll Cardiol Img. Nov 11 2020;13:1090–2. https://doi.org/10.1016/j.jcmg.2019.11.001.

    Article  Google Scholar 

  30. Nasir K, Mszar R, Cainzos-Achirica M, et al. Age- and sex-based heterogeneity in coronary artery plaque presence and burden in familial hypercholesterolemia: a multi-national study. Am J Prev Cardiol. 2024;17:100611. https://doi.org/10.1016/j.ajpc.2023.100611.

    Article  PubMed  Google Scholar 

  31. Gallo A, Perez de Isla L, Charriere S, et al. The added value of coronary calcium score in predicting cardiovascular events in familial hypercholesterolemia. JACC Cardiovasc Imaging. 2021;14(12):2414–24. https://doi.org/10.1016/j.jcmg.2021.06.011.

    Article  PubMed  Google Scholar 

  32. Miname MH, Bittencourt MS, Moraes SR, et al. Coronary artery calcium and cardiovascular events in patients with familial hypercholesterolemia receiving standard lipid-lowering therapy. J Am Coll Cardiol Img. 2019;12:1797–804. https://doi.org/10.1016/j.jcmg.2018.09.019.

    Article  Google Scholar 

  33. . Tada H, Kojima N, Yamagami K, et al. Coronary artery calcium among patients with heterozygous familial hypercholesterolaemia. Eur Heart J Open. 2023;3(3):oead046. https://doi.org/10.1093/ehjopen/oead046. This study provided further evidence that CAC is an independent predictor of CVD events among individuals with heterozygous FH and, as a result, leads to significant improvements in risk stratification.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Santos RD, Shapiro MD. Coronary artery calcification and risk stratification in familial hypercholesterolemia: moving forward but not there yet. JACC Cardiovasc Imaging. 2021;14(12):2425–8. https://doi.org/10.1016/j.jcmg.2021.06.013.

    Article  PubMed  Google Scholar 

  35. Ibrahim S, Reeskamp LF, de Goeij JN, et al. Beyond early LDL cholesterol lowering to prevent coronary atherosclerosis in familial hypercholesterolemia. Eur. J Prev Cardiol. 2024:zwae028. https://doi.org/10.1093/eurjpc/zwae028.

  36. Khera AV, Won HH, Peloso GM, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67(22):2578–89. https://doi.org/10.1016/j.jacc.2016.03.520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saadatagah S, Alhalabi L, Farwati M, et al. The burden of severe hypercholesterolemia and familial hypercholesterolemia in a population-based setting in the US. Am J Prev Cardiol. 2022;12:100393. https://doi.org/10.1016/j.ajpc.2022.100393.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bucholz EM, Rodday AM, Kolor K, Khoury MJ, de Ferranti SD. Prevalence and Predictors of cholesterol screening, awareness, and statin treatment among US adults with familial hypercholesterolemia or other forms of severe dyslipidemia (1999-2014). Circulation. 2018;137:2218–30. https://doi.org/10.1161/CIRCULATIONAHA.117.032321.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sandesara PB, Mehta A, O'Neal WT, et al. Clinical significance of zero coronary artery calcium in individuals with LDL cholesterol >/=190mg/dL: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2020;292:224–9. https://doi.org/10.1016/j.atherosclerosis.2019.09.014.

    Article  CAS  PubMed  Google Scholar 

  40. Castagna F, Miles J, Arce J, et al. Visual coronary and aortic calcium scoring on chest computed tomography predict mortality in patients with low-density lipoprotein-cholesterol >/=190 mg/dL. Circ Cardiovasc Imaging. 2022;15(6):e014135. https://doi.org/10.1161/CIRCIMAGING.122.014135.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dong T, Tashtish N, Walker J, Neeland I, Nasir K, Rajagopalan S, Al-Kindi S. Coronary artery calcium scoring for risk assessment in patients with severe hypercholesterolemia. Am J Cardiol. Mar 1 2023;190:48–53. https://doi.org/10.1016/j.amjcard.2022.10.060.

    Article  CAS  PubMed  Google Scholar 

  42. Fernandez-Friera L, Penalvo JL, Fernandez-Ortiz A, et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation. 2015;131(24):2104–13. https://doi.org/10.1161/CIRCULATIONAHA.114.014310.

    Article  PubMed  Google Scholar 

  43. Santos RD, Rumberger JA, Budoff MJ, Shaw LJ, Orakzai SH, Berman D, Raggi P, Blumenthal RS, Nasir K. Thoracic aorta calcification detected by electron beam tomography predicts all-cause mortality. Atherosclerosis. 2010;209(1):131–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kianoush S, Al Rifai M, Cainzos-Achirica M, et al. Thoracic extra-coronary calcification for the prediction of stroke: the multi-ethnic study of atherosclerosis. Atherosclerosis. 2017;267:61–7. https://doi.org/10.1016/j.atherosclerosis.2017.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Santos RD. Coronary artery and thoracic aorta calcification and cardiovascular events in severe hypercholesterolemia: more wood for the cardiovascular disease risk heterogeneity bonfire! Circ Cardiovasc Imaging. Jun. 2022;15(6):e014402. https://doi.org/10.1161/CIRCIMAGING.122.014402.

    Article  Google Scholar 

  46. Tsimikas S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J Am Coll Cardiol. 2017;69(6):692–711. https://doi.org/10.1016/j.jacc.2016.11.042.

    Article  CAS  PubMed  Google Scholar 

  47. Wilkinson MJ, Ma GS, Yeang C, et al. The prevalence of lipoprotein(a) measurement and degree of elevation among 2710 patients with calcific aortic valve stenosis in an academic echocardiography laboratory setting. Angiology. 2017;68(9):795–8. https://doi.org/10.1177/0003319716688415.

    Article  CAS  PubMed  Google Scholar 

  48. Tsimikas S, Stroes ESG. The dedicated "Lp(a) clinic": a concept whose time has arrived? Atherosclerosis. 2020;300:1–9. https://doi.org/10.1016/j.atherosclerosis.2020.03.003.

    Article  CAS  PubMed  Google Scholar 

  49. Mszar R, Webb GB, Kulkarni VT, Ahmad Z, Soffer D. Genetic lipid disorders associated with atherosclerotic cardiovascular disease: molecular basis to clinical diagnosis and epidemiologic burden. Med Clin North Am. 2022;106(2):325–48. https://doi.org/10.1016/j.mcna.2021.11.009.

    Article  PubMed  Google Scholar 

  50. Erqou S, Kaptoge S, Perry PL, et al. Emerging risk factors collaboration. lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302(4):412–23.

    Article  CAS  PubMed  Google Scholar 

  51. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Extreme lipoprotein(a) levels and improved cardiovascular risk prediction. J Am Coll Cardiol. 2013;61(11):1146–56. https://doi.org/10.1016/j.jacc.2012.12.023.

    Article  CAS  PubMed  Google Scholar 

  52. Tsimikas S, Narula J. Lipoprotein(a) and CT angiography: novel insights into high-risk plaque progression. J Am Coll Cardiol. 2022;79(3):234–7. https://doi.org/10.1016/j.jacc.2021.11.015.

    Article  CAS  PubMed  Google Scholar 

  53. Garg PK, Guan W, Karger AB, Steffen BT, Budoff M, Tsai MY. Lipoprotein (a) and risk for calcification of the coronary arteries, mitral valve, and thoracic aorta: the multi-ethnic study of atherosclerosis. J Cardiovasc Comput Tomogr. 2021;15(2):154–60. https://doi.org/10.1016/j.jcct.2020.06.002.

    Article  PubMed  Google Scholar 

  54. Cao J, Steffen BT, Budoff M, et al. Lipoprotein(a) Levels are associated with subclinical calcific aortic valve disease in white and black individuals: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(5):1003–9. https://doi.org/10.1161/ATVBAHA.115.306683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guerra R, Yu Z, Marcovina S, Peshock R, Cohen JC, Hobbs HH. Lipoprotein(a) and apolipoprotein(a) isoforms: no association with coronary artery calcification in the Dallas Heart Study. Circulation. 2005;111(12):1471–9. https://doi.org/10.1161/01.CIR.0000159263.50305.BD.

    Article  CAS  PubMed  Google Scholar 

  56. Erbel R, Lehmann N, Churzidse S, Möhlenkamp S, Moebus S, Mahabadi AA, Schmermund A, Stang A, Dragano N, Grönemeyer D, Seibel R, Kälsch H, Bauer M, Bröcker-Preuss M, Mann K, Jöckel KH, Heinz Nixdorf Recall Study Investigators. Gender-specific association of coronary artery calcium and lipoprotein parameters: the Heinz Nixdorf Recall Study. Atherosclerosis. 2013 Aug;229(2):531–40.

    Article  CAS  PubMed  Google Scholar 

  57. . Mehta A, Vasquez N, Ayers CR, et al. Independent Association of Lipoprotein(a) and Coronary Artery Calcification With Atherosclerotic Cardiovascular Risk. J Am Coll Cardiol. 2022;79(8):757–68. https://doi.org/10.1016/j.jacc.2021.11.058. Findings from this study showed that Lp(a) and CAC are independently associated with ASCVD risk, and that individuals with both elevated Lp(a) and high CAC scores are at the highest risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qiu Y, Hao W, Guo Y, et al. The association of lipoprotein (a) with coronary artery calcification: a systematic review and meta-analysis. Atherosclerosis. Jan 2024;388:117405. https://doi.org/10.1016/j.atherosclerosis.2023.117405

  59. Obisesan OH, Kou M, Wang FM, et al. Lipoprotein(a) and subclinical vascular and valvular calcification on cardiac computed tomography: the atherosclerosis risk in communities study. J Am Heart Assoc. 2022;11(11):e024870. https://doi.org/10.1161/JAHA.121.024870.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee H, Park KS, Jeon YJ, et al. Lipoprotein(a) and subclinical coronary atherosclerosis in asymptomatic individuals. Atherosclerosis. 2021;349:190–5. https://doi.org/10.1016/j.atherosclerosis.2021.09.027.

    Article  CAS  PubMed  Google Scholar 

  61. Fan W, Philip S, Granowitz C, Toth PP, Wong ND. Prevalence of US adults with triglycerides >/= 150 mg/dl: NHANES 2007-2014. Cardiol Ther. 2020;9(1):207–13. https://doi.org/10.1007/s40119-020-00170-x.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mszar R, Bart S, Sakers A, Soffer D, Karalis DG. Current and emerging therapies for atherosclerotic cardiovascular disease risk reduction in hypertriglyceridemia. J Clin Med. 2023;12(4) https://doi.org/10.3390/jcm12041382.

  63. Cainzos-Achirica M, Quispe R, Dudum R, et al. CAC for risk stratification among individuals with hypertriglyceridemia free of clinical atherosclerotic cardiovascular disease. JACC Cardiovasc Imaging. 2022;15(4):641–51. https://doi.org/10.1016/j.jcmg.2021.10.017.

    Article  PubMed  Google Scholar 

  64. Raposeiras-Roubin S, Rossello X, Oliva B, et al. Triglycerides and residual atherosclerotic risk. J Am Coll Cardiol. 2021;77(24):3031–41. https://doi.org/10.1016/j.jacc.2021.04.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin A, Nerlekar N, Rajagopalan A, et al. Remnant cholesterol and coronary atherosclerotic plaque burden assessed by computed tomography coronary angiography. Atherosclerosis. 2019;284:24–30. https://doi.org/10.1016/j.atherosclerosis.2019.02.019.

    Article  CAS  PubMed  Google Scholar 

  66. Hao QY, Gao JW, Yuan ZM, et al. Remnant cholesterol and the risk of coronary artery calcium progression: insights from the CARDIA and MESA study. Circ Cardiovasc Imaging. 2022;15(7):e014116. https://doi.org/10.1161/CIRCIMAGING.122.014116.

    Article  PubMed  Google Scholar 

  67. Robinson JG. Are you targeting non-high-density lipoprotein cholesterol? J Am Coll Cardiol. 2009;55(1):42–4. https://doi.org/10.1016/j.jacc.2009.07.056.

    Article  CAS  PubMed  Google Scholar 

  68. Armstrong MK, Fraser BJ, Hartiala O, et al. Association of non-high-density lipoprotein cholesterol measured in adolescence, young adulthood, and mid-adulthood with coronary artery calcification measured in mid-adulthood. JAMA Cardiol. 2021;6(6):661–8. https://doi.org/10.1001/jamacardio.2020.7238.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–83. https://doi.org/10.1016/S0140-6736(13)62154-6.

    Article  CAS  PubMed  Google Scholar 

  70. Centers for Disease Control and Prevention. National Diabetes Statistics Report website. https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed 3 February 2024.

  71. Wang L, Li X, Wang Z, et al. Trends in prevalence of diabetes and control of risk factors in diabetes among US adults, 1999-2018. JAMA. 2021;326(8):1–13. https://doi.org/10.1001/jama.2021.9883.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Raghavan S, Vassy JL, Ho YL, et al. Diabetes Mellitus-Related All-Cause and Cardiovascular Mortality in a National Cohort of Adults. J Am Heart Assoc. 2019;8(4):e011295. https://doi.org/10.1161/JAHA.118.011295.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Joseph JJ, Deedwania P, Acharya T, et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the American Heart Association. Circulation. 2022;145(9):e722–59. https://doi.org/10.1161/CIR.0000000000001040.

    Article  PubMed  Google Scholar 

  74. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989–1002. https://doi.org/10.1056/NEJMoa2032183.

    Article  CAS  PubMed  Google Scholar 

  75. Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389(24):2221–32. https://doi.org/10.1056/NEJMoa2307563.

    Article  CAS  PubMed  Google Scholar 

  76. Wharton S, Blevins T, Connery L, et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N Engl J Med. 2023;389(10):877–88. https://doi.org/10.1056/NEJMoa2302392.

    Article  CAS  PubMed  Google Scholar 

  77. Cardoso R, Dudum R, Ferraro RA, et al. Cardiac computed tomography for personalized management of patients with type 2 diabetes mellitus. Circ Cardiovasc Imaging. 2020;13(9):e011365. https://doi.org/10.1161/CIRCIMAGING.120.011365.

    Article  PubMed  Google Scholar 

  78. Reis JP, Allen NB, Bancks MP, et al. Duration of diabetes and prediabetes during adulthood and subclinical atherosclerosis and cardiac dysfunction in middle age: the CARDIA Study. Diabetes Care. 2018;41(4):731–8. https://doi.org/10.2337/dc17-2233.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lehmann N, Erbel R, Mahabadi AA, et al. Value of progression of coronary artery calcification for risk prediction of coronary and cardiovascular events: result of the HNR Study (Heinz Nixdorf Recall). Circulation. 2018;137(7):665–79. https://doi.org/10.1161/CIRCULATIONAHA.116.027034.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Scicali R, Giral P, Gallo A, et al. HbA1c increase is associated with higher coronary and peripheral atherosclerotic burden in non diabetic patients. Atherosclerosis. 2016;255:102–8. https://doi.org/10.1016/j.atherosclerosis.2016.11.003.

    Article  CAS  PubMed  Google Scholar 

  81. Scicali R, Rosenbaum D, Di Pino A, et al. An increased waist-to-hip ratio is a key determinant of atherosclerotic burden in overweight subjects. Acta Diabetol. 2018;55(7):741–9. https://doi.org/10.1007/s00592-018-1144-9.

    Article  CAS  PubMed  Google Scholar 

  82. Huang B, Huang W, Allen JC, et al. Prediction of subclinical atherosclerosis in low Framingham risk score individuals by using the metabolic syndrome criteria and insulin sensitivity index. Front Nutr. 2022;9:979208. https://doi.org/10.3389/fnut.2022.979208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boakye E, Grandhi GR, Dardari Z, et al. Cardiovascular risk stratification among individuals with obesity: the Coronary Artery Calcium Consortium. Obesity (Silver Spring). 2023;31(9):2240–8. https://doi.org/10.1002/oby.23832.

    Article  CAS  PubMed  Google Scholar 

  84. Malik S, Zhao Y, Budoff M, Nasir K, Blumenthal RS, Bertoni AG, Wong ND. Coronary artery calcium score for long-term risk classification in individuals with type 2 diabetes and metabolic syndrome from the multi-ethnic study of atherosclerosis. JAMA Cardiol. 2017;2(12):1332–40. https://doi.org/10.1001/jamacardio.2017.4191.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lu Y, Dimitrov L, Chen SH, et al. Multiethnic genome-wide association study of subclinical atherosclerosis in individuals with type 2 diabetes. Circ Genom Precis Med. 2021;14(4):e003258. https://doi.org/10.1161/CIRCGEN.120.003258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. . Patel KV, Budoff MJ, Valero-Elizondo J, et al. Coronary Atherosclerosis Across the Glycemic Spectrum Among Asymptomatic Adults: The Miami Heart Study at Baptist Health South Florida. Circ Cardiovasc Imaging. 2023;16(10):e015314. https://doi.org/10.1161/CIRCIMAGING.123.015314. This study found that, among those without established CAD, worse glycemic status was associated with a greater presence and burden of coronary plaque, high-risk plaque features, and significant stenosis.

    Article  PubMed  Google Scholar 

  87. Yahagi K, Kolodgie FD, Lutter C, Mori H, Romero ME, Finn AV, Virmani R. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol. Feb 2017;37(2):191-204. https://doi.org/10.1161/ATVBAHA.116.306256

  88. Rossello X, Raposeiras-Roubin S, Oliva B, et al. Glycated hemoglobin and subclinical atherosclerosis in people without diabetes. J Am Coll Cardiol. 2021;77(22):2777–91. https://doi.org/10.1016/j.jacc.2021.03.335.

    Article  PubMed  Google Scholar 

  89. . Cainzos-Achirica M, Patel KV, Quispe R, et al. Coronary Artery Calcium for the Allocation of GLP-1RA for Primary Prevention of Atherosclerotic Cardiovascular Disease. JACC Cardiovasc Imaging. 2021;14(7):1470–2. https://doi.org/10.1016/j.jcmg.2020.12.024. The clinical implications from this study include that CAC may aid in identifying individuals who could benefit the most from novel ASCVD risk-reduction therapies in DM such GLP-1RA.

    Article  PubMed  Google Scholar 

  90. Sow MA, Magne J, Salle L, Nobecourt E, Preux PM, Aboyans V. Prevalence, determinants and prognostic value of high coronary artery calcium score in asymptomatic patients with diabetes: a systematic review and meta-analysis. J Diabetes Complications. 2022;36(8):108237. https://doi.org/10.1016/j.jdiacomp.2022.108237.

    Article  CAS  PubMed  Google Scholar 

  91. Budoff M, Backlund JC, Bluemke DA, et al. The association of coronary artery calcification with subsequent incidence of cardiovascular disease in type 1 diabetes: the DCCT/EDIC Trials. JACC Cardiovasc Imaging. 2019;12(7 Pt 2):1341–9. https://doi.org/10.1016/j.jcmg.2019.01.014.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wong ND. Coronary calcium in type 1 diabetes: to screen or not to screen? JACC Cardiovasc Imaging. 2019;12(7 Pt 2):1350–2. https://doi.org/10.1016/j.jcmg.2019.01.016.

    Article  PubMed  Google Scholar 

  93. Razavi AC, Shaw LJ, Berman DS, et al. Left main coronary artery calcium and diabetes confer very-high-risk equivalence in coronary artery calcium >1,000. JACC Cardiovasc Imaging. 2024; https://doi.org/10.1016/j.jcmg.2023.12.006.

  94. Lindholt JS, Sogaard R, Rasmussen LM, et al. Five-year outcomes of the Danish Cardiovascular Screening (DANCAVAS) Trial. N Engl J Med. 2022;387(15):1385–94. https://doi.org/10.1056/NEJMoa2208681.

    Article  PubMed  Google Scholar 

  95. Muhlestein JB, Lappe DL, Lima JA, et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA. 2014;312(21):2234–43. https://doi.org/10.1001/jama.2014.15825.

    Article  CAS  PubMed  Google Scholar 

  96. van der Aalst CM, Denissen S, Vonder M, et al. Screening for cardiovascular disease risk using traditional risk factor assessment or coronary artery calcium scoring: the ROBINSCA trial. Eur Heart J Cardiovasc Imaging. 2020;21(11):1216–24. https://doi.org/10.1093/ehjci/jeaa168.

    Article  PubMed  Google Scholar 

  97. Wong ND, Budoff MJ, Ferdinand K, et al. Atherosclerotic cardiovascular disease risk assessment: an American Society for Preventive Cardiology clinical practice statement. Am J Prev Cardiol. 2022;10:100335. https://doi.org/10.1016/j.ajpc.2022.100335.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88. https://doi.org/10.1093/eurheartj/ehz455.

    Article  PubMed  Google Scholar 

  99. Hecht H, Blaha MJ, Berman DS, et al. Clinical indications for coronary artery calcium scoring in asymptomatic patients: expert consensus statement from the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr. 2017;11(2):157–68. https://doi.org/10.1016/j.jcct.2017.02.010.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RM, MEK, GRG, ADO, AG, and MJB wrote the main manuscript text and prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Michael J. Blaha.

Ethics declarations

Conflict of Interest

Dr. Gallo has received grants and personal fees from Amgen, Sanofi and Regeneron, Mylan Viatris, MSD, Akcea Therapeutics, Amryt, Novartis, Servier, Eli Lilly, Ultragenyx. Dr. Blaha has received grants from NIH, FDA, AHA, Amgen, Novo Nordisk, Bayer and is on the Advisory Boards of Novartis, Novo Nordisk, Bayer, Roche, Merck, Astra Zeneca, Boehringer Inhgelheim, Agepha, Vectura.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mszar, R., Katz, M.E., Grandhi, G.R. et al. Subclinical Atherosclerosis to Guide Treatment in Dyslipidemia and Diabetes Mellitus. Curr Atheroscler Rep (2024). https://doi.org/10.1007/s11883-024-01202-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-024-01202-w

Keywords

Navigation