Skip to main content
Log in

Updates on the Use of Subclinical Atherosclerosis to Predict Risk of Cardiovascular Events in Heterozygous Familial Hypercholesterolemia

  • Cardiometabolic Disease and Treatment (R. Santos, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The high variability of cardiovascular risk in heterozygous familial hypercholesterolemia (HeFH) is a challenge for therapeutical management. Subclinical cardiovascular imaging represents a tool to overcome this challenge. The purpose of this review is to update the reader on the most recent findings on the non-invasive detection of atherosclerotic burden by carotid doppler ultrasound (US), coronary artery calcium (CAC) score, and computed tomography coronary angiography (CTCA) for the optimization of risk stratification in HeFH subjects.

Recent Findings

Carotid ultrasound (US) proved its efficacy in the long-term follow-up of HeFH children treated early on with statins, showing a significant reduction of atherosclerotic progression compared to untreated unaffected siblings.

The added value of CAC score has been confirmed to predict the risk of cardiovascular events and improve risk stratification provided by available risk equations in asymptomatic HeFH subjects from large prospective cross-national cohorts.

Additionally, CTCA provides detailed information on plaque quality and stability, but its role in primary prevention HeFH subjects needs to be further explored.

Summary

Cardiovascular imaging for the detection of subclinical atherosclerotic cardiovascular disease in HeFH is a promising tool to improve diagnostic and therapeutical management of this undertreated and late-diagnosed disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beheshti SO, Madsen CM, Varbo A, Nordestgaard BG. Worldwide prevalence of familial hypercholesterolemia: meta-analyses of 11 million subjects. J Am Coll Cardiol. 2020;75(20):2553–66.

    Article  CAS  PubMed  Google Scholar 

  2. Hu P, Dharmayat KI, Stevens CAT, Sharabiani MTA, Jones RS, Watts GF, et al. Prevalence of familial hypercholesterolemia among the general population and patients with atherosclerotic cardiovascular disease: a systematic review and meta-analysis. Circulation. 2020;141(22):1742–59.

    Article  PubMed  Google Scholar 

  3. Pérez de Isla L, Alonso R, Mata N, Saltijeral A, Muñiz O, Rubio-Marin P, et al. Coronary heart disease, peripheral arterial disease, and stroke in familial hypercholesterolaemia: insights from the SAFEHEART Registry (Spanish Familial Hypercholesterolaemia Cohort Study). Arterioscler Thromb Vasc Biol. 2016;36(9):2004–10.

    Article  PubMed  CAS  Google Scholar 

  4. Abul-Husn NS, Manickam K, Jones LK, Wright EA, Hartzel DN, Gonzaga-Jauregui C, et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016;354(6319):aaf7000.

    Article  PubMed  CAS  Google Scholar 

  5. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–3490a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. EAS Familial Hypercholesterolaemia Studies Collaboration, Vallejo-Vaz AJ, De Marco M, Stevens CAT, Akram A, Freiberger T, et al. Overview of the current status of familial hypercholesterolaemia care in over 60 countries - the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis. 2018;277:234–55.

    Article  CAS  Google Scholar 

  7. Pijlman AH, Huijgen R, Verhagen SN, Imholz BPM, Liem AH, Kastelein JJP, et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis. 2010;209(1):189–94.

    Article  CAS  PubMed  Google Scholar 

  8. EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet Lond Engl. 2021;S0140–6736(21):01122–3.

    Google Scholar 

  9. Humphries SE, Cooper JA, Seed M, Capps N, Durrington PN, Jones B, et al. Coronary heart disease mortality in treated familial hypercholesterolaemia: update of the UK Simon Broome FH register. Atherosclerosis. 2018;274:41–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Besseling J, Hovingh GK, Huijgen R, Kastelein JJP, Hutten BA. Statins in familial hypercholesterolemia: consequences for coronary artery disease and all-cause mortality. J Am Coll Cardiol. 2016;68(3):252–60.

    Article  CAS  PubMed  Google Scholar 

  11. Alonso R, Mata N, Castillo S, Fuentes F, Saenz P, Muñiz O, et al. Cardiovascular disease in familial hypercholesterolaemia: influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis. 2008;200(2):315–21.

    Article  CAS  PubMed  Google Scholar 

  12. Besseling J, Kindt I, Hof M, Kastelein JJP, Hutten BA, Hovingh GK. Severe heterozygous familial hypercholesterolemia and risk for cardiovascular disease: a study of a cohort of 14,000 mutation carriers. Atherosclerosis. 2014;233(1):219–23.

    Article  CAS  PubMed  Google Scholar 

  13. Miname MH, Bittencourt MS, Nasir K, Santos RD. Subclinical coronary atherosclerosis and cardiovascular risk stratification in heterozygous familial hypercholesterolemia patients undergoing statin treatment. Curr Opin Lipidol. 2019;30(2):82–7.

    Article  CAS  PubMed  Google Scholar 

  14. Pérez de Isla L, Alonso R, Mata N, Fernández-Pérez C, Muñiz O, Díaz-Díaz JL, et al. Predicting cardiovascular events in familial hypercholesterolemia: the SAFEHEART Registry (Spanish Familial Hypercholesterolemia Cohort Study). Circulation. 2017;135(22):2133–44.

    Article  PubMed  Google Scholar 

  15. Paquette M, Dufour R, Baass A. The Montreal-FH-SCORE: a new score to predict cardiovascular events in familial hypercholesterolemia. J Clin Lipidol. 2017;11(1):80–6.

    Article  PubMed  Google Scholar 

  16. Paquette M, Bernard S, Cariou B, Hegele RA, Genest J, Trinder M, et al. Familial hypercholesterolemia-risk-score: a new score predicting cardiovascular events and cardiovascular mortality in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2021;41(10):2632–40.

    Article  CAS  PubMed  Google Scholar 

  17. Gallo A, Charriere S, Vimont A, Chapman MJ, Angoulvant D, Boccara F, et al. SAFEHEART risk-equation and cholesterol-year-score are powerful predictors of cardiovascular events in French patients with familial hypercholesterolemia. Atherosclerosis. 2020;6(306):41–9.

    Article  CAS  Google Scholar 

  18. Paquette M, Brisson D, Dufour R, Khoury É, Gaudet D, Baass A. Cardiovascular disease in familial hypercholesterolemia: validation and refinement of the Montreal-FH-SCORE. J Clin Lipidol. 2017;11(5):1161-1167.e3.

    Article  PubMed  Google Scholar 

  19. Den Ruijter HM, Peters SAE, Anderson TJ, Britton AR, Dekker JM, Eijkemans MJ, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012;308(8):796–803.

    Article  Google Scholar 

  20. Naqvi TZ, Lee M-S. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging. 2014;7(10):1025–38.

    Article  PubMed  Google Scholar 

  21. Kusters DM, Wiegman A, Kastelein JJP, Hutten BA. Carotid intima-media thickness in children with familial hypercholesterolemia. Circ Res. 2014;114(2):307–10.

    Article  CAS  PubMed  Google Scholar 

  22. Sharifi M, Higginson E, Bos S, Gallivan A, Harvey D, Li KW, et al. Greater preclinical atherosclerosis in treated monogenic familial hypercholesterolemia vs. polygenic hypercholesterolemia. Atherosclerosis. 2017;263:405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smilde TJ, van Wissen S, Wollersheim H, Trip MD, Kastelein JJ, Stalenhoef AF. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet Lond Engl. 2001;357(9256):577–81.

    Article  CAS  Google Scholar 

  24. Kastelein JJP, Akdim F, Stroes ESG, Zwinderman AH, Bots ML, Stalenhoef AFH, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med. 2008;358(14):1431–43.

    Article  CAS  PubMed  Google Scholar 

  25. • Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019 17;381(16):1547–56. This study showed that IMT can be used to track treatment effect in FH since childhood.Initiation of statin therapy during childhood slowed the progression of carotid IMT and reduced the risk of cardiovascular disease in adulthood.

  26. Mattina A, Giammanco A, Giral P, Rosenbaum D, Carrié A, Cluzel P, et al. Polyvascular subclinical atherosclerosis in familial hypercholesterolemia: the role of cholesterol burden and gender. Nutr Metab Cardiovasc Dis NMCD. 2019;29(10):1068–76.

    Article  CAS  PubMed  Google Scholar 

  27. Bea AM, Civeira F, Jarauta E, Lamiquiz-Moneo I, Pérez-Calahorra S, Marco-Benedí V, et al. Association between the presence of carotid artery plaque and cardiovascular events in patients with genetic hypercholesterolemia. Rev Espanola Cardiol Engl Ed. 2017;70(7):551–8.

    Article  Google Scholar 

  28. Galaska R, Kulawiak-Galaska D, Wegrzyn A, Wasag B, Chmara M, Borowiec J, et al. Assessment of subclinical atherosclerosis using computed tomography calcium scores in patients with familial and nonfamilial hypercholesterolemia. J Atheroscler Thromb. 2016;23(5):588–95.

    Article  CAS  PubMed  Google Scholar 

  29. Gallo A, Giral P, Carrié A, Carreau V, Béliard S, Bittar R, et al. Early coronary calcifications are related to cholesterol burden in heterozygous familial hypercholesterolemia. J Clin Lipidol. 2017;11(3):704-711.e2.

    Article  PubMed  Google Scholar 

  30. Vongpromek R, Bos S, Ten Kate G-JR, Bujo H, Jiang M, Nieman K, et al. Soluble LR11 associates with aortic root calcification in asymptomatic treated male patients with familial hypercholesterolemia. Atherosclerosis. 2017;265:299–304.

    Article  CAS  PubMed  Google Scholar 

  31. Pérez de Isla L, Alonso R, Muñiz-Grijalvo O, Díaz-Díaz JL, Zambón D, Miramontes JP, et al. Coronary computed tomographic angiography findings and their therapeutic implications in asymptomatic patients with familial hypercholesterolemia. Lessons from the SAFEHEART study. J Clin Lipidol. 2018;12(4):948–57.

    Article  PubMed  Google Scholar 

  32. Miname MH, Bittencourt MS, Moraes SR, Alves RIM, Silva PRS, Jannes CE, et al. Coronary artery calcium and cardiovascular events in patients with familial hypercholesterolemia receiving standard lipid-lowering therapy. JACC Cardiovasc Imaging. 2019;12(9):1797–804.

    Article  PubMed  Google Scholar 

  33. Mszar R, Grandhi GR, Valero-Elizondo J, Virani SS, Blankstein R, Blaha M, et al. Absence of coronary artery calcification in middle-aged familial hypercholesterolemia patients without atherosclerotic cardiovascular disease. JACC Cardiovasc Imaging. 2020;13(4):1090–2.

    Article  PubMed  Google Scholar 

  34. •• Gallo A, Pérez de Isla L, Charrière S, Vimont A, Alonso R, Muñiz-Grijalvo O, et al. The added value of coronary calcium score in predicting cardiovascular events in familial hypercholesterolemia. JACC Cardiovasc Imaging. 2021 Jul 8;S1936–878X(21)00501–5. Findings from this study showed that the use of CAC scores provided an overall 45% estimated improvement in net reclassification of patients’ ASCVD risk.

  35. Miname MH, Ribeiro MS, Parga Filho J, Avila LF, Bortolotto LA, Martinez LRC, et al. Evaluation of subclinical atherosclerosis by computed tomography coronary angiography and its association with risk factors in familial hypercholesterolemia. Atherosclerosis. 2010;213(2):486–91.

    Article  CAS  PubMed  Google Scholar 

  36. Béliard S, Boccara F, Cariou B, Carrié A, Collet X, Farnier M, et al. High burden of recurrent cardiovascular events in heterozygous familial hypercholesterolemia: the French Familial Hypercholesterolemia Registry. Atherosclerosis. 2018;277:334–40.

    Article  PubMed  CAS  Google Scholar 

  37. Drouin-Chartier J-P, Tremblay AJ, Godbout D, Gagnon A, Clavel M-A, Clisson M, et al. Correlates of coronary artery calcification prevalence and severity in patients with heterozygous familial hypercholesterolemia. CJC Open. 2021;3(1):62–70.

    Article  PubMed  Google Scholar 

  38. Pang J, Abraham A, Vargas-García C, Bates TR, Chan DC, Hooper AJ, et al. An age-matched computed tomography angiographic study of coronary atherosclerotic plaques in patients with familial hypercholesterolaemia. Atherosclerosis. 2020;298:52–7.

    Article  CAS  PubMed  Google Scholar 

  39. Nakazato R, Gransar H, Berman DS, Cheng VY, Lin FY, Achenbach S, et al. Statins use and coronary artery plaque composition: results from the International Multicenter CONFIRM Registry. Atherosclerosis. 2012;225(1):148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Henein M, Granåsen G, Wiklund U, Schmermund A, Guerci A, Erbel R, et al. High dose and long-term statin therapy accelerate coronary artery calcification. Int J Cardiol. 2015;1(184):581–6.

    Article  Google Scholar 

  41. Puri R, Nicholls SJ, Shao M, Kataoka Y, Uno K, Kapadia SR, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65(13):1273–82.

    Article  CAS  PubMed  Google Scholar 

  42. Mszar R, Nasir K, Santos RD. Coronary artery calcification in familial hypercholesterolemia: an opportunity for risk assessment and shared decision making with the power of zero? Circulation. 2020;142(15):1405–7.

    Article  PubMed  Google Scholar 

  43. McClelland RL, Nasir K, Budoff M, Blumenthal RS, Kronmal RA. Arterial age as a function of coronary artery calcium (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol. 2009;103(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  44. • Miname MH, Bittencourt MS, Pereira AC, Jannes CE, Krieger JE, Nasir K, et al. Vascular age derived from coronary artery calcium score on the risk stratification of individuals with heterozygous familial hypercholesterolaemia. Eur Heart J Cardiovasc Imaging. 2020 Mar 1;21(3):251–7. Conducted in molecular confirmed HeFH patients, this study found that CAC-derived vascular age can be used to improve primary prevention risk discrimination, when compared with conventional risk estimation strategies including the Framingham Risk Score.

  45. Cainzos-Achirica M, Anugula D, Mszar R, Grandhi G, Patel KV, Bittencourt MS, et al. Rationale and pathways forward in the implementation of coronary artery calcium-based enrichment of randomized trials. Am Heart J. 2021;26(243):54–65.

    Google Scholar 

  46. • Cainzos-Achirica M, Bittencourt MS, Osei AD, Haque W, Bhatt DL, Blumenthal RS, et al. Coronary artery calcium to improve the efficiency of randomized controlled trials in primary cardiovascular prevention. JACC Cardiovasc Imaging. 2021 May;14(5):1005–16. This study showed that high CAC scores can be used to enhance efficiency and feasibility of randomized controlled trials assessing novel add-on pharmacotherapies in the setting of primary prevention.

  47. Fentanes E, Cainzos Achirica M, Nasir K, Blankstein R. The role of coronary artery calcium testing for value-based clinical trials in primary prevention. Curr Atheroscler Rep. 2021;23(11):73.

    Article  CAS  PubMed  Google Scholar 

  48. Ramasamy A, Safi H, Moon JC, Andiapen M, Rathod KS, Maurovich-Horvat P, et al. Evaluation of the efficacy of computed tomographic coronary angiography in assessing coronary artery morphology and physiology: rationale and study design. Cardiology. 2020;145(5):285–93.

    Article  PubMed  Google Scholar 

  49. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (coronary ct angiography evaluation for clinical outcomes: an international multicenter registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol. 2011;58(8):849–60.

    Article  PubMed  Google Scholar 

  50. Homorodean C, Leucuta D-C, Ober M, Homorodean R, Spinu M, Olinic M, et al. Intravascular ultrasound insights into the unstable features of the coronary atherosclerotic plaques: a systematic review and meta-analysis. Eur J Clin Invest. 2021;19:e13671.

    Google Scholar 

  51. Shaw LJ, Blankstein R, Bax JJ, Ferencik M, Bittencourt MS, Min JK, et al. Society of cardiovascular computed tomography / North American Society of Cardiovascular Imaging - expert consensus document on coronary ct imaging of atherosclerotic plaque. J Cardiovasc Comput Tomogr. 2021;15(2):93–109.

    Article  PubMed  Google Scholar 

  52. Trinder M, Li X, DeCastro ML, Cermakova L, Sadananda S, Jackson LM, et al. Risk of premature atherosclerotic disease in patients with monogenic versus polygenic familial hypercholesterolemia. J Am Coll Cardiol. 2019;74(4):512–22.

    Article  PubMed  Google Scholar 

  53. Neefjes LA, Ten Kate G-JR, Alexia R, Nieman K, Galema-Boers AJ, Langendonk JG, et al. Accelerated subclinical coronary atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis. 2011;219(2):721–7.

    Article  CAS  PubMed  Google Scholar 

  54. Viladés Medel D, Leta Petracca R, Carreras Costa F, Cardona Olle M, Barros Membrilla A, Hidalgo Perez JA, et al. Coronary computed tomographic angiographic findings in asymptomatic patients with heterozygous familial hypercholesterolemia and null allele low-density lipoprotein receptor mutations. Am J Cardiol. 2013;111(7):955–61.

    Article  PubMed  CAS  Google Scholar 

  55. Alonso R, Díaz-Díaz JL, Arrieta F, Fuentes-Jiménez F, de Andrés R, Saenz P, et al. Clinical and molecular characteristics of homozygous familial hypercholesterolemia patients: insights from SAFEHEART registry. J Clin Lipidol. 2016;10(4):953–61.

    Article  PubMed  Google Scholar 

  56. Ten Kate G-JR, Neefjes LA, Dedic A, Nieman K, Langendonk JG, Galema-Boers AJ, et al. The effect of LDLR-negative genotype on CT coronary atherosclerosis in asymptomatic statin treated patients with heterozygous familial hypercholesterolemia. Atherosclerosis. 2013;227(2):334–41.

    Article  PubMed  CAS  Google Scholar 

  57. Nasir K, Mszar R, Cainzos-Achirica M, Grandhi G, Karlezi RA, Bittencourt M, et al. Presence and burden of coronary atherosclerosis in heterozygous familial hypercholesterolemia. J Am Coll Cardiol. 2021;77(18_Supplement_1):1411–1411.

    Article  Google Scholar 

  58. Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet Lond Engl. 2018;392(10151):929–39.

    Article  Google Scholar 

  59. Miname MH, Bercht AM, Morais T, Assuncao A, Santos RD, Nomura CH. Abstract 13141: Coronary perivascular fat attenuation index in heterozygous familial hypercholesterolemia. Circulation. 2019;140(Suppl_1):A13141–A13141.

    Google Scholar 

  60. Tada H, Kawashiri M, Okada H, Teramoto R, Konno T, Yoshimuta T, et al. Assessment of coronary atherosclerosis in patients with familial hypercholesterolemia by coronary computed tomography angiography. Am J Cardiol. 2015;115(6):724–9.

    Article  PubMed  Google Scholar 

  61. Cho I, Chang H-J, Sung JM, Pencina MJ, Lin FY, Dunning AM, et al. Coronary computed tomographic angiography and risk of all-cause mortality and nonfatal myocardial infarction in subjects without chest pain syndrome from the CONFIRM Registry (coronary CT angiography evaluation for clinical outcomes: an international multicenter registry). Circulation. 2012;126(3):304–13.

    Article  PubMed  Google Scholar 

  62. Cho I, Chang H-J, Ó Hartaigh B, Shin S, Sung JM, Lin FY, et al. Incremental prognostic utility of coronary CT angiography for asymptomatic patients based upon extent and severity of coronary artery calcium: results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) study. Eur Heart J. 2015;36(8):501–8.

    Article  PubMed  Google Scholar 

  63. Han D, Hartaigh BÓ, Gransar H, Lee JH, Rizvi A, Baskaran L, et al. Incremental prognostic value of coronary computed tomography angiography over coronary calcium scoring for major adverse cardiac events in elderly asymptomatic individuals. Eur Heart J Cardiovasc Imaging. 2018;19(6):675–83.

    Article  PubMed  Google Scholar 

  64. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337.

    Article  PubMed  Google Scholar 

  65. Pérez de Isla L, Watts GF, Muñiz-Grijalvo O, Díaz-Díaz JL, Alonso R, Zambón D, Fuentes-Jimenez F, et al; SAFEHEART investigators. a resilient type of familial hypercholesterolaemia: case-control follow-up of genetically characterized older patients in the SAFEHEART cohort. Eur J Prev Cardiol. 2021, zwab185. https://doi.org/10.1093/eurjpc/zwab185.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Hiroshi Miname.

Ethics declarations

Conflict of Interest

Dr. Gallo reports grants and personal fees from Amgen, Sanofi, and Regeneron and personal fees from Mylan Viatris, MSD, and Akcea Therapeutics, outside the submitted work. Mr. Mszar has nothing to disclose. Dr. Miname reports personal fees from Amgen, Sanofi/Regeneron, Libbs, Ache, and NovoNordisk, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiometabolic Disease and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, A., Mszar, R. & Miname, M.H. Updates on the Use of Subclinical Atherosclerosis to Predict Risk of Cardiovascular Events in Heterozygous Familial Hypercholesterolemia. Curr Atheroscler Rep 24, 407–418 (2022). https://doi.org/10.1007/s11883-022-01017-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-022-01017-7

Keywords

Navigation