Skip to main content

Advertisement

Log in

Disease Presentation, Treatment Options, and Outcomes for Myeloid Immunodeficiencies

  • Immune Deficiency and Dysregulation (. Kuo, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Up-to-date review on various types of immunodeficiencies with a significant myeloid component including some more recently described congenital disorders.

Recent Findings

While a number of disorders have been described in the past, genetic sequencing has led to the identification of the specific disorders and clarified their pathophysiology. Advances in genetic therapies including genetic editing should provide future treatments beyond hematopoietic stem cell transplant for patients with these rare disorders.

Summary

Neutrophils (or granulocytes) are a major contributor to infection surveillance and clearance, and defective neutrophils characteristically lead to pyogenic infections. Deficiency in numbers, either iatrogenic or congenital; functional defects; and/or inability to target to the sites of infection can all lead to serious morbidity and mortality; however, myeloid-based immunodeficiencies are not all the same. Having absent neutrophils, that is, neutropenia, has implications different to those of having dysfunctional neutrophils as will become evident as the various disorders are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Picard C, von Bernuth H, Ghandil P, et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore). 2010;89:403–25. https://doi.org/10.1097/MD.0b013e3181fd8ec3.

    Article  CAS  Google Scholar 

  2. Ku CL, von Bernuth H, Picard C, et al. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med. 2007;204:2407–22. https://doi.org/10.1084/jem.20070628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gokturk B, Casanova JL, Picard C, et al. A novel homozygous mutation with different clinical presentations in 2 IRAK-4-deficient siblings: first case with recurrent salmonellosis and non-Hodgkin lymphoma. J Investig Allergol Clin Immunol. 2018;28:271–3. https://doi.org/10.18176/jiaci.0261.

    Article  CAS  PubMed  Google Scholar 

  4. Platt CD, Zaman F, Wallace JG, et al. A novel truncating mutation in MYD88 in a patient with BCG adenitis, neutropenia and delayed umbilical cord separation. Clin Immunol. 2019;207:40–2. https://doi.org/10.1016/j.clim.2019.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hayward AR, Harvey BA, Leonard J, et al. Delayed separation of the umbilical cord, widespread infections, and defective neutrophil mobility. Lancet. 1979;1:1099–101. https://doi.org/10.1016/s0140-6736(79)91786-0.

    Article  CAS  PubMed  Google Scholar 

  6. Bowen TJ, Ochs HD, Altman LC, et al. Severe recurrent bacterial infections associated with defective adherence and chemotaxis in two patients with neutrophils deficient in a cell-associated glycoprotein. J Pediatr. 1982;101:932–40. https://doi.org/10.1016/s0022-3476(82)80013-9.

    Article  CAS  PubMed  Google Scholar 

  7. Springer TA, Thompson WS, Miller LJ, et al. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J Exp Med. 1984;160:1901–18. https://doi.org/10.1084/jem.160.6.1901.

    Article  CAS  PubMed  Google Scholar 

  8. Malech HL, Gallin JI. Current concepts: immunology. Neutrophils in human diseases. N Engl J Med. 1987;317:687–94. https://doi.org/10.1056/NEJM198709103171107.

    Article  CAS  PubMed  Google Scholar 

  9. Buchanan MR, Crowley CA, Rosin RE, et al. Studies on the interaction between GP-18-0-deficient neutrophils and vascular endothelium. Blood. 1982;60:160–5.

    Article  CAS  Google Scholar 

  10. Anderson DC, Schmalsteig FC, Finegold MJ, et al. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis. 1985;152:668–89. https://doi.org/10.1093/infdis/152.4.668.

    Article  CAS  PubMed  Google Scholar 

  11. Stewart M, Hogg N. Regulation of leukocyte integrin function: affinity vs. avidity. J Cell Biochem. 1996;61:554–61.

  12. McDowall A, Leitinger B, Stanley P, et al. The I domain of integrin leukocyte function-associated antigen-1 is involved in a conformational change leading to high affinity binding to ligand intercellular adhesion molecule 1 (ICAM-1). J Biol Chem. 1998;273:27396–27,403. https://doi.org/10.1074/jbc.273.42.27396.

    Article  CAS  PubMed  Google Scholar 

  13. Lubke T, Marquardt T, Etzioni A, et al. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet. 2001;28:73–6. https://doi.org/10.1038/ng0501-73.

    Article  CAS  PubMed  Google Scholar 

  14. Bhende YM, Deshpande CK, Bhatia HM, et al. A “new” blood group character related to the ABO system. Lancet. 1952;1:903–4.

    CAS  PubMed  Google Scholar 

  15. Gazit Y, Mory A, Etzioni A, et al. Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol. 2010;30:308–13. https://doi.org/10.1007/s10875-009-9354-0.

    Article  CAS  PubMed  Google Scholar 

  16. DeLisser HM, Christofidou-Solomidou M, Sun J, et al. Loss of endothelial surface expression of E-selectin in a patient with recurrent infections. Blood. 1999;94:884–94.

    Article  CAS  Google Scholar 

  17. Moser M, Bauer M, Schmid S, et al. Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med. 2009;15:300–5. https://doi.org/10.1038/nm.1921.

    Article  CAS  PubMed  Google Scholar 

  18. Fischer A, Trung PH, Descamps-Latscha B, et al. Bone-marrow transplantation for inborn error of phagocytic cells associated with defective adherence, chemotaxis, and oxidative response during opsonised particle phagocytosis. Lancet. 1983;2:473–6. https://doi.org/10.1016/s0140-6736(83)90509-3.

    Article  CAS  PubMed  Google Scholar 

  19. Essa MF, Elbashir E, Alroqi F, et al. Successful hematopoietic stem cell transplant in leukocyte adhesion deficiency type III presenting primarily as malignant infantile osteopetrosis. Clin Immunol. 2020;213:108365. https://doi.org/10.1016/j.clim.2020.108365.

    Article  CAS  PubMed  Google Scholar 

  20. Engel ME, Hickstein DD, Bauer TR Jr, et al. Matched unrelated bone marrow transplantation with reduced-intensity conditioning for leukocyte adhesion deficiency. Bone Marrow Transplant. 2006;37:717–8. https://doi.org/10.1038/sj.bmt.1705301.

    Article  CAS  PubMed  Google Scholar 

  21. • Bauer TR Jr, Allen JM, Hai M, et al. Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat Med. 2008;14:93–7. https://doi.org/10.1038/nm1695Description of the results using a novel (foamy) viral vector for the treatment of canine LAD.

    Article  CAS  PubMed  Google Scholar 

  22. Bauer TR Jr, Tuschong LM, Calvo KR, et al. Long-term follow-up of foamy viral vector-mediated gene therapy for canine leukocyte adhesion deficiency. Mol Ther. 2013;21:964–72. https://doi.org/10.1038/mt.2013.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Corvilain E, Casanova JL, Puel A. Inherited CARD9 deficiency: invasive disease caused by ascomycete fungi in previously healthy children and adults. J Clin Immunol. 2018;38:656–93. https://doi.org/10.1007/s10875-018-0539-2Description of a novel disease and elucidation of a pertinent pathway for immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Drummond RA, Franco LM, Lionakis MS. Human CARD9: a critical molecule of fungal immune surveillance. Front Immunol. 2018;9:1836. https://doi.org/10.3389/fimmu.2018.01836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Celmeli F, Oztoprak N, Turkkahraman D, et al. Successful granulocyte colony-stimulating factor treatment of relapsing Candida albicans meningoencephalitis caused by CARD9 deficiency. Pediatr Infect Dis J. 2016;35:428–31. https://doi.org/10.1097/INF.0000000000001028.

    Article  PubMed  Google Scholar 

  26. Rieber N, Gazendam RP, Freeman AF, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1:e89890. https://doi.org/10.1172/jci.insight.89890.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Queiroz-Telles F, Mercier T, Maertens J, et al. Successful allogenic stem cell transplantation in patients with inherited CARD9 deficiency. J Clin Immunol. 2019;39:462–9. https://doi.org/10.1007/s10875-019-00662-z.

    Article  CAS  PubMed  Google Scholar 

  28. Gallin JI, Malech HL, Wright DG, et al. Recurrent severe infections in a child with abnormal leukocyte function: possible relationship to increased microtubule assembly. Blood. 1978;51:919–33.

    Article  CAS  Google Scholar 

  29. Pinkerton PH, Robinson JB, Senn JS. Lazy leucocyte syndrome-disorder of the granulocyte membrane? J Clin Pathol. 1978;31:300–8. https://doi.org/10.1136/jcp.31.4.300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Constantopoulos A, Karpathios T, Nicolaidou P, et al. Lazy-leukocyte syndrome. A case report. J Pediatr. 1975;87:945–6. https://doi.org/10.1016/s0022-3476(75)80913-9.

    Article  CAS  PubMed  Google Scholar 

  31. Kuhns DB, Fink DL, Choi U, et al. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood. 2016;128:2135–43. https://doi.org/10.1182/blood-2016-03-706,028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Standing AS, Malinova D, Hong Y, et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med. 2017;214:59–71. https://doi.org/10.1084/jem.20161228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kitahara M, Eyre HJ, Simonian Y, et al. Hereditary myeloperoxidase deficiency. Blood. 1981;57:888–93.

    Article  CAS  Google Scholar 

  34. Nauseef WM, Root RK, Malech HL. Biochemical and immunologic analysis of hereditary myeloperoxidase deficiency. J Clin Invest. 1983;71:1297–307. https://doi.org/10.1172/jci110880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klebanoff SJ, Kettle AJ, Rosen H, et al. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 2013;93:185–98. https://doi.org/10.1189/jlb.0712349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winkelstein JA, Marino MC, Johnston RB Jr, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79:155–69.

    Article  CAS  Google Scholar 

  37. Marciano BE, Spalding C, Fitzgerald A, et al. Common severe infections in chronic granulomatous disease. Clin Infect Dis. 2015;60:1176–83. https://doi.org/10.1093/cid/ciu1154.

    Article  CAS  PubMed  Google Scholar 

  38. De Ravin SS, Challipalli M, Anderson V, et al. Geosmithia argillacea: an emerging cause of invasive mycosis in human chronic granulomatous disease. Clin Infect Dis. 2011;52:e136–43. https://doi.org/10.1093/cid/ciq250.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Straughan DM, McLoughlin KC, Mullinax JE, et al. The changing paradigm of management of liver abscesses in chronic granulomatous disease. Clin Infect Dis. 2018;66:1427–34. https://doi.org/10.1093/cid/cix1012.

    Article  CAS  PubMed  Google Scholar 

  40. Freeman AF, Marciano BE, Anderson VL, et al. Corticosteroids in the treatment of severe nocardia pneumonia in chronic granulomatous disease. Pediatr Infect Dis J. 2011;30:806–8. https://doi.org/10.1097/INF.0b013e318218181d.

    Article  PubMed  PubMed Central  Google Scholar 

  41. De Ravin SS, Naumann N, Cowen EW, et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol. 2008;122:1097–103. https://doi.org/10.1016/j.jaci.2008.07.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang C, De Ravin SS, Paul AR, et al. Genetic risk for inflammatory bowel disease is a determinant of Crohn’s disease development in chronic granulomatous disease. Inflamm Bowel Dis. 2016;22:2794–801. https://doi.org/10.1097/MIB.0000000000000966.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Segal BH, Leto TL, Gallin JI, et al. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore). 2000;79:170–200 Review 2000/06/09.

    Article  CAS  Google Scholar 

  44. Matute JD, Arias AA, Dinauer MC, et al. p40phox: the last NADPH oxidase subunit. Blood Cells Mol Dis. 2005;35:291–302. https://doi.org/10.1016/j.bcmd.2005.06.010.

    Article  CAS  PubMed  Google Scholar 

  45. Matute JD, Arias AA, Wright NA, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009;114:3309–15. https://doi.org/10.1182/blood-2009-07-231,498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. • Kuhns DB, Alvord WG, Heller T, et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med. 2010;363:2600–10. https://doi.org/10.1056/NEJMoa1007097First paper to suggest a clinically applicable prognostic factor for outcomes in CGD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marciano BE, Zerbe CS, Falcone EL, et al. X-linked carriers of chronic granulomatous disease: Illness, lyonization, and stability. J Allergy Clin Immunol. 2018;141:365–71. https://doi.org/10.1016/j.jaci.2017.04.035.

    Article  CAS  PubMed  Google Scholar 

  48. Gallin JI, Alling DW, Malech HL, et al. Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med. 2003;348:2416–22. https://doi.org/10.1056/NEJMoa021931.

    Article  CAS  PubMed  Google Scholar 

  49. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group. N Engl J Med 1991; 324: 509–516. https://doi.org/10.1056/NEJM199102213240801.

  50. Mouy R, Seger R, Bourquin JP, et al. Interferon gamma for chronic granulomatous disease. N Engl J Med. 1991;325:1516–7. https://doi.org/10.1056/NEJM199111213252115.

    Article  CAS  PubMed  Google Scholar 

  51. Marciano BE, Wesley R, De Carlo ES, et al. Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin Infect Dis. 2004;39:692–9. https://doi.org/10.1086/422993.

    Article  CAS  PubMed  Google Scholar 

  52. Fernandez-Boyanapalli RF, Falcone EL, Zerbe CS, et al. Impaired efferocytosis in human chronic granulomatous disease is reversed by pioglitazone treatment. J Allergy Clin Immunol. 2015;136:1399–1401 e1393. https://doi.org/10.1016/j.jaci.2015.07.034.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Uzel G, Orange JS, Poliak N, et al. Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis. 2010;51:1429–34. https://doi.org/10.1086/657308.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Butte MJ, Park KT, Lewis DB. Treatment of CGD-associated colitis with the IL-23 blocker ustekinumab. J Clin Immunol. 2016;36:619–20. https://doi.org/10.1007/s10875-016-0318-x.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Martinez CA, Shah S, Shearer WT, et al. Excellent survival after sibling or unrelated donor stem cell transplantation for chronic granulomatous disease. J Allergy Clin Immunol. 2012;129:176–83. https://doi.org/10.1016/j.jaci.2011.10.005.

    Article  PubMed  Google Scholar 

  56. Gungor T, Teira P, Slatter M, et al. Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet. 2014;383:436–48. https://doi.org/10.1016/S0140-6736(13)62069-3.

    Article  CAS  PubMed  Google Scholar 

  57. Parta M, Kelly C, Kwatemaa N, Theobald N, Hilligoss D, Qin J, et al. Allogeneic reduced-intensity hematopoietic stem cell transplatation for chronic granulomatous disease: a single-center prospective trial. J Clin Immunol. 2017;37(6):548–58 Original Article 28 July 2017.

    Article  CAS  Google Scholar 

  58. Soncini E, Slatter M, Jones L, et al. Haematopoeitic stem cell transplantation for chronic granulomatous disease-a single-centre experience. Bone Marrow Transplant. 2008;41:S28.

    Google Scholar 

  59. Horwitz ME, Barrett AJ, Brown MR, et al. Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T cell-depleted hematopoietic allograft. N Engl J Med. 2001;344:881–8. https://doi.org/10.1056/NEJM200103223441203.

    Article  CAS  PubMed  Google Scholar 

  60. Morillo-Gutierrez B, Beier R, Rao K, et al. Treosulfan-based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience. Blood. 2016;128:440–8. https://doi.org/10.1182/blood-2016-03-704,015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parta M, Hilligoss D, Kelly C, et al. Failure to prevent severe graft-versus-host disease in haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide in chronic granulomatous disease. J Clin Immunol. 2020. https://doi.org/10.1007/s10875-020-00772-z.

  62. Parta M, Hilligoss D, Kelly C, et al. Haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide in a patient with chronic granulomatous disease and active infection: a first report. J Clin Immunol. 2015;35:675–80. https://doi.org/10.1007/s10875-015-0204-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marciano BE, Zerbe CS, Falcone EL, et al. X-linked carriers of chronic granulomatous disease: illness, lyonization, and stability. J Allergy Clin Immunol. 2017. https://doi.org/10.1016/j.jaci.2017.04.035.

  64. Marsh RA, Leiding JW, Logan BR, et al. Chronic granulomatous disease-associated IBD resolves and does not adversely impact survival following allogeneic HCT. J Clin Immunol. 2019;39:653–67. https://doi.org/10.1007/s10875-019-00659-8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Malech HL, Maples PB, Whiting-Theobald N, et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci U S A. 1997;94:12133–12,138.

    Article  CAS  Google Scholar 

  66. Dinauer MC, Li LL, Bjorgvinsdottir H, et al. Long-term correction of phagocyte NADPH oxidase activity by retroviral-mediated gene transfer in murine X-linked chronic granulomatous disease. Blood. 1999;94:914–22.

    Article  CAS  Google Scholar 

  67. Ott MG, Schmidt M, Schwarzwaelder K, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med. 2006;12:401–9. https://doi.org/10.1038/nm1393.

    Article  CAS  PubMed  Google Scholar 

  68. Kang EM, Choi U, Theobald N, et al. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood. 2010;115:783–91. https://doi.org/10.1182/blood-2009-05-222,760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. •• Kohn DB, Booth C, Kang EM, et al. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med. 2020;26:200–6. https://doi.org/10.1038/s41591-019-0735-5First clinical gene therapy showing long-term clinically relevant levels of marking in gene therapy for CGD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng J, Redman CM, Wu X, et al. Insights into extensive deletions around the XK locus associated with McLeod phenotype and characterization of two novel cases. Gene. 2007;392:142–50. https://doi.org/10.1016/j.gene.2006.11.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gallin JI. Neutrophil specific granule deficiency. Annu Rev Med. 1985;36:263–74. https://doi.org/10.1146/annurev.me.36.020185.001403.

    Article  CAS  PubMed  Google Scholar 

  72. Gombart AF, Shiohara M, Kwok SH, et al. Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein-epsilon. Blood. 2001;97:2561–7. https://doi.org/10.1182/blood.v97.9.2561.

    Article  CAS  PubMed  Google Scholar 

  73. Lekstrom-Himes JA, Dorman SE, Kopar P, et al. Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J Exp Med. 1999;189:1847–52. https://doi.org/10.1084/jem.189.11.1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gallin JI, Fletcher MP, Seligmann BE, et al. Human neutrophil-specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response. Blood. 1982;59:1317–29.

    Article  CAS  Google Scholar 

  75. McIlwaine L, Parker A, Sandilands G, et al. Neutrophil-specific granule deficiency. Br J Haematol. 2013;160:735. https://doi.org/10.1111/bjh.12207.

    Article  PubMed  Google Scholar 

  76. Muraoka M, Akagi T, Ueda A, et al. C/EBPepsilon DeltaRS derived from a neutrophil-specific granule deficiency patient interacts with HDAC1 and its dysfunction is restored by trichostatin A. Biochem Biophys Res Commun. 2019;516:293–9. https://doi.org/10.1016/j.bbrc.2019.06.130.

    Article  CAS  PubMed  Google Scholar 

  77. Wynn RF, Sood M, Theilgaard-Monch K, et al. Intractable diarrhoea of infancy caused by neutrophil specific granule deficiency and cured by stem cell transplantation. Gut. 2006;55:292–3. https://doi.org/10.1136/gut.2005.081927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kurkchubasche AG, Panepinto JA, Tracy TF Jr, et al. Clinical features of a human Rac2 mutation: a complex neutrophil dysfunction disease. J Pediatr. 2001;139:141–7. https://doi.org/10.1067/mpd.2001.114718.

    Article  CAS  PubMed  Google Scholar 

  79. • Williams DA, Tao W, Yang F, et al. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood. 2000;96:1646–54 The use of genetic sequencing to elucidate a rare disorder.

    CAS  PubMed  Google Scholar 

  80. Abell AN, DeCathelineau AM, Weed SA, et al. Rac2D57N, a dominant inhibitory Rac2 mutant that inhibits p38 kinase signaling and prevents surface ruffling in bone-marrow-derived macrophages. J Cell Sci. 2004;117:243–55. https://doi.org/10.1242/jcs.00853.

    Article  CAS  PubMed  Google Scholar 

  81. Brechard S, Salsmann A, Tschirhart EJ. OAG induces an additional PKC-, PI3K-, and Rac2-mediated signaling pathway up-regulating NOX2 activity, independently of Ca2+ entry. J Leukoc Biol. 2009;85:638–47. https://doi.org/10.1189/jlb.0508330.

    Article  CAS  PubMed  Google Scholar 

  82. Makaryan V, Zeidler C, Bolyard AA, et al. The diversity of mutations and clinical outcomes for ELANE-associated neutropenia. Curr Opin Hematol. 2015;22:3–11. https://doi.org/10.1097/MOH.0000000000000105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Makaryan V, Rosenthal EA, Bolyard AA, et al. TCIRG1-associated congenital neutropenia. Hum Mutat. 2014;35:824–7. https://doi.org/10.1002/humu.22563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dale DC, Bolyard AA. An update on the diagnosis and treatment of chronic idiopathic neutropenia. Curr Opin Hematol. 2017;24:46–53. https://doi.org/10.1097/MOH.0000000000000305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fioredda F, Iacobelli S, van Biezen A, et al. Stem cell transplantation in severe congenital neutropenia: an analysis from the European Society for Blood and Marrow Transplantation. Blood. 2015;126:1885–92; quiz 1970. https://doi.org/10.1182/blood-2015-02-628,859.

    Article  CAS  PubMed  Google Scholar 

  86. Dale DC, Bolyard A, Marrero T, et al. Long-term effects of G-CSF therapy in cyclic neutropenia. N Engl J Med. 2017;377:2290–2. https://doi.org/10.1056/NEJMc1709258.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rosenberg PS, Alter BP, Link DC, et al. Neutrophil elastase mutations and risk of leukaemia in severe congenital neutropenia. Br J Haematol. 2008;140:210–3. https://doi.org/10.1111/j.1365-2141.2007.06897.x.

    Article  CAS  PubMed  Google Scholar 

  88. Rosenberg PS, Zeidler C, Bolyard AA, et al. Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol. 2010;150:196–9. https://doi.org/10.1111/j.1365-2141.2010.08216.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Farruggia P, Dufour C. Diagnosis and management of primary autoimmune neutropenia in children: insights for clinicians. Ther Adv Hematol. 2015;6:15–24. https://doi.org/10.1177/2040620714556642.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fioredda F, Calvillo M, Burlando O, et al. Infectious complications in children with severe congenital, autoimmune or idiopathic neutropenia: a retrospective study from the Italian Neutropenia Registry. Pediatr Infect Dis J. 2013;32:410–2. https://doi.org/10.1097/INF.0b013e3182814b5a.

    Article  PubMed  Google Scholar 

  91. Spielberg SP, Boxer LA, Oliver JM, et al. Oxidative damage to neutrophils in glutathione synthetase deficiency. Br J Haematol. 1979;42:215–23. https://doi.org/10.1111/j.1365-2141.1979.tb01126.x.

    Article  CAS  PubMed  Google Scholar 

  92. Candotti F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. J Clin Immunol. 2018;38:13–27. https://doi.org/10.1007/s10875-017-0453-z.

    Article  CAS  PubMed  Google Scholar 

  93. Albert MH, Bittner TC, Nonoyama S, et al. X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood. 2010;115:3231–8. https://doi.org/10.1182/blood-2009-09-239,087.

    Article  CAS  PubMed  Google Scholar 

  94. Zicha D, Allen WE, Brickell PM, et al. Chemotaxis of macrophages is abolished in the Wiskott-Aldrich syndrome. Br J Haematol. 1998;101:659–65. https://doi.org/10.1046/j.1365-2141.1998.00767.x.

    Article  CAS  PubMed  Google Scholar 

  95. Badolato R, Sozzani S, Malacarne F, et al. Monocytes from Wiskott-Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine. J Immunol. 1998;161:1026–33.

    CAS  PubMed  Google Scholar 

  96. Zhang H, Schaff UY, Green CE, et al. Impaired integrin-dependent function in Wiskott-Aldrich syndrome protein-deficient murine and human neutrophils. Immunity. 2006;25:285–95. https://doi.org/10.1016/j.immuni.2006.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lorenzi R, Brickell PM, Katz DR, et al. Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phagocytosis. Blood. 2000;95:2943–6.

    Article  CAS  Google Scholar 

  98. Westerberg LS, Meelu P, Baptista M, et al. Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes. J Exp Med. 2010;207:1145–52. https://doi.org/10.1084/jem.20091245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thrasher AJ, Burns SO. WASP: a key immunological multitasker. Nat Rev Immunol. 2010;10:182–92. https://doi.org/10.1038/nri2724.

    Article  CAS  PubMed  Google Scholar 

  100. Ozsahin H, Cavazzana-Calvo M, Notarangelo LD, et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation. Blood. 2008;111:439–45. Multicenter Study 2007/09/29. https://doi.org/10.1182/blood-2007-03-076679.

    Article  CAS  PubMed  Google Scholar 

  101. Glasmacher JS, Ochs HD, Aiuti A, Arkwright PD, Balashov D, Behrends U, et al. Wiskott-Aldrich syndrome: a retrospective study on 575 patients analyzing the impact of splenectomy, stem cell transplantation, or no definitive treatment on frequency of disease-related complications and physician-perceived quality of life. American Society of Hematology. Am Soc Hematol. 2016;128:366.

    Google Scholar 

  102. Kharya G, Nademi Z, Leahy TR, et al. Haploidentical T cell alpha beta receptor and CD19-depleted stem cell transplant for Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2014;134:1199–201. https://doi.org/10.1016/j.jaci.2014.04.041.

    Article  CAS  PubMed  Google Scholar 

  103. Shin CR, Kim MO, Li D, et al. Outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome. Bone Marrow Transplant. 2012;47:1428–35. https://doi.org/10.1038/bmt.2012.31.

    Article  CAS  PubMed  Google Scholar 

  104. Shekhovtsova Z, Bonfim C, Ruggeri A, et al. A risk factor analysis of outcomes after unrelated cord blood transplantation for children with Wiskott-Aldrich syndrome. Haematologica. 2017;102:1112–9. https://doi.org/10.3324/haematol.2016.158808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pai SY, Notarangelo LD. Hematopoietic cell transplantation for Wiskott-Aldrich syndrome: advances in biology and future directions for treatment. Immunol Allergy Clin N Am. 2010;30:179–94. https://doi.org/10.1016/j.iac.2010.02.001.

    Article  Google Scholar 

  106. Ferrua F, Cicalese MP, Galimberti S, et al. Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematol. 2019;6:e239–53. https://doi.org/10.1016/S2352-3026(19)30021-3.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sereni L, Castiello MC, Di Silvestre D, et al. Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2019;144:825–38. https://doi.org/10.1016/j.jaci.2019.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boztug K, Schmidt M, Schwarzer A, et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med. 2010;363:1918–27. Clinical Trial. Research Support, Non-U.S. Gov’t 2010/11/12. https://doi.org/10.1056/NEJMoa1003548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. • Braun CJ, Boztug K, Paruzynski A, et al. Gene therapy for Wiskott-Aldrich syndrome-long-term efficacy and genotoxicity. Sci Transl Med. 2014;6:227ra233. https://doi.org/10.1126/scitranslmed.3007280Demonstration of insertational mutagenesis in a retroviral gene therapy study for WAS.

    Article  CAS  Google Scholar 

  110. Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341:1233151. Clinical Trial, Phase I. Clinical Trial, Phase II. Research Support, Non-U.S. Gov’t 2013/07/13. https://doi.org/10.1126/science.1233151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Haddad E, Le Deist F, Blanche S, et al. Treatment of Chediak-Higashi syndrome by allogenic bone marrow transplantation: report of 10 cases. Blood. 1995;85:3328–33.

    Article  CAS  Google Scholar 

  112. Eapen M, DeLaat CA, Baker KS, et al. Hematopoietic cell transplantation for Chediak-Higashi syndrome. Bone Marrow Transplant. 2007;39:411–5. https://doi.org/10.1038/sj.bmt.1705600.

    Article  CAS  PubMed  Google Scholar 

  113. Notarangelo LD, Peitsch MC, Abrahamsen TG, et al. CD40lbase: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Immunol Today. 1996;17:511–6. https://doi.org/10.1016/0167-5699(96)30059-5.

    Article  CAS  PubMed  Google Scholar 

  114. Hayward AR, Levy J, Facchetti F, et al. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol. 1997;158:977–83.

    CAS  PubMed  Google Scholar 

  115. Thomas C, de Saint BG, Le Deist F, et al. Brief report: correction of X-linked hyper-IgM syndrome by allogeneic bone marrow transplantation. N Engl J Med. 1995;333:426–9. https://doi.org/10.1056/NEJM199508173330705.

    Article  CAS  PubMed  Google Scholar 

  116. Gennery AR, Khawaja K, Veys P, et al. Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood. 2004;103:1152–7. https://doi.org/10.1182/blood-2003-06-2014.

    Article  CAS  PubMed  Google Scholar 

  117. Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98:12614–12,619. https://doi.org/10.1073/pnas.221456898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kutukculer N, Aksoylar S, Kansoy S, et al. Outcome of hematopoietic stem cell transplantation in hyper-IgM syndrome caused by CD40 deficiency. J Pediatr. 2003;143:141–2. https://doi.org/10.1016/S0022-3476(03)00274-9.

    Article  PubMed  Google Scholar 

  119. Seyama K, Osborne WR, Ochs HD. CD40 ligand mutants responsible for X-linked hyper-IgM syndrome associate with wild type CD40 ligand. J Biol Chem. 1999;274:11310–11,320. https://doi.org/10.1074/jbc.274.16.11310.

    Article  CAS  PubMed  Google Scholar 

  120. • Hubbard N, Hagin D, Sommer K, et al. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood. 2016;127:2513–22. https://doi.org/10.1182/blood-2015-11-683,235One of the first demonstrations of the use of gene editing in a myeloid immunodeficiency.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M Kang.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immune Deficiency and Dysregulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, E.M. Disease Presentation, Treatment Options, and Outcomes for Myeloid Immunodeficiencies. Curr Allergy Asthma Rep 21, 14 (2021). https://doi.org/10.1007/s11882-020-00984-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00984-8

Keywords

Navigation