Skip to main content

Advertisement

Log in

Unintended Immunological Consequences of Biologic Therapy

  • Autoimmunity (TK Tarrant, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Recent advances in the understanding of immune dysregulation in autoimmune diseases have enabled the development of new monoclonal antibody-based drugs called biologics. Biologics have been used to target aberrant immune responses in many diseases, but patients with rheumatologic and other autoimmune diseases have benefited the most and improvements in outcomes have been significant. The use of biologics is not without hazard, however, as these agents block immune pathways adapted to protect the host. This has been borne out by increased rates of infections as well as induction of new autoimmune and hematologic adverse effects. As new drugs for the treatment of autoimmune conditions are entering the pipeline, it is incumbent on the practicing immunologist to understand the mechanism of these biologics and the implications of clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Her M, Kavanaugh A. Alterations in immune function with biologic therapies for autoimmune disease. J Allergy Clin Immunol. 2016;137(1):19–27. doi:10.1016/j.jaci.2015.10.023. A concise review of unintended consequences of biologic therapies, organized by the complication rather than the pathway altered by the therapy. Particularly highlighting TNFis and to a lesser extent rituximab.

    Article  CAS  PubMed  Google Scholar 

  2. Timlin H, Bingham 3rd CO. Efficacy and safety implications of molecular constructs of biological agents for rheumatoid arthritis. Expert Opin Biol Ther. 2014;14(7):893–904. doi:10.1517/14712598.2014.900536.

    Article  CAS  PubMed  Google Scholar 

  3. Schejbel L, Fadnes D, Permin H, Lappegard KT, Garred P, Mollnes TE. Primary complement C5 deficiencies - molecular characterization and clinical review of two families. Immunobiology. 2013;218(10):1304–10. doi:10.1016/j.imbio.2013.04.021.

    Article  CAS  PubMed  Google Scholar 

  4. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. doi:10.1038/ni.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong EK, Kavanagh D. Anticomplement C5 therapy with eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Transl Res : J Lab Clin Med. 2015;165(2):306–20. doi:10.1016/j.trsl.2014.10.010.

    Article  CAS  Google Scholar 

  6. Mastellos DC, Ricklin D, Yancopoulou D, Risitano A, Lambris JD. Complement in paroxysmal nocturnal hemoglobinuria: exploiting our current knowledge to improve the treatment landscape. Expert Rev Hematol. 2014;7(5):583–98. doi:10.1586/17474086.2014.953926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brzustewicz E, Bryl E. The role of cytokines in the pathogenesis of rheumatoid arthritis--practical and potential application of cytokines as biomarkers and targets of personalized therapy. Cytokine. 2015;76(2):527–36. doi:10.1016/j.cyto.2015.08.260.

    Article  CAS  PubMed  Google Scholar 

  8. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–52. doi:10.1038/nrd3800. Good review of the role of IL-1 in inflammation and broad range of conditions where IL-1 blockade is being considered for therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10(2):89–102. doi:10.1038/nri2691.

    Article  CAS  PubMed  Google Scholar 

  10. Kone-Paut I, Galeotti C. Current treatment recommendations and considerations for cryopyrin-associated periodic syndrome. Expert Rev Clin Immunol. 2015;11(10):1083–92. doi:10.1586/1744666X.2015.1077702.

    Article  CAS  PubMed  Google Scholar 

  11. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009;360(23):2416–25. doi:10.1056/NEJMoa0810787.

    Article  CAS  PubMed  Google Scholar 

  12. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57. doi:10.1038/ni.3153. Good review of IL-6 biology particularly cis and trans signaling and applicability of anti-IL-6 biologics to therapy.

    Article  CAS  PubMed  Google Scholar 

  13. Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M, et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther. 2014;141(2):125–39. doi:10.1016/j.pharmthera.2013.09.004.

    Article  CAS  PubMed  Google Scholar 

  14. Kang S, Tanaka T, Kishimoto T. Therapeutic uses of anti-interleukin-6 receptor antibody. Int Immunol. 2015;27(1):21–9. doi:10.1093/intimm/dxu081.

    Article  CAS  PubMed  Google Scholar 

  15. Rubbert-Roth A. Assessing the safety of biologic agents in patients with rheumatoid arthritis. Rheumatology (Oxford). 2012;51 Suppl 5:v38–47. doi:10.1093/rheumatology/kes114.

    Article  CAS  Google Scholar 

  16. Campbell L, Chen C, Bhagat SS, Parker RA, Ostor AJ. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford). 2011;50(3):552–62. doi:10.1093/rheumatology/keq343.

    Article  CAS  Google Scholar 

  17. Horneff G. Safety of biologic therapies for the treatment of juvenile idiopathic arthritis. Expert Opin Drug Saf. 2015;14(7):1111–26. doi:10.1517/14740338.2015.1042453.

    Article  CAS  PubMed  Google Scholar 

  18. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600. doi:10.1038/nri3707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova JL. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012;12(6):616–22. doi:10.1097/ACI.0b013e328358cc0b. Examination of the effect of genetic mutations in the IL-17 pathway in causing chronic mucocutaneous candidiasis in patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gopal R, Monin L, Slight S, Uche U, Blanchard E, Fallert Junecko BA, et al. Unexpected role for IL-17 in protective immunity against hypervirulent mycobacterium tuberculosis HN878 infection. PLoS Pathog. 2014;10(5):e1004099. doi:10.1371/journal.ppat.1004099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Paul C, Lacour JP, Tedremets L, Kreutzer K, Jazayeri S, Adams S, et al. Efficacy, safety and usability of secukinumab administration by autoinjector/pen in psoriasis: a randomized, controlled trial (JUNCTURE). J Eur Acad Dermatol Venereol : JEADV. 2015;29(6):1082–90. doi:10.1111/jdv.12751.

    Article  CAS  PubMed  Google Scholar 

  22. Ohtsuki M, Morita A, Abe M, Takahashi H, Seko N, Karpov A, et al. Secukinumab efficacy and safety in Japanese patients with moderate-to-severe plaque psoriasis: subanalysis from ERASURE, a randomized, placebo-controlled, phase 3 study. J Dermatol. 2014;41(12):1039–46. doi:10.1111/1346-8138.12668.

    Article  CAS  PubMed  Google Scholar 

  23. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, et al. Secukinumab in plaque psoriasis--results of two phase 3 trials. N Engl J Med. 2014;371(4):326–38. doi:10.1056/NEJMoa1314258.

    Article  PubMed  CAS  Google Scholar 

  24. Blauvelt A, Prinz JC, Gottlieb AB, Kingo K, Sofen H, Ruer-Mulard M, et al. Secukinumab administration by pre-filled syringe: efficacy, safety and usability results from a randomized controlled trial in psoriasis (FEATURE). Br J Dermatol. 2015;172(2):484–93. doi:10.1111/bjd.13348.

    Article  CAS  PubMed  Google Scholar 

  25. Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, et al. Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis. N Engl J Med. 2015;373(26):2534–48. doi:10.1056/NEJMoa1505066.

    Article  PubMed  Google Scholar 

  26. McInnes IB, Mease PJ, Kirkham B, Kavanaugh A, Ritchlin CT, Rahman P, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386(9999):1137–46. doi:10.1016/S0140-6736(15)61134-5.

    Article  CAS  PubMed  Google Scholar 

  27. Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, van der Heijde D, et al. Secukinumab Inhibition of Interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373(14):1329–39. doi:10.1056/NEJMoa1412679.

    Article  CAS  PubMed  Google Scholar 

  28. Quach OL, Hsu S. Perianal dermatophytosis during secukinumab therapy for plaque psoriasis. JAMA Dermatol. 2015:1–2. doi:10.1001/jamadermatol.2015.4992. 2 cases of perianal dermatophytosis with secukinumab and summary of candida infections in the relevant trials.

  29. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–700. doi:10.1136/gutjnl-2011-301668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thaci D, Blauvelt A, Reich K, Tsai TF, Vanaclocha F, Kingo K, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J Am Acad Dermatol. 2015;73(3):400–9. doi:10.1016/j.jaad.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  31. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22. doi:10.1038/nature11868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454–70. doi:10.1016/j.smim.2014.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84. doi:10.1016/S0140-6736(08)60726-6.

    Article  CAS  PubMed  Google Scholar 

  34. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–74. doi:10.1016/S0140-6736(08)60725-4.

    Article  CAS  PubMed  Google Scholar 

  35. Griffiths CE, Strober BE, van de Kerkhof P, Ho V, Fidelus-Gort R, Yeilding N, et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med. 2010;362(2):118–28. doi:10.1056/NEJMoa0810652.

    Article  CAS  PubMed  Google Scholar 

  36. Kalb RE, Fiorentino DF, Lebwohl MG, Toole J, Poulin Y, Cohen AD, et al. Risk of serious infection with biologic and systemic treatment of psoriasis: results from the Psoriasis Longitudinal Assessment and Registry (PSOLAR). JAMA Dermatol. 2015;151(9):961–9. doi:10.1001/jamadermatol.2015.0718.

    Article  PubMed  Google Scholar 

  37. Papp KA, Griffiths CE, Gordon K, Lebwohl M, Szapary PO, Wasfi Y, et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br J Dermatol. 2013;168(4):844–54. doi:10.1111/bjd.12214.

    Article  CAS  PubMed  Google Scholar 

  38. Tsai TF, Ho JC, Song M, Szapary P, Guzzo C, Shen YK, et al. Efficacy and safety of ustekinumab for the treatment of moderate-to-severe psoriasis: a phase III, randomized, placebo-controlled trial in Taiwanese and Korean patients (PEARL). J Dermatol Sci. 2011;63(3):154–63. doi:10.1016/j.jdermsci.2011.05.005.

    Article  CAS  PubMed  Google Scholar 

  39. Igarashi A, Kato T, Kato M, Song M, Nakagawa H. Efficacy and safety of ustekinumab in Japanese patients with moderate-to-severe plaque-type psoriasis: long-term results from a phase 2/3 clinical trial. J Dermatol. 2012;39(3):242–52. doi:10.1111/j.1346-8138.2011.01347.x.

    Article  CAS  PubMed  Google Scholar 

  40. Tsai TF, Chiu HY, Song M, Chan D. A case of latent tuberculosis reactivation in a patient treated with ustekinumab without concomitant isoniazid chemoprophylaxis in the PEARL trial. Br J Dermatol. 2013;168(2):444–6. doi:10.1111/j.1365-2133.2012.11162.x.

    Article  PubMed  Google Scholar 

  41. Kappos L, Wiendl H, Selmaj K, Arnold DL, Havrdova E, Boyko A, et al. Daclizumab HYP versus Interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med. 2015;373(15):1418–28. doi:10.1056/NEJMoa1501481.

    Article  CAS  PubMed  Google Scholar 

  42. Iversen M, Burton CM, Vand S, Skovfoged L, Carlsen J, Milman N, et al. Aspergillus infection in lung transplant patients: incidence and prognosis. Eur J Clin Microbiol Infect Dis : Off Publ Eur Soc Clin Microbiol. 2007;26(12):879–86. doi:10.1007/s10096-007-0376-3.

    Article  CAS  Google Scholar 

  43. Wynn D, Kaufman M, Montalban X, Vollmer T, Simon J, Elkins J, et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol. 2010;9(4):381–90. doi:10.1016/S1474-4422(10)70033-8.

    Article  CAS  PubMed  Google Scholar 

  44. Gold R, Giovannoni G, Selmaj K, Havrdova E, Montalban X, Radue EW, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet. 2013;381(9884):2167–75. doi:10.1016/S0140-6736(12)62190-4.

    Article  CAS  PubMed  Google Scholar 

  45. Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet. 1997;350(9086):1193–8.

    Article  CAS  PubMed  Google Scholar 

  46. McKeage K, McCormack PL. Basiliximab: a review of its use as induction therapy in renal transplantation. BioDrugs : Clin Immunother Biopharm Gene Ther. 2010;24(1):55–76. doi:10.2165/11203990-000000000-00000.

    Article  CAS  Google Scholar 

  47. Hardinger KL, Brennan DC, Klein CL. Selection of induction therapy in kidney transplantation. Transpl Int : Off J Eur Soc for Organ Transplant. 2013;26(7):662–72. doi:10.1111/tri.12043.

    Article  CAS  Google Scholar 

  48. Perales MA, Ishill N, Lomazow WA, Weinstock DM, Papadopoulos EB, Dastigir H, et al. Long-term follow-up of patients treated with daclizumab for steroid-refractory acute graft-vs-host disease. Bone Marrow Transplant. 2007;40(5):481–6. doi:10.1038/sj.bmt.1705762.

    Article  CAS  PubMed  Google Scholar 

  49. Morris JA, Hanson JE, Steffen BJ, Chu AH, Chi-Burris KS, Gotz VP, et al. Daclizumab is associated with decreased rejection and improved patient survival in renal transplant recipients. Clin Transpl. 2005;19(3):340–5. doi:10.1111/j.1399-0012.2005.00344.x.

    Article  CAS  Google Scholar 

  50. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. doi:10.1146/annurev.immunol.26.021607.090331.

    Article  CAS  PubMed  Google Scholar 

  51. Wells AF, Jodat N, Schiff M. A critical evaluation of the role of subcutaneous abatacept in the treatment of rheumatoid arthritis: patient considerations. Biologics: Targets Ther. 2014;8:41–55. doi:10.2147/BTT.S55783. Summary of subcutaneous abatacept data, collating multiple clinical trials.

    CAS  Google Scholar 

  52. Weinblatt ME, Schiff M, Valente R, van der Heijde D, Citera G, Zhao C, et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: findings of a phase IIIb, multinational, prospective, randomized study. Arthritis Rheum. 2013;65(1):28–38. doi:10.1002/art.37711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weinblatt ME, Moreland LW, Westhovens R, Cohen RB, Kelly SM, Khan N, et al. Safety of abatacept administered intravenously in treatment of rheumatoid arthritis: integrated analyses of up to 8 years of treatment from the abatacept clinical trial program. J Rheumatol. 2013;40(6):787–97. doi:10.3899/jrheum.120906. Summary of IV abatacept data, collating multiple clinical trials.

    Article  CAS  PubMed  Google Scholar 

  54. Weinblatt M, Combe B, Covucci A, Aranda R, Becker JC, Keystone E. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: a one-year randomized, placebo-controlled study. Arthritis Rheum. 2006;54(9):2807–16. doi:10.1002/art.22070.

    Article  CAS  PubMed  Google Scholar 

  55. Schiff M, Pritchard C, Huffstutter JE, Rodriguez-Valverde V, Durez P, Zhou X, et al. The 6-month safety and efficacy of abatacept in patients with rheumatoid arthritis who underwent a washout after anti-tumour necrosis factor therapy or were directly switched to abatacept: the ARRIVE trial. Ann Rheum Dis. 2009;68(11):1708–14. doi:10.1136/ard.2008.099218.

    Article  CAS  PubMed  Google Scholar 

  56. Schiff M, Keiserman M, Codding C, Songcharoen S, Berman A, Nayiager S, et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis. 2008;67(8):1096–103. doi:10.1136/ard.2007.080002.

    Article  CAS  PubMed  Google Scholar 

  57. Nash P, Nayiager S, Genovese MC, Kivitz AJ, Oelke K, Ludivico C, et al. Immunogenicity, safety, and efficacy of abatacept administered subcutaneously with or without background methotrexate in patients with rheumatoid arthritis: results from a phase III, international, multicenter, parallel-arm, open-label study. Arthritis Care Res. 2013;65(5):718–28. doi:10.1002/acr.21876.

    Article  CAS  Google Scholar 

  58. Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C, et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann Intern Med. 2006;144(12):865–76.

    Article  CAS  PubMed  Google Scholar 

  59. Keystone EC, Kremer JM, Russell A, Box J, Abud-Mendoza C, Elizondo MG, et al. Abatacept in subjects who switch from intravenous to subcutaneous therapy: results from the phase IIIb ATTUNE study. Ann Rheum Dis. 2012;71(6):857–61. doi:10.1136/annrheumdis-2011-200355.

    Article  CAS  PubMed  Google Scholar 

  60. Kaine J, Gladstein G, Strusberg I, Robles M, Louw I, Gujrathi S, et al. Evaluation of abatacept administered subcutaneously in adults with active rheumatoid arthritis: impact of withdrawal and reintroduction on immunogenicity, efficacy and safety (phase Iiib ALLOW study). Ann Rheum Dis. 2012;71(1):38–44. doi:10.1136/annrheumdis-2011-200344.

    Article  CAS  PubMed  Google Scholar 

  61. Genovese MC, Schiff M, Luggen M, Becker JC, Aranda R, Teng J, et al. Efficacy and safety of the selective co-stimulation modulator abatacept following 2 years of treatment in patients with rheumatoid arthritis and an inadequate response to anti-tumour necrosis factor therapy. Ann Rheum Dis. 2008;67(4):547–54. doi:10.1136/ard.2007.074773.

    Article  CAS  PubMed  Google Scholar 

  62. Genovese MC, Covarrubias A, Leon G, Mysler E, Keiserman M, Valente R, et al. Subcutaneous abatacept versus intravenous abatacept: a phase IIIb noninferiority study in patients with an inadequate response to methotrexate. Arthritis Rheum. 2011;63(10):2854–64. doi:10.1002/art.30463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schiff M, Keiserman M, Codding C, Songcharoen S, Berman A, Nayiager S, et al. Clinical response and tolerability to abatacept in patients with rheumatoid arthritis previously treated with infliximab or abatacept: open-label extension of the ATTEST Study. Ann Rheum Dis. 2011;70(11):2003–7. doi:10.1136/annrheumdis-2011-200316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruperto N, Lovell DJ, Quartier P, Paz E, Rubio-Perez N, Silva CA, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet. 2008;372(9636):383–91. doi:10.1016/S0140-6736(08)60998-8.

    Article  CAS  PubMed  Google Scholar 

  65. Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003;349(20):1907–15. doi:10.1056/NEJMoa035075.

    Article  CAS  PubMed  Google Scholar 

  66. Schiff M, Weinblatt ME, Valente R, van der Heijde D, Citera G, Elegbe A, et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: two-year efficacy and safety findings from AMPLE trial. Ann Rheum Dis. 2014;73(1):86–94. doi:10.1136/annrheumdis-2013-203843.

    Article  CAS  PubMed  Google Scholar 

  67. Alten R, Kaine J, Keystone E, Nash P, Delaet I, Genovese MC. Long-term safety of subcutaneous abatacept in rheumatoid arthritis: integrated analysis of clinical trial data representing more than four years of treatment. Arthritis Rheumatol. 2014;66(8):1987–97. doi:10.1002/art.38687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salliot C, Dougados M, Gossec L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analyses of randomised placebo-controlled trials. Ann Rheum Dis. 2009;68(1):25–32. doi:10.1136/ard.2007.083188.

    Article  CAS  PubMed  Google Scholar 

  69. Lee S, Moon JS, Lee CR, Kim HE, Baek SM, Hwang S, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol. 2016;137(1):327–30. doi:10.1016/j.jaci.2015.08.036.

    Article  PubMed  Google Scholar 

  70. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40. doi:10.1126/science.aaa1663.

    Article  CAS  PubMed  Google Scholar 

  71. Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 2016;374(4):333–43. doi:10.1056/NEJMoa1506027.

    Article  PubMed  Google Scholar 

  72. Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2010;10(3):535–46. doi:10.1111/j.1600-6143.2009.03005.x.

    Article  CAS  Google Scholar 

  73. Durrbach A, Pestana JM, Pearson T, Vincenti F, Garcia VD, Campistol J, et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2010;10(3):547–57. doi:10.1111/j.1600-6143.2010.03016.x.

    Article  CAS  Google Scholar 

  74. Rostaing L, Vincenti F, Grinyo J, Rice KM, Bresnahan B, Steinberg S, et al. Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2013;13(11):2875–83. doi:10.1111/ajt.12460.

    Article  CAS  Google Scholar 

  75. Archdeacon P, Dixon C, Belen O, Albrecht R, Meyer J. Summary of the US FDA approval of belatacept. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2012;12(3):554–62. doi:10.1111/j.1600-6143.2011.03976.x.

    Article  CAS  Google Scholar 

  76. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99. doi:10.1038/nri3862.

    Article  CAS  PubMed  Google Scholar 

  77. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7.

    Article  CAS  PubMed  Google Scholar 

  78. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623–7. doi:10.1126/science.1255904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26. doi:10.1056/NEJMoa1104621.

    Article  CAS  PubMed  Google Scholar 

  80. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi:10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Buchbinder E, Hodi FS. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J Clin Invest. 2015;125(9):3377–83. doi:10.1172/JCI80012.

    Article  PubMed  Google Scholar 

  82. Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol : Off J Am Soc Clin Oncol. 2012;30(21):2691–7. doi:10.1200/JCO.2012.41.6750. Description of the management of the immune-related adverse events (irAE) with ipilimumab therapy.

    Article  CAS  Google Scholar 

  83. Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res : Off J Am Assoc Cancer Res. 2011;17(22):6958–62. doi:10.1158/1078-0432.CCR-11-1595.

    Article  CAS  Google Scholar 

  84. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13. doi:10.1111/nyas.12180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van de Vijver E, van den Berg TK, Kuijpers TW. Leukocyte adhesion deficiencies. Hematol/Oncol Clin North Am. 2013;27(1):101–16, viii. doi:10.1016/j.hoc.2012.10.001. Useful review of leukocyte adhesion cascade.

    Article  Google Scholar 

  86. Ghosh N, Chaki R, Mandal SC. Inhibition of selective adhesion molecules in treatment of inflammatory bowel disease. Int Rev Immunol. 2012;31(5):410–27. doi:10.3109/08830185.2012.690794.

    Article  CAS  PubMed  Google Scholar 

  87. Engelhardt B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm (Vienna). 2006;113(4):477–85. doi:10.1007/s00702-005-0409-y.

    Article  CAS  Google Scholar 

  88. McGuigan C, Craner M, Guadagno J, Kapoor R, Mazibrada G, Molyneux P, et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry. 2016;87(2):117–25. doi:10.1136/jnnp-2015-311100. Clinical algorithim for stratifying risk of PML and defining monitoring paramaters for patients on natalizumab.

    CAS  PubMed  Google Scholar 

  89. Colombel JF, Sands BE, Rutgeerts P, Sandborn W, Danese S, D’Haens G, et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut. 2016. doi:10.1136/gutjnl-2015-311079.

    Google Scholar 

  90. Schwab N, Ulzheimer JC, Fox RJ, Schneider-Hohendorf T, Kieseier BC, Monoranu CM, et al. Fatal PML associated with efalizumab therapy: insights into integrin alphaLbeta2 in JC virus control. Neurology. 2012;78(7):458–67. doi:10.1212/WNL.0b013e3182478d4b. discussion 65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fine AJ, Sorbello A, Kortepeter C, Scarazzini L. Central nervous system herpes simplex and varicella zoster virus infections in natalizumab-treated patients. Clin Infect Dis : Off Publ Infect Dis Soc Am. 2013;57(6):849–52. doi:10.1093/cid/cit376.

    Article  CAS  Google Scholar 

  92. Boland BS, Dulai PS, Chang M, Sandborn WJ, Levesque BG. Pseudomonas Meningitis During Vedolizumab Therapy for Crohn’s Disease. Am J Gastroenterol. 2015;110(11):1631–2. doi:10.1038/ajg.2015.326.

    Article  CAS  PubMed  Google Scholar 

  93. von Budingen HC, Palanichamy A, Lehmann-Horn K, Michel BA, Zamvil SS. Update on the autoimmune pathology of multiple sclerosis: B-cells as disease-drivers and therapeutic targets. Eur Neurol. 2015;73(3-4):238–46. doi:10.1159/000377675.

    Article  CAS  Google Scholar 

  94. Jennette JC, Falk RJ. B cell-mediated pathogenesis of ANCA-mediated vasculitis. Semin Immunopathol. 2014;36(3):327–38. doi:10.1007/s00281-014-0431-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chan VS, Tsang HH, Tam RC, Lu L, Lau CS. B-cell-targeted therapies in systemic lupus erythematosus. Cell Mol Immunol. 2013;10(2):133–42. doi:10.1038/cmi.2012.64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leandro MJ. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther. 2013;15 Suppl 1:S3. doi:10.1186/ar3908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ehrenstein MR, Wing C. The BAFFling effects of rituximab in lupus: danger ahead? Nat Rev Rheumatol. 2016. doi:10.1038/nrrheum.2016.18.

    PubMed  Google Scholar 

  98. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol : Off J Am Soc Clin Oncol. 1998;16(8):2825–33.

    CAS  Google Scholar 

  99. Maloney DG, Grillo-Lopez AJ, Bodkin DJ, White CA, Liles TM, Royston I, et al. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol : Off J Am Soc Clin Oncol. 1997;15(10):3266–74.

    CAS  Google Scholar 

  100. Makatsori M, Kiani-Alikhan S, Manson AL, Verma N, Leandro M, Gurugama NP, et al. Hypogammaglobulinaemia after rituximab treatment-incidence and outcomes. QJM : Monthly J Assoc Physicians. 2014;107(10):821–8. doi:10.1093/qjmed/hcu094.

    Article  CAS  Google Scholar 

  101. Kaplan B, Kopyltsova Y, Khokhar A, Lam F, Bonagura V. Rituximab and immune deficiency: case series and review of the literature. J Allergy Clin Immunol Pract. 2014;2(5):594–600. doi:10.1016/j.jaip.2014.06.003. Clear explanation of hypogammaglobulinemia secondary to rituximab and management.

    Article  PubMed  Google Scholar 

  102. Casulo C, Maragulia J, Zelenetz AD. Incidence of hypogammaglobulinemia in patients receiving rituximab and the use of intravenous immunoglobulin for recurrent infections. Clin Lymphoma Myeloma Leuk. 2013;13(2):106–11. doi:10.1016/j.clml.2012.11.011.

    Article  CAS  PubMed  Google Scholar 

  103. Barmettler S, Price C. Continuing IgG replacement therapy for hypogammaglobulinemia after rituximab--for how long? J Allergy Clin Immunol. 2015;136(5):1407–9. doi:10.1016/j.jaci.2015.06.035.

    Article  PubMed  Google Scholar 

  104. Vermeer NS, Straus SM, Mantel-Teeuwisse AK, Hidalgo-Simon A, Egberts AC, Leufkens HG, et al. Drug-induced progressive multifocal leukoencephalopathy: lessons learned from contrasting natalizumab and rituximab. Clin Pharmacol Ther. 2015;98(5):542–50. doi:10.1002/cpt.207.

    Article  CAS  PubMed  Google Scholar 

  105. Gea-Banacloche JC. Rituximab-associated infections. Semin Hematol. 2010;47(2):187–98. doi:10.1053/j.seminhematol.2010.01.002.

    Article  CAS  PubMed  Google Scholar 

  106. Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10(6):365–73. doi:10.1038/nrrheum.2014.33. Details role of role of BAFF/April system in pathogenesis of lupus and outlines rationale for role in therapy.

    Article  CAS  PubMed  Google Scholar 

  107. Vilas-Boas A, Morais SA, Isenberg DA. Belimumab in systemic lupus erythematosus. RMD Open. 2015;1(1):e000011. doi:10.1136/rmdopen-2014-000011.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Morais SA, Vilas-Boas A, Isenberg DA. B-cell survival factors in autoimmune rheumatic disorders. Ther Adv Musculoskelet Dis. 2015;7(4):122–51. doi:10.1177/1759720X15586782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stohl W, Hiepe F, Latinis KM, Thomas M, Scheinberg MA, Clarke A, et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 2012;64(7):2328–37. doi:10.1002/art.34400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chatham WW, Wallace DJ, Stohl W, Latinis KM, Manzi S, McCune WJ, et al. Effect of belimumab on vaccine antigen antibodies to influenza, pneumococcal, and tetanus vaccines in patients with systemic lupus erythematosus in the BLISS-76 trial. J Rheumatol. 2012;39(8):1632–40. doi:10.3899/jrheum.111587.

    Article  CAS  PubMed  Google Scholar 

  111. ClinicalTrials.gov. A Study to Evaluate the Effect of Belimumab on Vaccine Responses in Subjects With Systemic Lupus Erythematosus (SLE)

  112. Merrill JT, Ginzler EM, Wallace DJ, McKay JD, Lisse JR, Aranow C, et al. Long-term safety profile of belimumab plus standard therapy in patients with systemic lupus erythematosus. Arthritis Rheum. 2012;64(10):3364–73. doi:10.1002/art.34564.

    Article  CAS  PubMed  Google Scholar 

  113. ClinicalTrials.gov. CHABLIS-SC1: a study of the efficacy and safety of subcutaneous blisibimod in subjects with systemic lupus erythematosus (CHABLIS-SC1)

  114. Cogollo E, Silva MA, Isenberg D. Profile of atacicept and its potential in the treatment of systemic lupus erythematosus. Drug Des Dev Ther. 2015;9:1331–9. doi:10.2147/DDDT.S71276.

    Google Scholar 

  115. Isenberg D, Gordon C, Licu D, Copt S, Rossi CP, Wofsy D. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis. 2015;74(11):2006–15. doi:10.1136/annrheumdis-2013-205067.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support came from T32-HD043021to Melanie Ruffner and Sarah Henrickson

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mildred Kwan.

Ethics declarations

Conflict of Interest

Drs. Henrickson, Ruffner, and Kwan declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Autoimmunity

Sarah E. Henrickson and Melanie A. Ruffner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henrickson, S.E., Ruffner, M.A. & Kwan, M. Unintended Immunological Consequences of Biologic Therapy. Curr Allergy Asthma Rep 16, 46 (2016). https://doi.org/10.1007/s11882-016-0624-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-016-0624-7

Keywords

Navigation