Skip to main content

Advertisement

Log in

The role of murine models in the study of the respiratory tract immune response induced by particulate matter

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Environmental air pollution is a global problem. Among the main types of air pollutants that harm human health are ozone, particulate matter (PM), nitrogen, carbon dioxide, sulfur dioxide, and carbon monoxide. These have a significant effect on human health across the world. PM can penetrate the respiratory tract, induce inflammation, and cause permanent damage. In addition, correlations have been found between PM inhalation and the development of cardiovascular diseases, various types of cancer, asthma, and lower respiratory infections. Murine models provide us with the experimental tools to understand the immunoinflammatory response to the inhalation of PM and develop preventive measures that can be extrapolated to humans. Here, we present an overview of the current understanding of the PM immune response and discuss the different experimental strategies used in research on this subject with murine models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable

References

  • Adams K, Greenbaum DS, Shaikh R, van Erp AM, Russell AG (2015) Particulate matter components, sources, and health: systematic approaches to testing effects. J Air Waste Manag Assoc 65:544–558

    Article  CAS  Google Scholar 

  • Al Hanai AH, Antkiewicz DS, Hemming JDC, Shafer MM, Lai AM, Arhami M, Hosseini V, Schauer JJ (2019) Seasonal variations in the oxidative stress and inflammatory potential of PM2.5 in Tehran using an alveolar macrophage model: the role of chemical composition and sources. Environ Int 123:417–427

    Article  CAS  Google Scholar 

  • Anenberg SC, Henze DK, Tinney V, Kinney PL, Raich W, Fann N, Malley CS, Roman H, Lamsal L, Duncan B, Martin RV, van Donkelaar A, Brauer M, Doherty R, Jonson JE, Davila Y, Sudo K, Kuylenstierna JCI (2018) Estimates of the global burden of ambient [Formula: see text], ozone, and [Formula: see text] on asthma incidence and emergency room visits. Environ Health Perspect 126:107004

    Article  CAS  Google Scholar 

  • Asti C, Ruggieri V, Porzio S, Chiusaroli R, Melillo G, Caselli GF (2000) Lipopolysaccharide-induced lung injury in mice. I. Concomitant evaluation of inflammatory cells and haemorrhagic lung damage. Pulm Pharmacol Ther 13:61–69

    Article  CAS  Google Scholar 

  • Aztatzi-Aguilar O, Valdés-Arzate A, Debray-García Y, Calderón-Aranda E, Uribe-Ramirez M, Acosta-Saavedra L, Gonsebatt M, Maciel-Ruiz J, Petrosyan P, Mugica-Alvarez V, Gutiérrez-Ruiz M, Gómez-Quiroz L, Osornio-Vargas A, Froines J, Kleinman M, De Vizcaya-Ruiz A (2018) Exposure to ambient particulate matter induces oxidative stress in lung and aorta in a size- and time-dependent manner in rats. 2 2397847318794859

  • Bahadur R, Russell LM, Prather K (2010) Composition and morphology of individual combustion, biomass burning, and secondary organic particle types obtained using urban and coastal ATOFMS and STXM-NEXAFS measurements. Aerosol Sci Technol 44:551–562

    Article  CAS  Google Scholar 

  • Bai Y, Brugha RE, Jacobs L, Grigg J, Nawrot TS, Nemery B (2015) Carbon loading in airway macrophages as a biomarker for individual exposure to particulate matter air pollution — a critical review. Environ Int 74:32–41

    Article  CAS  Google Scholar 

  • Bryda EC (2013) The Mighty Mouse: the impact of rodents on advances in biomedical research. Mo Med 110:207–211

    Google Scholar 

  • Calderon-Garciduenas L, Kulesza RJ, Doty RL, D’Angiulli A, Torres-Jardon R (2015) Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact. Environ Res 137:157–169

    Article  CAS  Google Scholar 

  • Chen G, Song G, Jiang L, Zhang Y, Zhao N, Chen B, Kan H (2008) Short-term effects of ambient gaseous pollutants and particulate matter on daily mortality in Shanghai, China. J Occup Health 50:41–47

    Article  CAS  Google Scholar 

  • Chen SY, Chan CC, Su TC (2017) Particulate and gaseous pollutants on inflammation, thrombosis, and autonomic imbalance in subjects at risk for cardiovascular disease. Environ Pollut 223:403–408

    Article  CAS  Google Scholar 

  • Chu X, Liu XJ, Qiu JM, Zeng XL, Bao HR, Shu J (2016) Effects of Astragalus and Codonopsis pilosula polysaccharides on alveolar macrophage phagocytosis and inflammation in chronic obstructive pulmonary disease mice exposed to PM2.5. Environ Toxicol Pharmacol 48:76–84

    Article  CAS  Google Scholar 

  • Chuang HC, Lin YJ, Chou CCK, Hwang JS, Chen CC, Yan YH, Hsieh HI, Chuang KJ, Cheng TJ (2017) Alterations in cardiovascular function by particulate matter in rats using a crossover design. Environ Pollut 231:812–820

    Article  CAS  Google Scholar 

  • Churg A, Xie C, Wang X, Vincent R, Wang RD (2005) Air pollution particles activate NF-kappaB on contact with airway epithelial cell surfaces. Toxicol Appl Pharmacol 208:37–45

    Article  CAS  Google Scholar 

  • Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Munzel T (2020) Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress — implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 696:108662

    Article  CAS  Google Scholar 

  • Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, Chen D, Ding W (2013) PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol in Vitro 27:1762–1770

    Article  CAS  Google Scholar 

  • Esquerda-Canals G, Montoliu-Gaya L, Guell-Bosch J, Villegas S (2017) Mouse models of Alzheimer’s disease. J Alzheimers Dis 57:1171–1183

    Article  CAS  Google Scholar 

  • Ferraro S, Orona N, Villalon L, Saldiva PH, Tasat DR, Berra A (2015) Air particulate matter exacerbates lung response on Sjogren’s syndrome animals. Exp Toxicol Pathol 67:125–131

    Article  CAS  Google Scholar 

  • Flint J, Eskin E (2012) Genome-wide association studies in mice. Nat Rev Genet 13:807–817

    Article  CAS  Google Scholar 

  • Fujii T, Hayashi S, Hogg JC, Mukae H, Suwa T, Goto Y, Vincent R, van Eeden SF (2002) Interaction of alveolar macrophages and airway epithelial cells following exposure to particulate matter produces mediators that stimulate the bone marrow. Am J Respir Cell Mol Biol 27:34–41

    Article  CAS  Google Scholar 

  • Gómez-Gallego DM, Hernandez JC, Mendivil-de la Ossa JA (2022) Efectos adversos de la exposición prenatal al material particulado del aire sobre el feto y el recién nacido. IATREIA 35(3), 278-296.

  • Grigg J (2009) Particulate matter exposure in children: relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc 6:564–569

    Article  CAS  Google Scholar 

  • Gu XY, Chu X, Zeng XL, Bao HR, Liu XJ (2017) Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease. Environ Pollut 226:163–173

    Article  CAS  Google Scholar 

  • Guo L, Zhu N, Guo Z, Li GK, Chen C, Sang N, Yao QC (2012) Particulate matter (PM10) exposure induces endothelial dysfunction and inflammation in rat brain. J Hazard Mater 213–214:28–37

    Article  Google Scholar 

  • He M, Ichinose T, Kobayashi M, Arashidani K, Yoshida S, Nishikawa M, Takano H, Sun G, Shibamoto T (2016) Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs. Toxicol Appl Pharmacol 297:41–55

    Article  CAS  Google Scholar 

  • Holgate ST, Sandström T, Frew AJ, Stenfors N, Nördenhall C, Salvi S, Blomberg A, Helleday R, Söderberg M (2003) Health effects of acute exposure to air pollution. Part I: Healthy and asthmatic subjects exposed to diesel exhaust. Research report (Health Effects Institute), 1–30; discussion 51–67.

  • Hu Y, Wang LS, Li Y, Li QH, Li CL, Chen JM, Weng D, Li HP (2017) Effects of particulate matter from straw burning on lung fibrosis in mice. Environ Toxicol Pharmacol 56:249–258

    Article  CAS  Google Scholar 

  • Irvin CG, Bates JH (2003) Measuring the lung function in the mouse: the challenge of size. Respir Res 4:4

    Article  Google Scholar 

  • Ishii H, Hayashi S, Hogg JC, Fujii T, Goto Y, Sakamoto N, Mukae H, Vincent R, van Eeden SF (2005) Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment. Respir Res 6:87

    Article  CAS  Google Scholar 

  • Jacquemin B, Kauffmann F, Pin I, Le Moual N, Bousquet J, Gormand F, Just J, Nadif R, Pison C, Vervloet D, Kunzli N, Siroux V, Epidemiological study on the G, Environment of A, 2012. Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma. J Epidemiol Community Health 66, 796-802

  • Jiang S, Bo L, Du X, Liu J, Zeng X, He G, Sun Q, Kan H, Song W, Xie Y, Zhao J (2017) CARD9-mediated ambient PM2.5-induced pulmonary injury is associated with Th17 cell. Toxicol Lett 273:36–43

    Article  CAS  Google Scholar 

  • Kelly FJ, Fussell JC (2011) Air pollution and airway disease. Clin Exp Allergy 41:1059–1071

    Article  CAS  Google Scholar 

  • Kelly FJ, Fussell JC (2015) Linking ambient particulate matter pollution effects with oxidative biology and immune responses. Ann N Y Acad Sci 1340:84–94

    Article  CAS  Google Scholar 

  • Kim SE, Bell ML, Hashizume M, Honda Y, Kan H, Kim H (2018) Associations between mortality and prolonged exposure to elevated particulate matter concentrations in East Asia. Environ Int 110:88–94

    Article  CAS  Google Scholar 

  • King A, Bowe J (2016) Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem Pharmacol 99:1–10

    Article  CAS  Google Scholar 

  • Lee HM, Greeley GH, Herndon DN, Sinha M, Luxon BA, Englander EW (2005) A rat model of smoke inhalation injury: influence of combustion smoke on gene expression in the brain. Toxicol Appl Pharmacol 208:255–265

    Article  CAS  Google Scholar 

  • Leong XF, Ng CY, Jaarin K (2015) Animal models in cardiovascular research: hypertension and atherosclerosis. Biomed Res Int 2015:528757

    Article  Google Scholar 

  • Li G, Fang C, Wang S, Sun S (2016) The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM2.5) concentrations in China. Environ Sci Technol 50:11452–11459

    Article  CAS  Google Scholar 

  • Lim R, Zavou MJ, Milton PL, Chan ST, Tan JL, Dickinson H, Murphy SV, Jenkin G, Wallace EM (2014) Measuring respiratory function in mice using unrestrained whole-body plethysmography. J Vis Exp, e51755.

  • Loaiza-Ceballos MC, Marin-Palma D, Zapata W, Hernandez JC (2022) Viral respiratory infections and air pollutants. Air Qual Atmos Health 15:105–114

    Article  CAS  Google Scholar 

  • Losacco C, Perillo A (2018) Particulate matter air pollution and respiratory impact on humans and animals. Environ Sci Pollut Res Int 25:33901–33910

    Article  Google Scholar 

  • Ma Y, Chen R, Pan G, Xu X, Song W, Chen B, Kan H (2011) Fine particulate air pollution and daily mortality in Shenyang, China. Sci Total Environ 409:2473–2477

    Article  CAS  Google Scholar 

  • Mann JK, Balmes JR, Bruckner TA, Mortimer KM, Margolis HG, Pratt B, Hammond SK, Lurmann FW, Tager IB (2010) Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. Environ Health Perspect 118:1497–1502

    Article  CAS  Google Scholar 

  • Matthew E, Warden G, Dedman J (2001) A murine model of smoke inhalation. Am J Physiol Lung Cell Mol Physiol 280:L716-723

    Article  CAS  Google Scholar 

  • Matthews NC, Faith A, Pfeffer P, Lu H, Kelly FJ, Hawrylowicz CM, Lee TH (2014) Urban particulate matter suppresses priming of T helper type 1 cells by granulocyte/macrophage colony-stimulating factor-activated human dendritic cells. Am J Respir Cell Mol Biol 50:281–291

    Article  Google Scholar 

  • Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L379-399

    Article  CAS  Google Scholar 

  • Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM, Acute Lung Injury in Animals Study G (2011) An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44:725–738

    Article  CAS  Google Scholar 

  • Meng YY, Rull RP, Wilhelm M, Lombardi C, Balmes J, Ritz B (2010) Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health 64:142–147

    Article  Google Scholar 

  • Mitschik S, Schierl R, Nowak D, Jorres RA (2008) Effects of particulate matter on cytokine production in vitro: a comparative analysis of published studies. Inhal Toxicol 20:399–414

    Article  CAS  Google Scholar 

  • Mizutani A, Enkhbaatar P, Esechie A, Traber LD, Cox RA, Hawkins HK, Deyo DJ, Murakami K, Noguchi T, Traber DL (2008) Pulmonary changes in a mouse model of combined burn and smoke inhalation-induced injury. J Appl Physiol 1985(105):678–684

    Article  Google Scholar 

  • Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294:L152-160

    Article  CAS  Google Scholar 

  • Muralidharan S, Mandrekar P (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94:1167–1184

    Article  Google Scholar 

  • Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E (2013) Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. Biomed Res Int 2013:279371

    Article  Google Scholar 

  • Orona NS, Ferraro SA, Astort F, Morales C, Brites F, Boero L, Tiscornia G, Maglione GA, Saldiva PHN, Yakisich S, Tasat DR (2016) Acute exposure to Buenos Aires air particles (UAP-BA) induces local and systemic inflammatory response in middle-aged mice: a time course study. Environ Pollut 208:261–270

    Article  CAS  Google Scholar 

  • Ozdoganoglu T, Songu M (2012) The burden of allergic rhinitis and asthma. Ther Adv Respir Dis 6:11–23

    Article  Google Scholar 

  • Paulin L, Hansel N (2016) Particulate air pollution and impaired lung function. F1000Res 5.

  • Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69

    Article  CAS  Google Scholar 

  • Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A (2009) Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 261:1–8

    Article  CAS  Google Scholar 

  • Porter M, Karp M, Killedar S, Bauer SM, Guo J, Williams D, Breysse P, Georas SN, Williams MA (2007) Diesel-enriched particulate matter functionally activates human dendritic cells. Am J Respir Cell Mol Biol 37:706–719

    Article  CAS  Google Scholar 

  • Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, Xun WW, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Ostenson CG, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Sorensen M, Tjonneland A, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Key TJ, de Hoogh K, Concin H, Nagel G, Vilier A, Grioni S, Krogh V, Tsai MY, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Trichopoulou A, Bamia C, Vineis P, Hoek G (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14:813–822

    Article  Google Scholar 

  • Radan M, Dianat M, Badavi M, Mard SA, Bayati V, Goudarzi G (2019) Gallic acid protects particulate matter (PM10) triggers cardiac oxidative stress and inflammation causing heart adverse events in rats. Environ Sci Pollut Res Int 26:18200–18207

    Article  CAS  Google Scholar 

  • Reczynska K, Tharkar P, Kim SY, Wang Y, Pamula E, Chan HK, Chrzanowski W (2018) Animal models of smoke inhalation injury and related acute and chronic lung diseases. Adv Drug Deliv Rev 123:107–134

    Article  CAS  Google Scholar 

  • Salvi SS, Nordenhall C, Blomberg A, Rudell B, Pourazar J, Kelly FJ, Wilson S, Sandstrom T, Holgate ST, Frew AJ (2000) Acute exposure to diesel exhaust increases IL-8 and GRO-alpha production in healthy human airways. Am J Respir Crit Care Med 161:550–557

    Article  CAS  Google Scholar 

  • Samulin Erdem J, Alswady-Hoff M, Ervik TK, Skare Ø, Ellingsen DG, Zienolddiny S (2019) Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function. Biomaterials 203:31–42

    Article  CAS  Google Scholar 

  • Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, Lin YS, Kang JH, Lo YC, Chuang KJ, Cheng TJ, Chuang HC (2018) Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol 15:44

    Article  CAS  Google Scholar 

  • Sint T, Donohue JF, Ghio AJ (2008) Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease. Inhal Toxicol 20:25–29

    Article  CAS  Google Scholar 

  • Sly PD, Turner DJ, Hantos Z (2004) Measuring lung function in murine models of pulmonary disease. Drug Discov Today Dis Models 1:337–343

    Article  CAS  Google Scholar 

  • Son JY, Bell ML, Lee JT (2011) Survival analysis of long-term exposure to different sizes of airborne particulate matter and risk of infant mortality using a birth cohort in Seoul, Korea. Environ Health Perspect 119:725–730

    Article  CAS  Google Scholar 

  • Sun X, Wei H, Young DE, Bein KJ, Smiley-Jewell SM, Zhang Q, Fulgar CCB, Castaneda AR, Pham AK, Li W, Pinkerton KE (2017) Differential pulmonary effects of wintertime California and China particulate matter in healthy young mice. Toxicol Lett 278:1–8

    Article  CAS  Google Scholar 

  • Takahashi A, Bartolak-Suki E, Majumdar A, Suki B (2015) Changes in respiratory elastance after deep inspirations reflect surface film functionality in mice with acute lung injury. J Appl Physiol 1985(119):258–265

    Article  Google Scholar 

  • Tsai SS, Chang CC, Yang CY (2013) Fine particulate air pollution and hospital admissions for chronic obstructive pulmonary disease: a case-crossover study in Taipei. Int J Environ Res Public Health 10:6015–6026

    Article  CAS  Google Scholar 

  • Valderrama A, Ortiz-Hernández P, Agraz-Cibrián JM, Tabares-Guevara JH, Gómez DM, Zambrano-Zaragoza JF, Taborda NA, Hernandez JC (2022a) Particulate matter (PM(10)) induces in vitro activation of human neutrophils, and lung histopathological alterations in a mouse model. Sci Rep 12:7581

    Article  CAS  Google Scholar 

  • Valderrama A, Zapata MI, Hernandez JC, Cardona-Arias JA (2022b) Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020. Heliyon 8(1):e08778

  • van Voorhis M, Knopp S, Julliard W, Fechner JH, Zhang X, Schauer JJ, Mezrich JD (2013) Exposure to atmospheric particulate matter enhances Th17 polarization through the aryl hydrocarbon receptor. PLoS ONE 8:e82545

    Article  Google Scholar 

  • Wang P, Thevenot P, Saravia J, Ahlert T, Cormier SA (2011) Radical-containing particles activate dendritic cells and enhance Th17 inflammation in a mouse model of asthma. Am J Respir Cell Mol Biol 45:977–983

    Article  CAS  Google Scholar 

  • Wang H, Peng X, Cao F, Wang Y, Shi H, Lin S, Zhong W, Sun J (2017) Cardiotoxicity and mechanism of particulate matter 2.5 (PM2.5) exposure in offspring rats during pregnancy. Med Sci Monit 23:3890–3896

    Article  Google Scholar 

  • Weichenthal SA, Lavigne E, Evans GJ, Godri Pollitt KJ, Burnett RT (2016) Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. Am J Respir Crit Care Med 194:577–586

    Article  CAS  Google Scholar 

  • Wellenius GA, Boyle LD, Wilker EH, Sorond FA, Coull BA, Koutrakis P, Mittleman MA, Lipsitz LA (2013) Ambient fine particulate matter alters cerebral hemodynamics in the elderly. Stroke 44:1532–1536

    Article  CAS  Google Scholar 

  • World health organization (WHO). Ambient (outdoor) air quality and health [Internet]. WHO. [cited 2018 Mar 13]. Available from: http://www.who.int/mediacentre/factsheets/fs313/en/.

  • Xu XC, Wu YF, Zhou JS, Chen HP, Wang Y, Li ZY, Zhao Y, Shen HH, Chen ZH (2017) Autophagy inhibitors suppress environmental particulate matter-induced airway inflammation. Toxicol Lett 280:206–212

    Article  CAS  Google Scholar 

  • Xu M, Li F, Wang M, Zhang H, Xu L, Adcock IM, Chung KF, Zhang Y (2019) Protective effects of VGX-1027 in PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Eur J Pharmacol 842:373–383

    Article  CAS  Google Scholar 

  • Yan F, Wu Y, Liu H, Wu Y, Shen H, Li W (2018) ATF3 is positively involved in particulate matter-induced airway inflammation in vitro and in vivo. Toxicol Lett 287:113–121

    Article  CAS  Google Scholar 

  • Yan F, Wu Y, Liu H, Wu Y, Shen H, Li W (2019) Corrigendum to “ATF3 is positively involved in particulate matter-induced airway inflammation in vitro” [Toxicol. Lett. 287 (2018) 113–121]. Toxicol Lett 300:116–117

    Article  CAS  Google Scholar 

  • Zhang Z, Hoek G, Chang LY, Chan TC, Guo C, Chuang YC, Chan J, Lin C, Jiang WK, Guo Y, Vermeulen R, Yeoh EK, Tam T, Lau AKH, Griffiths S, Lao XQ (2018) Particulate matter air pollution, physical activity and systemic inflammation in Taiwanese adults. Int J Hyg Environ Health 221:41–47

    Article  CAS  Google Scholar 

  • Zhao J, Li M, Wang Z, Chen J, Zhao J, Xu Y, Wei X, Wang J, Xie J (2019) Role of PM2.5 in the development and progression of COPD and its mechanisms. Respir Res 20:120

    Article  Google Scholar 

  • Zhu F, Qiu X, Wang J, Jin Y, Sun Y, Lv T, Xia Z (2012) A rat model of smoke inhalation injury. Inhal Toxicol 24:356–364

    Article  CAS  Google Scholar 

  • Zitvogel L, Pitt JM, Daillere R, Smyth MJ, Kroemer G (2016) Mouse models in oncoimmunology. Nat Rev Cancer 16:759–773

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cherilyn Sirois for native English editing.

Funding

This work was supported by the Universidad Cooperativa de Colombia, and MINCIENCIAS, grant number (141580763047).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and writing—original draft preparation. Juan C. Hernandez: supervision, writing—reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan C. Hernandez.

Ethics declarations

Disclaimers

The opinions expressed in this article are our own and do not constitute the institution’s official position.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Air pollution contributes to more than 4 million deaths per year.

• Particulate matter induce inflammation at the respiratory tract.

• Particulate matter can penetrate the respiratory tract and cause permanent damage.

• Murine models provide the tools for understanding the pathological response to particulate matter.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, D.M., Tabares-Guevara, J.H., Marin-Palma, D. et al. The role of murine models in the study of the respiratory tract immune response induced by particulate matter. Air Qual Atmos Health 16, 15–23 (2023). https://doi.org/10.1007/s11869-022-01260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-022-01260-6

Keywords

Navigation