Skip to main content
Log in

Pseudo-differential operators and existence of Gabor frames

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

We study from a pseudo-differential point of view the frame operator associated with a Gabor system. In particular we show how an application of the classical boundedness theorem of Calderón–Vaillancourt yields sufficient conditions for a Gabor system to form a frame in \(L^2\left( {\mathbb {R}}^d\right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bényi, Á., Gröchenig, K., Heil, C., Okoudjou, K.: Modulation spaces and a class of bounded multilinear pseudodifferential operators. J. Oper. Theory 54, 387–399 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Bölcskei, H., Janssen, A.J.E.M.: Gabor frames, unimodularity, and window decay. J. Fourier Anal. Appl. 6(3), 255–276 (2000)

    Article  MathSciNet  Google Scholar 

  3. Boggiatto, P., De Donno, G., Oliaro, A.: Time–frequency representations of Wigner type and pseudo-differential operators. Trans. Am. Math. Soc. 362(9), 4955–4981 (2010)

    Article  MathSciNet  Google Scholar 

  4. Casazza, P., Christensen, O., Janssen, A.J.E.M.: Weyl–Heisenberg frames, translation invariant systems and the Walnut representation. J. Funct. Anal. 180(1), 85–147 (2001)

    Article  MathSciNet  Google Scholar 

  5. Cohen, L.: Time–Frequency Analysis. Prentice Hall Signal Processing series, New Jersey (1995)

    Google Scholar 

  6. Cordero, E., de Gosson, M., Nicola, F.: Time–frequency analysis of Born–Jordan pseudodifferential operators. J. Funct. Anal. 272, 577–598 (2017)

    Article  MathSciNet  Google Scholar 

  7. Christensen, O., Kim, H.O., Kim, R.Y.: Gabor windows supported on \([-1, 1]\) and compactly supported dual windows. Appl. Comput. Harmon. Anal. 28, 89–103 (2010)

    Article  MathSciNet  Google Scholar 

  8. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkäuser, Boston (2016)

    MATH  Google Scholar 

  9. Christensen, O., Deng, B., Heil, C.: Density of Gabor frames. Appl. Comput. Harmon. Anal. 7, 292–304 (1999)

    Article  MathSciNet  Google Scholar 

  10. Feichtinger, H.G.: Gabor expansions of signals: computational aspects and open questions. In: Conference on Landscape of Time–Frequency Analysis, ATFA. Springer (2017)

  11. Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. In: Gabor Analysis and Algorithms, Applied Numerical Harmonic Analysis, pp. 233–266. Birkäuser, Boston, MA (1998)

    Chapter  Google Scholar 

  12. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Gabor Analysis and Algorithms, pp. 123–170. Birkäuser, Boston, MA (1998)

    Chapter  Google Scholar 

  13. Folland, G.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  14. Ghoparde, S.R., Limaye, B.V.: A Course in Multivariate Calculus and Analysis, Undergraduate Texts in Math. Springer, New York (2010)

    Google Scholar 

  15. Gröchenig, K.: Foundations of Time–Frequency Analysis. Birkäuser, Boston (2001)

    Book  Google Scholar 

  16. Gröchenig, K.: The mystery of Gabor frames. J. Fourier Anal. Appl. 20(4), 865–895 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gröchenig, K., Romero, J.L., Stöckler, J.: Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions. Invent. Math. 211(3), 1119–1148 (2018)

    Article  MathSciNet  Google Scholar 

  18. Gröchenig, K., Stöckler, J.: Gabor frames and totally positive functions. Duke Math. J. 162(6), 1003–1031 (2013)

    Article  MathSciNet  Google Scholar 

  19. Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)

    Article  MathSciNet  Google Scholar 

  20. Heil, C.: A Basis Theory Primer. Birkhäuser, Boston (2011)

    Book  Google Scholar 

  21. Heil, C., Gröchenig, K.: Modulation spaces and pseudodifferential operators. Integr. Equ. Oper. Theory 34, 439–457 (1999)

    Article  MathSciNet  Google Scholar 

  22. Hwang, I.L.: The \(L^2\) boundedness of pseudodifferential operators. Trans. Am. Math. Soc. 302(1), 55–76 (1987)

    MATH  Google Scholar 

  23. Janssen, A.J.E.M.: On generating tight Gabor frames at critical density. J. Fourier Anal. Appl. 9(2), 175–214 (2003)

    Article  MathSciNet  Google Scholar 

  24. Janssen, A.J.E.M.: Zak transforms with few zeros and the tie. In: H.G. Feichtinger, T. Strohmer (Eds.), Advances in Gabor Analysis, pp. 31–70. Birkhäuser, Boston, MA (2003)

    Chapter  Google Scholar 

  25. Janssen, A.J.E.M., Strohmer, T.: Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 12(3), 259–267 (2002)

    Article  MathSciNet  Google Scholar 

  26. Labate, D.: Pseudodifferential operators on modulation spaces. J. Math. Anal. Appl. 262(1), 242–255 (2001)

    Article  MathSciNet  Google Scholar 

  27. Landau, H.: On the density of phase space expansions. IEEE Trans. Inf. Theory 39, 1152–1156 (1993)

    Article  Google Scholar 

  28. Lyubarskii, Y.I.: Frames in the Bargman space of entire functions. In: Entire and Subharmononic Function, American Mathematical Society, pp. 167–180. Providence, RI (1992)

  29. Ron, A., Shen, Z.: Weyl–Heisenberg frames and Riesz bases in \(L^2({\mathbb{R}}^d)\). Duke Math. J. 89(2), 237–282 (1997)

    Article  MathSciNet  Google Scholar 

  30. Seip, K., Wallsten, R.: Density theorems for sampling and interpolation in the Bargman–Fock space, II. J. Reine Angew. Math. 429, 107–113 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (1987)

    Book  Google Scholar 

  32. Toft, J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus i. J. Funct. Anal. 207(2), 399–429 (2004)

    Article  MathSciNet  Google Scholar 

  33. Toft, J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus ii. Ann. Glob. Anal. Geom. 26, 73–106 (2004)

    Article  MathSciNet  Google Scholar 

  34. Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatshefte für Math. (Print) 173, 625–655 (2014)

    Article  MathSciNet  Google Scholar 

  35. Walnut, D.F.: Continuity properties of the Gabor frame operator. J. Math. Anal. Appl. 165(2), 479–504 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Garello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boggiatto, P., Garello, G. Pseudo-differential operators and existence of Gabor frames. J. Pseudo-Differ. Oper. Appl. 11, 93–117 (2020). https://doi.org/10.1007/s11868-019-00279-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-019-00279-1

Keywords

Mathematics Subject Classification

Navigation